Convert multiple time format object as datetime format - python

I have a dataframe with a list of time value as object and needed to convert them to datetime, the issue is, they are not on the same format so when I try:
df['Total call time'] = pd.to_datetime(df['Total call time'], format='%H:%M:%S')
it gives me an error
ValueError: time data '3:22' does not match format '%H:%M:%S' (match)
or if use this code
df['Total call time'] = pd.to_datetime(df['Total call time'], format='%H:%M')
I get this error
ValueError: unconverted data remains: :58
These are the values on my data
Total call time
2:04:07
3:22:41
2:30:41
2:19:06
1:45:55
1:30:08
1:32:15
1:43:28
**45:48**
1:41:40
5:08:37
**3:22**
4:29:05
2:47:25
2:39:29
2:29:32
2:09:52
3:31:57
2:27:58
2:34:28
3:14:10
2:12:10
2:46:58

times = """\
2:04:07
3:22:41
2:30:41
2:19:06
1:45:55
1:30:08
1:32:15
1:43:28
45:48
1:41:40
5:08:37
3:22
4:29:05
2:47:25
2:39:29
2:29:32
2:09:52
3:31:57
2:27:58
2:34:28
3:14:10
2:12:10
2:46:58""".split()
import pandas as pd
df = pd.DataFrame(times, columns=['elapsed'])
def pad(s):
if len(s) == 4:
return '00:0'+s
elif len(s) == 5:
return '00:'+s
return s
print(pd.to_timedelta(df['elapsed'].apply(pad)))
Output:
0 0 days 02:04:07
1 0 days 03:22:41
2 0 days 02:30:41
3 0 days 02:19:06
4 0 days 01:45:55
5 0 days 01:30:08
6 0 days 01:32:15
7 0 days 01:43:28
8 0 days 00:45:48
9 0 days 01:41:40
10 0 days 05:08:37
11 0 days 00:03:22
12 0 days 04:29:05
13 0 days 02:47:25
14 0 days 02:39:29
15 0 days 02:29:32
16 0 days 02:09:52
17 0 days 03:31:57
18 0 days 02:27:58
19 0 days 02:34:28
20 0 days 03:14:10
21 0 days 02:12:10
22 0 days 02:46:58
Name: elapsed, dtype: timedelta64[ns]

Alternatively to grovina's answer ... instead of using apply you can directly use the dt accessor.
Here's a sample:
>>> data = [['2017-12-01'], ['2017-12-
30'],['2018-01-01']]
>>> df = pd.DataFrame(data=data,
columns=['date'])
>>> df
date
0 2017-12-01
1 2017-12-30
2 2018-01-01
>>> df.date
0 2017-12-01
1 2017-12-30
2 2018-01-01
Name: date, dtype: object
Note how df.date is an object? Let's turn it into a date like you want
>>> df.date = pd.to_datetime(df.date)
>>> df.date
0 2017-12-01
1 2017-12-30
2 2018-01-01
Name: date, dtype: datetime64[ns]
The format you want is for string formatting. I don't think you'll be able to convert the actual datetime64 to look like that format. For now, let's make a newly formatted string version of your date in a separate column
>>> df['new_formatted_date'] =
df.date.dt.strftime('%d/%m/%y %H:%M')
>>> df.new_formatted_date
0 01/12/17 00:00
1 30/12/17 00:00
2 01/01/18 00:00
Name: new_formatted_date, dtype: object
Finally, since the df.date column is now of date datetime64... you can use the dt accessor right on it. No need to use apply
>>> df['month'] = df.date.dt.month
>>> df['day'] = df.date.dt.day
>>> df['year'] = df.date.dt.year
>>> df['hour'] = df.date.dt.hour
>>> df['minute'] = df.date.dt.minute
>>> df
date new_formatted_date month day
year hour minute
0 2017-12-01 01/12/17 00:00 12
1 2017 0 0
1 2017-12-30 30/12/17 00:00 12
30 2017 0 0
2 2018-01-01 01/01/18 00:00

Another idea is test if double : and if not added :00 with converting to timedeltas by to_timedelta, also is test if number before first : is less like 23 - then is parsing like HH:MM, if is greater is parising like MM:SS:
m1 = df['Total call time'].str.count(':').ne(2)
m2 = df['Total call time'].str.extract('^(\d+):', expand=False).astype(float).gt(23)
s = np.select([m1 & m2, m1 & ~m2],
['00:' + df['Total call time'], df['Total call time']+ ':00'],
df['Total call time'] )
df['Total call time'] = pd.to_timedelta(s)
print (df)
Total call time
0 0 days 02:04:07
1 0 days 03:22:41
2 0 days 02:30:41
3 0 days 02:19:06
4 0 days 01:45:55
5 0 days 01:30:08
6 0 days 01:32:15
7 0 days 01:43:28
8 0 days 00:45:48
9 0 days 01:41:40
10 0 days 05:08:37
11 0 days 03:22:00
12 0 days 04:29:05
13 0 days 02:47:25
14 0 days 02:39:29
15 0 days 02:29:32
16 0 days 02:09:52
17 0 days 03:31:57
18 0 days 02:27:58
19 0 days 02:34:28
20 0 days 03:14:10
21 0 days 02:12:10
22 0 days 02:46:58

Related

Pandas read format %D:%H:%M:%S with python

Currently I am reading in a data frame with the timestamp from film 00(days):00(hours clocks over at 24 to day):00(min):00(sec)
pandas reads time formats HH:MM:SS and YYYY:MM:DD HH:MM:SS fine.
Though is there a way of having pandas read the duration of time such as the DD:HH:MM:SS.
Alternatively using timedelta how would I go about getting the DD into HH in the data frame so that pandas can make it "1 day HH:MM:SS" for example
Data sample
00:00:00:00
00:07:33:57
02:07:02:13
00:00:13:11
00:00:10:11
00:00:00:00
00:06:20:06
01:12:13:25
Expected output for last sample
36:13:25
Thanks
If you want timedelta objects, a simple way is to replace the first colon with days :
df['timedelta'] = pd.to_timedelta(df['col'].str.replace(':', 'days ', n=1))
output:
col timedelta
0 00:00:00:00 0 days 00:00:00
1 00:07:33:57 0 days 07:33:57
2 02:07:02:13 2 days 07:02:13
3 00:00:13:11 0 days 00:13:11
4 00:00:10:11 0 days 00:10:11
5 00:00:00:00 0 days 00:00:00
6 00:06:20:06 0 days 06:20:06
7 01:12:13:25 1 days 12:13:25
>>> df.dtypes
col object
timedelta timedelta64[ns]
dtype: object
From there it's also relatively easy to combine the days and hours as string:
c = df['timedelta'].dt.components
df['str_format'] = ((c['hours']+c['days']*24).astype(str)
+df['col'].str.split('(?=:)', n=2).str[-1]).str.zfill(8)
output:
col timedelta str_format
0 00:00:00:00 0 days 00:00:00 00:00:00
1 00:07:33:57 0 days 07:33:57 07:33:57
2 02:07:02:13 2 days 07:02:13 55:02:13
3 00:00:13:11 0 days 00:13:11 00:13:11
4 00:00:10:11 0 days 00:10:11 00:10:11
5 00:00:00:00 0 days 00:00:00 00:00:00
6 00:06:20:06 0 days 06:20:06 06:20:06
7 01:12:13:25 1 days 12:13:25 36:13:25
Convert days separately, add to times and last call custom function:
def f(x):
ts = x.total_seconds()
hours, remainder = divmod(ts, 3600)
minutes, seconds = divmod(remainder, 60)
return ('{}:{:02d}:{:02d}').format(int(hours), int(minutes), int(seconds))
d = pd.to_timedelta(df['col'].str[:2].astype(int), unit='d')
td = pd.to_timedelta(df['col'].str[3:])
df['col'] = d.add(td).apply(f)
print (df)
col
0 0:00:00
1 7:33:57
2 55:02:13
3 0:13:11
4 0:10:11
5 0:00:00
6 6:20:06
7 36:13:25

How do I specify certain date as the first week and calculate the week number in pandas?

how to convert time to week number
year_start = '2019-05-21'
year_end = '2020-02-22'
How do I get the week number based on the date that I set as first week?
For example 2019-05-21 should be Week 1 instead of 2019-01-01
If you do not have dates outside of year_start/year_end, use isocalendar().week and perform a simple subtraction with modulo:
year_start = pd.to_datetime('2019-05-21')
#year_end = pd.to_datetime('2020-02-22')
df = pd.DataFrame({'date': pd.date_range('2019-05-21', '2020-02-22', freq='30D')})
df['week'] = (df['date'].dt.isocalendar().week.astype(int)-year_start.isocalendar()[1])%52+1
Output:
date week
0 2019-05-21 1
1 2019-06-20 5
2 2019-07-20 9
3 2019-08-19 14
4 2019-09-18 18
5 2019-10-18 22
6 2019-11-17 26
7 2019-12-17 31
8 2020-01-16 35
9 2020-02-15 39
Try the following code.
import numpy as np
import pandas as pd
year_start = '2019-05-21'
year_end = '2020-02-22'
# Create a sample dataframe
df = pd.DataFrame(pd.date_range(year_start, year_end, freq='D'), columns=['date'])
# Add the week number
df['week_number'] = (((df.date.view(np.int64) - pd.to_datetime([year_start]).view(np.int64)) / (1e9 * 60 * 60 * 24) - df.date.dt.day_of_week + 7) // 7 + 1).astype(np.int64)
date
week_number
2019-05-21
1
2019-05-22
1
2019-05-23
1
2019-05-24
1
2019-05-25
1
2019-05-26
1
2019-05-27
2
2019-05-28
2
2020-02-18
40
2020-02-19
40
2020-02-20
40
2020-02-21
40
2020-02-22
40
If you just need a function to calculate week no, based on given start and end date:
import pandas as pd
import numpy as np
start_date = "2019-05-21"
end_date = "2020-02-22"
start_datetime = pd.to_datetime(start_date)
end_datetime = pd.to_datetime(end_date)
def get_week_no(date):
given_datetime = pd.to_datetime(date)
# if date in range
if start_datetime <= given_datetime <= end_datetime:
x = given_datetime - start_datetime
# adding 1 as it will return 0 for 1st week
return int(x / np.timedelta64(1, 'W')) + 1
raise ValueError(f"Date is not in range {start_date} - {end_date}")
print(get_week_no("2019-05-21"))
In the function, we are calculating week no by finding difference between given date and start date in weeks.

Days before end of month in pandas

I would like to get the number of days before the end of the month, from a string column representing a date.
I have the following pandas dataframe :
df = pd.DataFrame({'date':['2019-11-22','2019-11-08','2019-11-30']})
df
date
0 2019-11-22
1 2019-11-08
2 2019-11-30
I would like the following output :
df
date days_end_month
0 2019-11-22 8
1 2019-11-08 22
2 2019-11-30 0
The package pd.tseries.MonthEnd with rollforward seemed a good pick, but I can't figure out how to use it to transform a whole column.
Subtract all days of month created by Series.dt.daysinmonth with days extracted by Series.dt.day:
df['date'] = pd.to_datetime(df['date'])
df['days_end_month'] = df['date'].dt.daysinmonth - df['date'].dt.day
Or use offsets.MonthEnd, subtract and convert timedeltas to days by Series.dt.days:
df['days_end_month'] = (df['date'] + pd.offsets.MonthEnd(0) - df['date']).dt.days
print (df)
date days_end_month
0 2019-11-22 8
1 2019-11-08 22
2 2019-11-30 0

Difference between today and a date python

I have a pandas dataframe in which a column is in this format:
0 1983-02-07
1 1989-10-07
2 1969-10-28
3 1967-02-25
4 1982-07-21
...
328970 1995-06-09
328971 1999-01-11
328972 1962-04-01
328973 1996-05-19
328974 1994-03-03
Name: Nascita - Data, Length: 328975, dtype: object
what I'd like to do is something like
df['datecolumn']-datetime.now()
Something like this should work:
import pandas as pd
from datetime import datetime
data = ["1983-02-07",
"1989-10-07",
"1969-10-28",
"1967-02-25",
"1982-07-21"]
df = pd.DataFrame(data, columns = ["Date"])
print(df)
df["Date"] = pd.to_datetime(df['Date'])
#df["Difference"] = df["Date"].apply(lambda x: x-datetime.now())
# Alternate code
from dateutil.relativedelta import relativedelta
df["Difference"] = df["Date"].apply(lambda x: relativedelta(datetime.now(), x).years)
print(df)
Output:
Date
0 1983-02-07
1 1989-10-07
2 1969-10-28
3 1967-02-25
4 1982-07-21
Date Difference
0 1983-02-07 -13409 days +06:41:00.418879
1 1989-10-07 -10975 days +06:41:00.418728
2 1969-10-28 -18259 days +06:41:00.418671
3 1967-02-25 -19235 days +06:41:00.418630
4 1982-07-21 -13610 days +06:41:00.418591
OUTPUT ALTERNATE CODE:
Date
0 1983-02-07
1 1989-10-07
2 1969-10-28
3 1967-02-25
4 1982-07-21
Date Difference
0 1983-02-07 36
1 1989-10-07 30
2 1969-10-28 49
3 1967-02-25 52
4 1982-07-21 37

Pandas and DateTime TypeError: cannot compare a TimedeltaIndex with type float

I have a pandas DataFrame Series time differences that looks like::
print(delta_t)
1 0 days 00:00:59
3 0 days 00:04:22
6 0 days 00:00:56
8 0 days 00:01:21
19 0 days 00:01:09
22 0 days 00:00:36
...
(the full DataFrame had a bunch of NaNs which I dropped).
I'd like to know which delta_t's are less than 1 day, 1 hour, 1 minute,
so I tried:
delta_t_lt1day = delta_t[np.where(delta_t < 30.)]
but then got a:
TypeError: cannot compare a TimedeltaIndex with type float
Little help?!?!
Assuming your Series is in timedelta format, you can skip the np.where, and index using something like this, where you compare your actual values to other timedeltas, using the appropriate units:
delta_t_lt1day = delta_t[delta_t < pd.Timedelta(1,'D')]
delta_t_lt1hour = delta_t[delta_t < pd.Timedelta(1,'h')]
delta_t_lt1minute = delta_t[delta_t < pd.Timedelta(1,'m')]
You'll get the following series:
>>> delta_t_lt1day
0
1 00:00:59
3 00:04:22
6 00:00:56
8 00:01:21
19 00:01:09
22 00:00:36
Name: 1, dtype: timedelta64[ns]
>>> delta_t_lt1hour
0
1 00:00:59
3 00:04:22
6 00:00:56
8 00:01:21
19 00:01:09
22 00:00:36
Name: 1, dtype: timedelta64[ns]
>>> delta_t_lt1minute
0
1 00:00:59
6 00:00:56
22 00:00:36
Name: 1, dtype: timedelta64[ns]
You could use the TimeDelta class:
import pandas as pd
deltas = pd.to_timedelta(['0 days 00:00:59',
'0 days 00:04:22',
'0 days 00:00:56',
'0 days 00:01:21',
'0 days 00:01:09',
'0 days 00:31:09',
'0 days 00:00:36'])
for e in deltas[deltas < pd.Timedelta(value=30, unit='m')]:
print(e)
Output
0 days 00:00:59
0 days 00:04:22
0 days 00:00:56
0 days 00:01:21
0 days 00:01:09
0 days 00:00:36
Note that this filter outs '0 days 00:31:09' as expected. The expression pd.Timedelta(value=30, unit='m') creates a time delta of 30 minutes.

Categories