How to get the tokens in data-search-meta-sol - python

def extract(page):
url = f'https://www.jobstreet.com.my/en/job-search/administrative-assistant-jobs/{page}/'
r = requests.get(url)
soup = BeautifulSoup(r.content, 'html.parser')
return soup
def transform(soup):
jobs = soup.find_all('div', class_='sx2jih0 zcydq876 zcydq866 zcydq896 zcydq886 zcydq8n zcydq856 zcydq8f6 zcydq8eu')
for job in jobs[:29]:
for token in job.find_all('div', attrs={'data-search-sol-meta': True}):
more_details = token.text.strip()
job_detail = {
'more details': more_details
}
joblist.append(job_detail)
joblist = []
dummy = 2
for i in range(0, dummy, 1):
c = extract(i + 1)
transform(c)
print(f'Progress Page: [{int(i) + 1}/{dummy}]')
time.sleep(4)
df = pd.DataFrame(joblist)
I want to scrape the tokens in those data-search-sol-meta tags, how to i get it?
<div data-search-sol-meta="{"searchRequestToken":"62781aeb-4a14-43c9-b985-8be617cc1107","token":"0~62781aeb-4a14-43c9-b985-8be617cc1107","jobId":"jobstreet-my-job-5011156","section":"MAIN","sectionRank":1,"jobAdType":"ORGANIC","tags":{"mordor__flights":"mordor_80","jobstreet:userGroup":"BB","jobstreet:s_vi":"[CS]v1|314CC40D0D655F39-400007A66AC825EB[CE]"}}">
the results in the pd (more_details column) that I've got is just "None"

I would use a more robust css selector list i.e. not the dynamic classes. Be high enough in the DOM to be able to select both the attributes you want and then the job info. You can extract the attribute with the tokens and use json library to list separately.
import requests, json
from bs4 import BeautifulSoup
def extract(page):
url = f"https://www.jobstreet.com.my/en/job-search/administrative-assistant-jobs/{page}/"
r = requests.get(url)
soup = BeautifulSoup(r.content, "html.parser")
return soup
def transform(soup):
jobs = soup.select("[data-automation=jobListing] > div:has(article)")
for job in jobs:
print(job.select_one("h1 span").text)
print()
print(job["data-search-sol-meta"])
print()
data = json.loads(job["data-search-sol-meta"])
print("searchRequestToken: ", data["searchRequestToken"])
print("token: ", data["token"])
print()
soup = extract(1)
transform(soup)

Related

My while loop to scrape all pages in the website is not working

Here is the website I am trying to scrape: https://books.toscrape.com/
Below are my functions. The scrape_all_pages() is not working. Is there a better way to get the page number from the website directly so I can use the range function instead?
I did checkout Finding number of pages using Python BeautifulSoup
import requests
from bs4 import BeautifulSoup
def get_soup(url):
"""Takes a URL and returns a BeautifulSoup() instance representing the HTML of the page."""
response = requests.get(url)
html = response.text
soup = BeautifulSoup(html, "html.parser")
return soup
def scrape_page(num):
"""Takes a page and returns a list of links to the book that are on the page."""
BASE_URL = 'http://books.toscrape.com/catalogue/'
PAGE_URL = BASE_URL + str('page-')
book_url = []
soup = get_soup(PAGE_URL + str(num)+ '.html')
for x in soup.findAll("article", class_ = "product_pod"):
url = x.div.a.get('href')
link = BASE_URL + url
if x not in book_url:
book_url.append(link)
return book_url
def scrape_all_pages():
"""Scrapes all pages, returning a list of book links."""
page_num = 0
all_urls = []
while True:
url = scrape_page(page_num)
if not url:
break
all_urls += url
page_num += 1
return all_urls
It do not need range() in most cases. Would recommend to change strategy and take a look if there is a link to next page available or not:
if soup.select_one('li.next a[href]'):
nextPage = BASE_URL + soup.select_one('li.next a[href]')['href']
else:
nextPage = None
or from python3.8 and later:
nextPage = BASE_URL + a['href'] if(a := soup.select_one('li.next a[href]')) else None
Example
Note Starts from https://books.toscrape.com/catalogue/page-45.html to limit for demo. You could simply change it to get https://books.toscrape.com/ getting all pages scraped
import requests
from bs4 import BeautifulSoup
def get_soup(url):
"""Takes a URL and returns a BeautifulSoup() instance representing the HTML of the page."""
response = requests.get(url)
html = response.text
soup = BeautifulSoup(html, "html.parser")
return soup
def scrape_page(url):
"""Takes a page and append link of the books that are on the page to global list"""
BASE_URL = 'http://books.toscrape.com/catalogue/'
soup = get_soup(url)
for x in soup.find_all("article", class_ = "product_pod"):
url = x.div.a.get('href')
link = BASE_URL + url
if x not in book_url:
book_url.append(link)
if soup.select_one('li.next a[href]'):
nextPage = BASE_URL + soup.select_one('li.next a[href]')['href']
else:
nextPage = None
return nextPage
def scrape_all_pages(url):
"""Scrapes all pages, returning a list of book links."""
while True:
if url:
print(url)
url = scrape_page(url)
else:
break
return book_url
book_url = []
scrape_all_pages('https://books.toscrape.com/catalogue/page-45.html')
Output
['http://books.toscrape.com/catalogue/annie-on-my-mind_120/index.html',
'http://books.toscrape.com/catalogue/and-then-there-were-none_119/index.html',
'http://books.toscrape.com/catalogue/a-walk-in-the-woods-rediscovering-america-on-the-appalachian-trail_118/index.html',
'http://books.toscrape.com/catalogue/a-visit-from-the-goon-squad_117/index.html',
'http://books.toscrape.com/catalogue/a-storm-of-swords-a-song-of-ice-and-fire-3_116/index.html',
'http://books.toscrape.com/catalogue/a-heartbreaking-work-of-staggering-genius_115/index.html',
'http://books.toscrape.com/catalogue/8-keys-to-mental-health-through-exercise_114/index.html',
'http://books.toscrape.com/catalogue/girlboss_113/index.html',
'http://books.toscrape.com/catalogue/the-suffragettes-little-black-classics-96_112/index.html',
'http://books.toscrape.com/catalogue/the-sense-of-an-ending_111/index.html',
'http://books.toscrape.com/catalogue/the-sandman-vol-2-the-dolls-house-the-sandman-volumes-2_110/index.html',
'http://books.toscrape.com/catalogue/the-course-of-love_109/index.html',
'http://books.toscrape.com/catalogue/sugar-rush-offensive-line-2_108/index.html',
'http://books.toscrape.com/catalogue/saga-volume-2-saga-collected-editions-2_107/index.html',
'http://books.toscrape.com/catalogue/run-spot-run-the-ethics-of-keeping-pets_106/index.html',...]

Multiple Pages Web Scraping with Python and Beautiful Soup

I'm trying to write a code to scrape some date from pages about hotels. The final information (name of the hotel and address) should be export to csv. The code works but only on one page...
import requests
import pandas as pd
from bs4 import BeautifulSoup # HTML data structure
page_url = requests.get('https://e-turysta.pl/noclegi-krakow/')
soup = BeautifulSoup(page_url.content, 'html.parser')
list = soup.find(id='nav-lista-obiektow')
items = list.find_all(class_='et-list__details flex-grow-1 d-flex d-md-block flex-column')
nazwa_noclegu = [item.find(class_='h3 et-list__details__name').get_text() for item in items]
adres_noclegu = [item.find(class_='et-list__city').get_text() for item in items]
dane = pd.DataFrame(
{
'nazwa' : nazwa_noclegu,
'adres' : adres_noclegu
}
)
print(dane)
dane.to_csv('noclegi.csv')
I tried a loop but doesn't work:
for i in range(22):
url = requests.get('https://e-turysta.pl/noclegi-krakow/'.format(i+1)).text
soup = BeautifulSoup(url, 'html.parser')
Any ideas?
Urls are different then you use - you forgot ?page=.
And you have to use {} to add value to string
url = 'https://e-turysta.pl/noclegi-krakow/?page={}'.format(i+1)
or concatenate it
url = 'https://e-turysta.pl/noclegi-krakow/?page=' + str(i+1)
or use f-string
url = f'https://e-turysta.pl/noclegi-krakow/?page={i+1}'
EDIT: working code
import requests
from bs4 import BeautifulSoup # HTML data structure
import pandas as pd
def get_page_data(number):
print('number:', number)
url = 'https://e-turysta.pl/noclegi-krakow/?page={}'.format(number)
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
container = soup.find(id='nav-lista-obiektow')
items = container.find_all(class_='et-list__details flex-grow-1 d-flex d-md-block flex-column')
# better group them - so you could add default value if there is no nazwa or adres
dane = []
for item in items:
nazwa = item.find(class_='h3 et-list__details__name').get_text(strip=True)
adres = item.find(class_='et-list__city').get_text(strip=True)
dane.append([nazwa, adres])
return dane
# --- main ---
wszystkie_dane = []
for number in range(1, 23):
dane_na_stronie = get_page_data(number)
wszystkie_dane.extend(dane_na_stronie)
dane = pd.DataFrame(wszystkie_dane, columns=['nazwa', 'adres'])
dane.to_csv('noclegi.csv', index=False)
in your loop you use the .format() function but need to insert the brackets into the string you are formatting.
for i in range(22):
url = requests.get('https://e-turysta.pl/noclegi-krakow/{}'.format(i+1)).text
soup = BeautifulSoup(url, 'html.parser')

Find subpage urls with articles and collect data from them

The script should find the addresses of subpages with articles and collect the necessary data from them. The data should go to the database but I don't know how to make the script pull the content of each article from every page of the blog.
import requests
from bs4 import BeautifulSoup
from nltk.tokenize import RegexpTokenizer
import nltk
import matplotlib.pyplot as plt
import seaborn as sns
url = 'https://xxx/'
r = requests.get(url)
# Extract HTML
html = r.text
# Create a BeautifulSoup object from the HTML
soup = BeautifulSoup(html, "html5lib")
# Get the text
text = soup.get_text()
# Create tokenizer
tokenizer = RegexpTokenizer('\w+')
# Create tokens
tokens = tokenizer.tokenize(text)
# Initialize new list
words = []
# Loop through list
for word in tokens:
words.append(word.lower())
# Get English stopwords and print some of them
sw = nltk.corpus.stopwords.words('english')
# Initialize new list
words_ns = []
for word in words:
if word not in sw:
words_ns.append(word)
# plotting
freqdist1 = nltk.FreqDist(words_ns)
freqdist1.plot(25)
print(soup.get_text())
You could do the whole thing with beautifulsoup as requests. The text extraction code is by #nmgeek; the same question there has other methods to choose from. I am guessing you can then handle the text with nltk. The method is nice as you can play with which selectors you add to list. You can achieve something similar with selector list passed to select i.e. [item.text for item in soup.select('selector list goes here')
Edit: Below gets you all the links but seems website blocks you after a while. Have a look at rotating IPs and these/User-Agents in the loop over all_links
If you have to resort to selenium at least you have the list of all article links to you can loop over and .get with selenium
import requests
from bs4 import BeautifulSoup as bs
url = 'https://teonite.com/blog/page/{}/index.html'
all_links = []
headers = {
'Accept' : 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
'User-Agent' : 'Mozilla/5.0'
}
with requests.Session() as s:
r = s.get('https://teonite.com/blog/')
soup = bs(r.content, 'lxml')
article_links = ['https://teonite.com' + item['href'][2:] for item in soup.select('.post-content a')]
all_links.append(article_links)
num_pages = int(soup.select_one('.page-number').text.split('/')[1])
for page in range(2, num_pages + 1):
r = s.get(url.format(page))
soup = bs(r.content, 'lxml')
article_links = ['https://teonite.com' + item['href'][2:] for item in soup.select('.post-content a')]
all_links.append(article_links)
all_links = [item for i in all_links for item in i]
for article in all_links:
#print(article)
r = s.get(article, headers = headers)
soup = bs(r.content, 'lxml')
[t.extract() for t in soup(['style', 'script', '[document]', 'head', 'title'])]
visible_text = soup.getText() # taken from https://stackoverflow.com/a/19760007/6241235 #nmgeek
# here I think you need to consider IP rotation/User-Agent changing
try:
print(soup.select_one('.post-title').text)
except:
print(article)
print(soup.select_one('h1').text)
break
# do something with text
Adding in selenium seems to definitely solve bad request problem of being blocked:
import requests
from bs4 import BeautifulSoup as bs
from selenium import webdriver
url = 'https://teonite.com/blog/page/{}/index.html'
all_links = []
with requests.Session() as s:
r = s.get('https://teonite.com/blog/')
soup = bs(r.content, 'lxml')
article_links = ['https://teonite.com' + item['href'][2:] for item in soup.select('.post-content a')]
all_links.append(article_links)
num_pages = int(soup.select_one('.page-number').text.split('/')[1])
for page in range(2, num_pages + 1):
r = s.get(url.format(page))
soup = bs(r.content, 'lxml')
article_links = ['https://teonite.com' + item['href'][2:] for item in soup.select('.post-content a')]
all_links.append(article_links)
all_links = [item for i in all_links for item in i]
d = webdriver.Chrome()
for article in all_links:
d.get(article)
soup = bs(d.page_source, 'lxml')
[t.extract() for t in soup(['style', 'script', '[document]', 'head', 'title'])]
visible_text = soup.getText() # taken from https://stackoverflow.com/a/19760007/6241235 #nmgeek
try:
print(soup.select_one('.post-title').text)
except:
print(article)
print(soup.select_one('h1').text)
break #for debugging
# do something with text
d.quit()

How to extract text within h4 strong?

I am trying to extract each "Overall Rating" (number value in strong tags) from each product page
https://www.guitarguitar.co.uk/product/12082017334688--epiphone-les-paul-standard-plus-top-pro-translucent-blue
The structure goes as follows:
<div class="col-sm-12">
<h2 class="line-bottom"> Customer Reviews</h2>
<h4>
Overall Rating
<strong>5</strong>
<span></span>
</h4>
</div>
I am trying to extract only the strong values.
productsRating = soup.find("div", {"class": "col-sm-12"}.h4
This sometimes works, but the page makes use of same class for different elements so it extracts un-wanted html elements.
Is there any solution to only getting the products overall reviews?
EDITED!!
this is the whole loop for my program.
for page in range(1, 2):
guitarPage = requests.get('https://www.guitarguitar.co.uk/guitars/electric/page-{}'.format(page)).text
soup = BeautifulSoup(guitarPage, 'lxml')
guitars = soup.find_all(class_='col-xs-6 col-sm-4 col-md-4 col-lg-3')
for guitar in guitars:
title_text = guitar.h3.text.strip()
print('Guitar Name: ', title_text)
price = guitar.find(class_='price bold small').text.strip()
trim = re.compile(r'[^\d.,]+')
int_price = trim.sub('', price)
print('Guitar Price: ', int_price)
priceSave = guitar.find('span', {'class': 'price save'})
if priceSave is not None:
priceOf = priceSave.text
trim = re.compile(r'[^\d.,]+')
int_priceOff = trim.sub('', priceOf)
print('Save: ', int_priceOff)
else:
print("No discount!")
image = guitar.img.get('src')
print('Guitar Image: ', image)
productLink = guitar.find('a').get('href')
linkProd = url + productLink
print('Link of product', linkProd)
productsPage.append(linkProd)
for products in productsPage:
response = requests.get(products)
soup = BeautifulSoup(response.content, "lxml")
productsDetails = soup.find("div", {"class": "description-preview"})
if productsDetails is not None:
description = productsDetails.text
print('product detail: ', description)
else:
print('none')
time.sleep(0.2)
productsRating = soup.find_all('strong')[0].text
print(productsRating)
Review info is all in a script tag you can extract and load with json. Simply enough to see how to fit that in a loop.
import requests
from bs4 import BeautifulSoup as bs
import json
url = 'https://www.guitarguitar.co.uk/product/12082017334688--epiphone-les-paul-standard-plus-top-pro-translucent-blue'
r = requests.get(url)
soup = bs(r.content, 'lxml')
script = soup.select_one('[type="application/ld+json"]').text
data = json.loads(script.strip())
overall_rating = data['#graph'][2]['aggregateRating']['ratingValue']
reviews = [review for review in data['#graph'][2]['review']] #extract what you want
Output:
Explore json
To handle no reviews you could use a simply try except:
import requests
from bs4 import BeautifulSoup as bs
import json
url = 'https://www.guitarguitar.co.uk/product/190319340849008--gibson-les-paul-standard-60s-iced-tea'
r = requests.get(url)
soup = bs(r.content, 'lxml')
script = soup.select_one('[type="application/ld+json"]').text
data = json.loads(script.strip())
try:
overall_rating = data['#graph'][2]['aggregateRating']['ratingValue']
reviews = [review for review in data['#graph'][2]['review']] #extract what you want
except: #you might want to use except KeyError
overall_rating = "None"
reviews = ['None']
or, use an if statement:
if 'aggregateRating' in script:
overall_rating = data['#graph'][2]['aggregateRating']['ratingValue']
reviews = [review for review in data['#graph'][2]['review']] #extract what you want
else:
overall_rating = "None"
reviews = ['None']
Try:
import requests
from bs4 import BeautifulSoup
url = 'https://www.guitarguitar.co.uk/product/190319340849008--gibson-les-paul-standard-60s-iced-tea'
html = requests.get(url).text
soup = BeautifulSoup(html, "lxml")
try:
productsRating = soup.find('h2', string=lambda s: "Customer reviews" in s).find_next_siblings()[0].find('strong').text
except:
productsRating = None
print(productsRating)

Using beautiful soup to scrape data from indeed

i am trying to use bs to scrape resume on indeed but i met some problems
here is the sample site: https://www.indeed.com/resumes?q=java&l=&cb=jt
here is my code:
URL = "https://www.indeed.com/resumes?q=java&l=&cb=jt"
page = requests.get(URL)
soup = BeautifulSoup(page.text, 'html.parser')
def scrape_job_title(soup):
job = []
for div in soup.find_all(name='li', attrs={'class':'sre'}):
for a in div.find_all(name='a', attrs={'class':'app-link'}):
job.append(a['title'])
return(job)
scrape_job_title(soup)
it print out nothing: []
As you can see in the picture, I want to grab the job title "Java developer".
The class is app_link, not app-link. Additionally, a['title'] doesn't do what you want. Use a.contents[0] instead.
URL = "https://www.indeed.com/resumes?q=java&l=&cb=jt"
page = requests.get(URL)
soup = BeautifulSoup(page.text, 'html.parser')
def scrape_job_title(soup):
job = []
for div in soup.find_all(name='li', attrs={'class':'sre'}):
for a in div.find_all(name='a', attrs={'class':'app_link'}):
job.append(a.contents[0])
return(job)
scrape_job_title(soup)
Try this to get all the job titles:
import requests
from bs4 import BeautifulSoup
URL = "https://www.indeed.com/resumes?q=java&l=&cb=jt"
page = requests.get(URL)
soup = BeautifulSoup(page.text, 'html5lib')
for items in soup.select('.sre'):
data = [item.text for item in items.select('.app_link')]
print(data)

Categories