Related
I want to create a 2D joint plot with the following data and from what I've read Seaborn is the best solution for this
I have completed a desired 1_D line plot, and have attempted to create the joint plot in Seaborn by putting the equations for each plot in the respective axes.
I am expecting the plot on the x axis to look similar to the plot I created using matplotlib and therefore the jointplot should have some vertical lines through the circular region.
However the plot output from seaborn on the x axis appears to have smoothed out many of the data points desired giving a smooth curve.
From reading about Seaborn it may not fit my needs for this kind of data, I have attempted using a matrix also but it did not seem to work with Seaborn.
This is the code I used
#imported as required
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
#Set limits for y values (x - axis)
ymin=-.6
ymax= .6
#Set up an array of angle values between defined y values in mm
angle = np.linspace(np.deg2rad(ymin), np.deg2rad(ymax), 1000)
# Define known values
L = 480
a = 0.09
d = 0.4
lam = 670e-6
# Calculate values for position y, alpha and beta
y = np.tan(angle)*L
alpha = (np.pi*a/lam)*np.sin(angle)
beta = (np.pi*d/lam)*np.sin(angle)
I = ((np.sin(alpha)/alpha)**2)*((np.cos(beta))**2)
# Plot the graph of intensity versus displacement
plt.plot(y, I)
import seaborn as sns
p = ((np.sin(alpha)/alpha)**2)*((np.cos(beta))**2) # Interference term and decaying term
q = (np.sin(alpha)/alpha)**2 # Decaying term
sns.jointplot(x=p, y=q, kind='kde',marginal_kws=dict(bw=0.6),bw=0.8)
plt.show()
You might recognize this as famous the Double Slits Experiment
These are the outputs. Note the smooth plot on Seaborn x axis
edit: I have used JointGrid as follows to plot on the axes in an attempt to solve the problem
g = sns.JointGrid(x=p, y=q)
g.plot_joint(sns.kdeplot)
g.plot_marginals(sns.kdeplot)
I am not familiar with Seaborn syntax, so this simple snippet is all I could get to give an output, which had the same problem as my initial attempt.
I have this polar scatter plot and I would like to show that distances from the origin are measured in centimeters by labelling the scale with a "cm." Any advice on how to do this?
import numpy as np
import matplotlib.pyplot as plt
r = R
theta = o
colors = theta
ax = plt.subplot(111, projection='polar')
c = plt.scatter(theta, r, cmap=plt.cm.hsv)
c.set_alpha(0.75)
plt.show()
Simply adding a label by use of plt.set_ylabel does not seem to work, sadly, as it always gets positioned at the origin. There is a simple way around it, though. You can introduce text with ax.text at an arbitrary position. My suggestion would be, to move the tick labels away from the data to make sure that the label won't be misunderstood and then to introduce the label as follows:
import numpy as np
import matplotlib.pyplot as plt
ax = plt.subplot(111, projection="polar")
ax.set_rlabel_position(270) # Moves the tick-labels
ax.text(0.52, 0.25, "cm", transform=ax.transAxes) # Adds text
plt.show()
The result looks like this:
I did something similar, that should work:
plt.yticks(np.arange(0,np.amax(r),3),["%.1f cm" % x for x in np.arange(0,np.amax(r),3)])
in np.arange(0,np.amax(r),3) the 0 is just minimum tick you want in the graph, the 3 is step you want ticks should be.
I'm trying to create a 3D wireframe in Python using matplotlib.
When I get to the actual graph plotting, however, the wireframe joins the wrong way, as shown in the images below.
How can I force matplotlib to join the wireframe along a certain axis?
My code is below:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
def rossler(x_n, y_n, z_n, h, a, b, c):
#defining the rossler function
x_n1=x_n+h*(-y_n-z_n)
y_n1=y_n+h*(x_n+a*y_n)
z_n1=z_n+h*(b+z_n*(x_n-c))
return x_n1,y_n1,z_n1
#defining a, b, and c
a = 1.0/5.0
b = 1.0/5.0
c = 5
#defining time limits and steps
t_0 = 0
t_f = 32*np.pi
h = 0.01
steps = int((t_f-t_0)/h)
#3dify
c_list = np.linspace(5,10,6)
c_size = len(c_list)
c_array = np.zeros((c_size,steps))
for i in range (0, c_size):
for j in range (0, steps):
c_array[i][j] = c_list[i]
#create plotting values
t = np.zeros((c_size,steps))
for i in range (0, c_size):
t[i] = np.linspace(t_0,t_f,steps)
x = np.zeros((c_size,steps))
y = np.zeros((c_size,steps))
z = np.zeros((c_size,steps))
binvar, array_size = x.shape
#initial conditions
x[0] = 0
y[0] = 0
z[0] = 0
for j in range(0, c_size-1):
for i in range(array_size-1):
c = c_list[j]
#re-evaluate the values of the x-arrays depending on the initial conditions
[x[j][i+1],y[j][i+1],z[j][i+1]]=rossler(x[j][i],y[j][i],z[j][i],t[j][i+1]-t[j][i],a,b,c)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_wireframe(t,x,c_array, rstride=10, cstride=10)
plt.show()
I am getting this as an output:
The same output from another angle:
Whereas I'd like the wireframe to join along the wave-peaks. Sorry, I can't give you an image I'd like to see, that's my problem, but I guess it'd be more like the tutorial image.
If I understood, you want to link the 6 traces with polygons. You can do that by triangulating the traces 2 by 2, then plotting the surface with no edges or antialising. Maybe choosing a good colormap will also help.
Just keep in mind that this will be a very heavy plot. The exported SVG weight 10mb :)
import matplotlib.tri as mtri
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for LineIndex in range(c_size-1):
# If plotting all at once, you get a MemoryError. I'll plot each 6 points
for Sample in range(0, array_size-1, 3):
# I switched x and c_array, because the surface and the triangles
# will look better by default
X = np.concatenate([t[LineIndex,Sample:Sample+3], t[LineIndex+1,Sample:Sample+3]])
Y = np.concatenate([c_array[LineIndex,Sample:Sample+3], c_array[LineIndex+1,Sample:Sample+3]])
Z = np.concatenate([x[LineIndex,Sample:Sample+3], x[LineIndex+1,Sample:Sample+3]])
T = mtri.Triangulation(X, Y)
ax.plot_trisurf(X, Y, Z, triangles=T.triangles, edgecolor='none', antialiased=False)
ax.set_xlabel('t')
ax.set_zlabel('x')
plt.savefig('Test.png', format='png', dpi=600)
plt.show()
Here is the resulting image:
I'm quite unsure about what you're exactly trying to achieve, but I don't think it will work.
Here's what your data looks like when plotted layer by layer (without and with filling):
You're trying to plot this as a wireframe plot. Here's how a wireframe plot looks like as per the manual:
Note the huge differene: a wireframe plot is essentially a proper surface plot, the only difference is that the faces of the surface are fully transparent. This also implies that you can only plot
single-valued functions of the form z(x,y), which are furthermore
specified on a rectangular mesh (at least topologically)
Your data is neither: your points are given along lines, and they are stacked on top of each other, so there's no chance that this is a single surface that can be plotted.
If you just want to visualize your functions above each other, here's how I plotted the above figures:
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for zind in range(t.shape[0]):
tnow,xnow,cnow = t[zind,:],x[zind,:],c_array[zind,:]
hplot = ax.plot(tnow,xnow,cnow)
# alternatively fill:
stride = 10
tnow,xnow,cnow = tnow[::stride],xnow[::stride],cnow[::stride]
slice_from = slice(None,-1)
slice_to = slice(1,None)
xpoly = np.array([tnow[slice_from],
tnow[slice_to],
tnow[slice_to],
tnow[slice_from]]
).T
ypoly = np.array([xnow[slice_from],
xnow[slice_to],
np.zeros_like(xnow[slice_to]),
np.zeros_like(xnow[slice_from])]
).T
zpoly = np.array([cnow[slice_from],
cnow[slice_to],
cnow[slice_to],
cnow[slice_from]]
).T
tmppoly = [tuple(zip(xrow,yrow,zrow)) for xrow,yrow,zrow in zip(xpoly,ypoly,zpoly)]
poly3dcoll = Poly3DCollection(tmppoly,linewidth=0.0)
poly3dcoll.set_edgecolor(hplot[0].get_color())
poly3dcoll.set_facecolor(hplot[0].get_color())
ax.add_collection3d(poly3dcoll)
plt.xlabel('t')
plt.ylabel('x')
plt.show()
There is one other option: switching your coordinate axes, such that the (x,t) pair corresponds to a vertical plane rather than a horizontal one. In this case your functions for various c values are drawn on parallel planes. This allows a wireframe plot to be used properly, but since your functions have extrema in different time steps, the result is as confusing as your original plot. You can try using very few plots along the t axis, and hoping that the extrema are close. This approach needs so much guesswork that I didn't try to do this myself. You can plot each function as a filled surface instead, though:
from matplotlib.collections import PolyCollection
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for zind in range(t.shape[0]):
tnow,xnow,cnow = t[zind,:],x[zind,:],c_array[zind,:]
hplot = ax.plot(tnow,cnow,xnow)
# alternative to fill:
stride = 10
tnow,xnow,cnow = tnow[::stride],xnow[::stride],cnow[::stride]
slice_from = slice(None,-1)
slice_to = slice(1,None)
xpoly = np.array([tnow[slice_from],
tnow[slice_to],
tnow[slice_to],
tnow[slice_from]]
).T
ypoly = np.array([xnow[slice_from],
xnow[slice_to],
np.zeros_like(xnow[slice_to]),
np.zeros_like(xnow[slice_from])]
).T
tmppoly = [tuple(zip(xrow,yrow)) for xrow,yrow in zip(xpoly,ypoly)]
polycoll = PolyCollection(tmppoly,linewidth=0.5)
polycoll.set_edgecolor(hplot[0].get_color())
polycoll.set_facecolor(hplot[0].get_color())
ax.add_collection3d(polycoll,zdir='y',zs=cnow[0])
hplot[0].set_color('none')
ax.set_xlabel('t')
ax.set_zlabel('x')
plt.show()
This results in something like this:
There are a few things to note, however.
3d scatter and wire plots are very hard to comprehend, due to the lacking depth information. You might be approaching your visualization problem in a fundamentally wrong way: maybe there are other options with which you can visualize your data.
Even if you do something like the plots I showed, you should be aware that matplotlib has historically been failing to plot complicated 3d objects properly. Now by "properly" I mean "with physically reasonable apparent depth", see also the mplot3d FAQ note describing exactly this. The core of the problem is that matplotlib projects every 3d object to 2d, and draws these pancakes on the sreen one after the other. Sometimes the asserted drawing order of the pancakes doesn't correspond to their actual relative depth, which leads to artifacts that are both very obvious to humans and uncanny to look at. If you take a closer look at the first filled plot in this post, you'll see that the gold flat plot is behind the magenta one, even though it should be on top of it. Similar things often happen with 3d bar plots and convoluted surfaces.
When you're saying "Sorry, I can't give you an image I'd like to see, that's my problem", you're very wrong. It's not just your problem. It might be crystal clear in your head what you're trying to achieve, but unless you very clearly describe what you see in your head, the outside world will have to resort to guesswork. You can make the work of others and yourself alike easier by trying to be as informative as possible.
I have 3 vectors - x,y,vel each having some 8k values. I also have quite a few files containing these 3 vectors. All the files have different x,y,vel. I want to get multiple scatter plots with the following conditions:
Color coded according to the 3rd variable i.e vel.
Once the ranges have been set for the colors (for the data from the 1st file), they should remain constant for all the remaining files. i don't want a dynamically changing (color code changing with each new file).
Want to plot a colorbar.
I greatly appreciate all your thoughts!!
I have attached the code for a single file.
import numpy as np
import matplotlib.pyplot as plt
# Create Map
cm = plt.cm.get_cmap('RdYlBu')
x,y,vel = np.loadtxt('finaldata_temp.txt', skiprows=0, unpack=True)
vel = [cm(float(i)/(8000)) for i in xrange(8000)] # 8000 is the no. of values in each of x,y,vel vectors.
# 2D Plot
plt.scatter(x, y, s=27, c=vel, marker='o')
plt.axis('equal')
plt.savefig('testfig.png', dpi=300)
plt.show()
quit()
You will have to iterate over all your data files to get the maximum value for vel, I have added a few lines of code (that need to be adjusted to fit your case) that will do that.
Therefore, your colorbar line has been changed to use the max_vel, allowing you to get rid of that code using the fixed value of 8000.
Additionally, I took the liberty to remove the black edges around the points, because I find that they 'obfuscate' the color of the point.
Lastly, I have added adjusted your plot code to use an axis object, which is required to have a colorbar.
import numpy as np
import matplotlib.pyplot as plt
# This is needed to iterate over your data files
import glob
# Loop over all your data files to get the maximum value for 'vel'.
# You will have to adjust this for your code
"""max_vel = 0
for i in glob.glob(<your files>,'r') as fr:
# Iterate over all lines
if <vel value> > max_vel:
max_vel = <vel_value>"""
# Create Map
cm = plt.cm.get_cmap('RdYlBu')
x,y,vel = np.loadtxt('finaldata_temp.txt', skiprows=0, unpack=True)
# Plot the data
fig=plt.figure()
fig.patch.set_facecolor('white')
# Here we switch to an axis object
# Additionally, you can plot several of your files in the same figure using
# the subplot option.
ax=fig.add_subplot(111)
s = ax.scatter(x,y,c=vel,edgecolor=''))
# Here we assign the color bar to the axis object
cb = plt.colorbar(mappable=s,ax=ax,cmap=cm)
# Here we set the range of the color bar based on the maximum observed value
# NOTE: This line only changes the calculated color and not the display
# 'range' of the legend next to the plot, for that we need to switch to
# ColorbarBase (see second code snippet).
cb.setlim(0,max_vel)
cb.set_label('Value of \'vel\'')
plt.show()
Snippet, demonstrating ColorbarBase
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
cm = plt.cm.get_cmap('RdYlBu')
x = [1,5,10]
y = [2,6,9]
vel = [7,2,1]
# Plot the data
fig=plt.figure()
fig.patch.set_facecolor('white')
ax=fig.add_subplot(111)
s = ax.scatter(x,y,c=vel,edgecolor=''))
norm = mpl.colors.Normalize(vmin=0, vmax=10)
ax1 = fig.add_axes([0.95, 0.1, 0.01, 0.8])
cb = mpl.colorbar.ColorbarBase(ax1,norm=norm,cmap=cm,orientation='vertical')
cb.set_clim(vmin = 0, vmax = 10)
cb.set_label('Value of \'vel\'')
plt.show()
This produces the following plot
For more examples of what you can do with the colorbar, specifically the more flexible ColorbarBase, I would suggest that you check the documentation -> http://matplotlib.org/examples/api/colorbar_only.html
I have a problem changing my axis labels in Matplotlib. I want to change the radial axis options in my Polar Plot.
Basically, I'm computing the distortion of a cylinder, which is nothing but how much the radius deviates from the original (perfectly circular) cylinder. Some of the distortion values are negative, while some are positive due to tensile and compressive forces. I'm looking for a way to represent this in cylindrical coordinates graphically, so I thought that a polar plot was my best bet. Excel gives me a 'radar chart' option which is flexible enough to let me specify minimum and maximum radial axis values. I want to replicate this on Python using Matplotlib.
My Python script for plotting on polar coordinates is as follows.
#!usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-180.0,190.0,10)
theta = (np.pi/180.0 )*x # in radians
offset = 2.0
R1 = [-0.358,-0.483,-0.479,-0.346,-0.121,0.137,0.358,0.483,0.479,0.346,0.121,\
-0.137,-0.358,-0.483,-0.479,-0.346,-0.121,0.137,0.358,0.483,0.479,0.346,0.121,\
-0.137,-0.358,-0.483,-0.479,-0.346,-0.121,0.137,0.358,0.483,0.479,0.346,0.121,\
-0.137,-0.358]
fig1 = plt.figure()
ax1 = fig1.add_axes([0.1,0.1,0.8,0.8],polar=True)
ax1.set_rmax(1)
ax1.plot(theta,R1,lw=2.5)
My plot looks as follows:
But this is not how I want to present it. I want to vary my radial axis, so that I can show the data as a deviation from some reference value, say -2. How do I ask Matplotlib in polar coordinates to change the minimum axis label? I can do this VERY easily in Excel. I choose a minimum radial value of -2, to get the following Excel radar chart:
On Python, I can easily offset my input data by a magnitude of 2. My new dataset is called R2, as shown:
#!usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-180.0,190.0,10)
theta = (np.pi/180.0 )*x # in radians
offset = 2.0
R2 = [1.642,1.517,1.521,1.654,1.879,2.137,2.358,2.483,2.479,2.346,2.121,1.863,\
1.642,1.517,1.521,1.654,1.879,2.137,2.358,2.483,2.479,2.346,2.121,1.863,1.642,\
1.517,1.521,1.654,1.879,2.137,2.358,2.483,2.479,2.346,2.121,1.863,1.642]
fig2 = plt.figure()
ax2 = fig2.add_axes([0.1,0.1,0.8,0.8],polar=True)
ax2.plot(theta,R2,lw=2.5)
ax2.set_rmax(1.5*offset)
plt.show()
The plot is shown below:
Once I get this, I can MANUALLY add axis labels and hard-code it into my script. But this is a really ugly way. Is there any way I can directly get a Matplotlib equivalent of the Excel radar chart and change my axis labels without having to manipulate my input data?
You can just use the normal way of setting axis limits:
#!usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-180.0,190.0,10)
theta = (np.pi/180.0 )*x # in radians
offset = 2.0
R1 = [-0.358,-0.483,-0.479,-0.346,-0.121,0.137,0.358,0.483,0.479,0.346,0.121,\
-0.137,-0.358,-0.483,-0.479,-0.346,-0.121,0.137,0.358,0.483,0.479,0.346,0.121,\
-0.137,-0.358,-0.483,-0.479,-0.346,-0.121,0.137,0.358,0.483,0.479,0.346,0.121,\
-0.137,-0.358]
fig1 = plt.figure()
ax1 = fig1.add_axes([0.1,0.1,0.8,0.8],polar=True)
ax1.set_ylim(-2,2)
ax1.set_yticks(np.arange(-2,2,0.5))
ax1.plot(theta,R1,lw=2.5)