How to edit functional model in keras? - python

I am using the tf.keras.applications.efficientnet_v2.EfficientNetV2L model and I want to edit the last layers of the model to make the model a regression and classification layer. However, I am unsure of how to edit this model because it is not a linear sequential model, and thus I cannot do:
for layer in model.layers[:-2]:
model.add(layer)
as certain layers of the model have multiple inputs. Is there a way of preserving the model except the last layer so the model will diverge before the last layer?
efficentnet[:-2]
|
|
/ \
/ \
/ \
output1 output2

To enable a functional model to have a classification layer and a regression layer, you can change the model as follows. Note, there are various ways to achieve this, and this is one of them.
import tensorflow as tf
from tensorflow import keras
prev_model = keras.applications.EfficientNetV2B0(
input_tensor=keras.Input(shape=(224, 224, 3)),
include_top=False
)
Next, we will write our expected head layers, shown below.
neck_branch = keras.Sequential(
[
# we can add more layers i.e. batch norm, etc.
keras.layers.GlobalAveragePooling2D()
],
name='neck_head'
)
classification_head = keras.Sequential(
[
keras.layers.Dense(10, activation='softmax')
],
name='classification_head'
)
regression_head = keras.Sequential(
[
keras.layers.Dense(1, activation=None)
],
name='regression_head'
)
Now, we can build the desired model.
x = neck_branch(prev_model.output)
output_a = classification_head(x)
output_b = regression_head(x)
final_model = keras.Model(prev_model.inputs, [output_a, output_b])
Test
keras.utils.plot_model(final_model, expand_nested=True)
# OK
final_model(tf.ones(shape=(1, 224, 224, 3)))
# OK
Update
Based on your comments,
how you would tackle the problem if the previous model was imported from a h5 file since there I cannot declare the top layer not to be included?
If I understand your query, you have a saved model (in .h5 format) with top layers. In that case, you don't have include_top params to exclude the top branch. So, what you can do is remove the top branch of your saved model first. Here is how,
# a saved model with top layers
prev_model = keras.models.load_model('model.h5')
prev_model_with_top_remove = keras.Model(
prev_model.input ,
prev_model.layers[-4].output
)
prev_model_with_top_remove.summary()
This prev_model.layers[-4].output will remove the top branch. In the end, you will give similar output as we can get with include_top=True. Check the model summary to visually inspect.

Keras' functional API works by linking Keras tensors (hereby called KTensor) and not your everyday TF tensors.
Therefore, the first thing you need to do is feeding KTensors (created using tf.keras.Input) of proper shapes to the original model. This will trigger the forward chain, prompting the model's layers to produce their own output KTensors that are properly linked to the input KTensors. After the forward pass,
The layers will store their received/produced KTensors in their input and output attributes.
The model itself will also store the KTensors you fed to it and the corresponding final output KTensors in its inputs and outputs attributes (note the s).
Like so,
>>> from tensorflow.keras import Input
>>> from tensorflow.keras.layers import Dense
>>> from tensorflow.keras.models import Sequential, Model
>>> seq_model = Sequential()
>>> seq_model.add(Dense(1))
>>> seq_model.add(Dense(2))
>>> seq_model.add(Dense(3))
>>> hasattr(seq_model.layers[0], 'output')
False
>>> seq_model.inputs is None
True
>>> _ = seq_model(Input(shape=(10,))) # <--- Feed input KTensor to the model
>>> seq_model.layers[0].output
<KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'dense')>
>>> seq_model.inputs
[<KerasTensor: shape=(None, 10) dtype=float32 (created by layer 'dense_input')>]
Once you've obtained these internal KTensors, everything becomes trivial. To extract the KTensor right before the last two layers and forward it to two different branches to form a new functional model, do
>>> intermediate_ktensor = seq_model.layers[-3].output
>>> branch_1_output = Dense(20)(intermediate_ktensor)
>>> branch_2_output = Dense(30)(intermediate_ktensor)
>>> branched_model = Model(inputs=seq_model.inputs, outputs=[branch_1_output, branch_2_output])
Note that the shapes of the KTensors you fed at the very first step must conform to the shape requirements of the layers that receive them. In my example, the input KTensor would be fed to Dense(1) layer. As Dense requires the input shape to be defined in the last dimension, the input KTensor could be of shapes, e.g., (10,) or (None,10) but not (None,) or (10, None).

Related

How to stack Keras models horizontally?

Is it possible to do something like this in Keras? :
Except Model A,B,C are all stacked horizontally into one model? I've seen some solutions that utilize an input layer, but whenever I use an input layer, I seem to get an error when I try to load a model.
Is there a way to load all the models, concatenate them, and save as a single, new, larger model?
EDIT: I already have all the models trained. I want to combine them after the fact.
Here is my idea, let's assume you have these models to stack:
model_1 = tf.keras.models.Model(inputs = model_1.input, outputs = model_1_out)
model_2 = tf.keras.models.Model(inputs = model_2.input, outputs = model_2_out)
model_3 = tf.keras.models.Model(inputs = model_3.input, outputs = model_3_out)
If you want to stack the models, not concatenating their outputs:
models = [model_3 , model_2 , model_1]
stacked_model_input = tf.keras.Input(shape=(x, x, x))
model_outputs = [model(stacked_model_input) for model in models]
stacked_model = tf.keras.models.Model(inputs=stacked_model_input, outputs=model_outputs)
model_outputs gives: (Passed 3 for here.)
[<KerasTensor: shape=(None, 3) dtype=float32 (created by layer 'model_2')>,
<KerasTensor: shape=(None, 3) dtype=float32 (created by layer 'model_1')>,
<KerasTensor: shape=(None, 3) dtype=float32 (created by layer 'model')>]
Produces:
For to save stacked model:
from tf.keras.models import save_model
save_model(stacked_model , 'model.h5')
I am not sure how you can use their seperate outputs but, that's how you can stack them.
Edit: You can use their outputs by defining seperate loss etc. Or since they are stacked and input is shared, you can get each model's outputs to create a new mode with its weights. I don't know if you can cut them from the stacked model, so that's why I said getting each output.
Yes, this is possible in keras, but it would require some advanced knowledge of the API. In particular, you need to think about how you want to compute the loss of each output with respect to the input.
I'd suggest to check out the developer guides, perhaps starting with the functional API and custom training loops.
Below is a sketch of how you'd create this type of network with the functional API.
from tensorflow import keras
input_shape: int = 100
inputs = keras.Input(shape=(input_shape,))
units: int = 64
dense1 = layers.Dense(units)
dense2 = layers.Dense(units)
dense3 = layers.Dense(units)
out1 = dense1(inputs)
out2 = dense2(inputs)
out3 = dense3(inputs)

Adding a Concatenated layer to TensorFlow 2.0 (using Attention)

In building a model that uses TensorFlow 2.0 Attention I followed the example given in the TF docs. https://www.tensorflow.org/api_docs/python/tf/keras/layers/Attention
The last line in the example is
input_layer = tf.keras.layers.Concatenate()(
[query_encoding, query_value_attention])
Then the example has the comment
# Add DNN layers, and create Model.
# ...
So it seemed logical to do this
model = tf.keras.Sequential()
model.add(input_layer)
This produces the error
TypeError: The added layer must be an instance of class Layer.
Found: Tensor("concatenate/Identity:0", shape=(None, 200), dtype=float32)
UPDATE (after #thushv89 response)
What I am trying to do in the end is add an attention layer in the following model which works well (or convert it to an attention model).
model = tf.keras.Sequential()
model.add(layers.Embedding(vocab_size, embedding_nodes, input_length=max_length))
model.add(layers.LSTM(20))
#add attention here?
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='mean_squared_error', metrics=['accuracy'])
My data looks like this
4912,5059,5079,0
4663,5145,5146,0
4663,5145,5146,0
4840,5117,5040,0
Where the first three columns are the inputs and the last column is binary and the goal is classification. The data was prepared similarly to this example with a similar purpose, binary classification. https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/
So, first thing is Keras has three APIs when it comes to creating models.
Sequential - (Which is what you're doing here)
Functional - (Which is what I'm using in the solution)
Subclassing - Creating Python classes to represent custom models/layers
The way the model created in the tutorial is not to be used with sequential models but a model from the Functional API. So you got to do the following. Note that, I've taken the liberty of defining the dense layers with arbitrary parameters (e.g. number of output classes, which you can change as needed).
import tensorflow as tf
# Variable-length int sequences.
query_input = tf.keras.Input(shape=(None,), dtype='int32')
value_input = tf.keras.Input(shape=(None,), dtype='int32')
# ... the code in the middle
# Concatenate query and document encodings to produce a DNN input layer.
input_layer = tf.keras.layers.Concatenate()(
[query_encoding, query_value_attention])
# Add DNN layers, and create Model.
# ...
dense_out = tf.keras.layers.Dense(50, activation='relu')(input_layer)
pred = tf.keras.layers.Dense(10, activation='softmax')(dense_out)
model = tf.keras.models.Model(inputs=[query_input, value_input], outputs=pred)
model.summary()

Make fixed timestep length LSTM Keras model free timestep length

I have a Keras LSTM multitask model that performs two tasks. One is a sequence tagging task (so I predict a label per token). The other is a global classification task over the whole sequence using a CNN that is stacked on the hidden states of the LSTM.
In my setup (don't ask why) I only need the CNN task during training, but the labels it predicts have no use on the final product. So, on Keras, one can train a LSTM model without especifiying the input sequence lenght. like this:
l_input = Input(shape=(None,), dtype="int32", name=input_name)
However, if I add the CNN stacked on the LSTM hidden states I need to set a fixed sequence length for the model.
l_input = Input(shape=(timesteps_size,), dtype="int32", name=input_name)
The problem is that once I have trained the model with a fixed timestep_size I can no longer use it to predict longer sequences.
In other frameworks this is not a problem. But in Keras, I cannot get rid of the CNN and change the expected input shape of the model once it has been trained.
Here is a simplified version of the model
l_input = Input(shape=(timesteps_size,), dtype="int32")
l_embs = Embedding(len(input.keys()), 100)(l_input)
l_blstm = Bidirectional(GRU(300, return_sequences=True))(l_embs)
# Sequential output
l_out1 = TimeDistributed(Dense(len(labels.keys()),
activation="softmax"))(l_blstm)
# Global output
conv1 = Conv1D( filters=5 , kernel_size=10 )( l_embs )
conv1 = Flatten()(MaxPooling1D(pool_size=2)( conv1 ))
conv2 = Conv1D( filters=5 , kernel_size=8 )( l_embs )
conv2 = Flatten()(MaxPooling1D(pool_size=2)( conv2 ))
conv = Concatenate()( [conv1,conv2] )
conv = Dense(50, activation="relu")(conv)
l_out2 = Dense( len(global_labels.keys()) ,activation='softmax')(conv)
model = Model(input=input, output=[l_out1, l_out2])
optimizer = Adam()
model.compile(optimizer=optimizer,
loss="categorical_crossentropy",
metrics=["accuracy"])
I would like to know if anyone here has faced this issue, and if there are any solutions to delete layers from a model after training and, more important, how to reshape input layer sizes after training.
Thanks
Variable timesteps length makes a problem not because of using convolution layers (actually the good thing about convolution layers is that they do not depend on the input size). Rather, using Flatten layers cause the problem here since they need an input with specified size. Instead, you can use Global Pooling layers. Further, I think stacking convolution and pooling layers on top of each other might give a better result instead of using two separate convolution layers and merging them (although this depends on the specific problem and dataset you are working on). So considering these two points it might be better to write your model like this:
# Global output
conv1 = Conv1D(filters=16, kernel_size=5)(l_embs)
conv1 = MaxPooling1D(pool_size=2)(conv1)
conv2 = Conv1D(filters=32, kernel_size=5)(conv1)
conv2 = MaxPooling1D(pool_size=2)(conv2)
gpool = GlobalAveragePooling1D()(conv2)
x = Dense(50, activation="relu")(gpool)
l_out2 = Dense(len(global_labels.keys()), activation='softmax')(x)
model = Model(inputs=l_input, outputs=[l_out1, l_out2])
You may need to tune the number of conv+maxpool layers, number of filters, kernel size and even add dropout or batch normalization layers.
As a side note, using TimeDistributed on a Dense layer is redundant as the Dense layer is applied on the last axis.

Constructing a keras model

I don't understand what's happening in this code:
def construct_model(use_imagenet=True):
# line 1: how do we keep all layers of this model ?
model = keras.applications.InceptionV3(include_top=False, input_shape=(IMG_SIZE, IMG_SIZE, 3),
weights='imagenet' if use_imagenet else None) # line 1: how do we keep all layers of this model ?
new_output = keras.layers.GlobalAveragePooling2D()(model.output)
new_output = keras.layers.Dense(N_CLASSES, activation='softmax')(new_output)
model = keras.engine.training.Model(model.inputs, new_output)
return model
Specifically, my confusion is, when we call the last constructor
model = keras.engine.training.Model(model.inputs, new_output)
we specify input layer and output layer, but how does it know we want all the other layers to stay?
In other words, we append the new_output layer to the pre-trained model we load in line 1, that is the new_output layer, and then in the final constructor (final line), we just create and return a model with a specified input and output layers, but how does it know what other layers we want in between?
Side question 1): What is the difference between keras.engine.training.Model and keras.models.Model?
Side question 2): What exactly happens when we do new_layer = keras.layers.Dense(...)(prev_layer)? Does the () operation return new layer, what does it do exactly?
This model was created using the Functional API Model
Basically it works like this (perhaps if you go to the "side question 2" below before reading this it may get clearer):
You have an input tensor (you can see it as "input data" too)
You create (or reuse) a layer
You pass the input tensor to a layer (you "call" a layer with an input)
You get an output tensor
You keep working with these tensors until you have created the entire graph.
But this hasn't created a "model" yet. (One you can train and use other things).
All you have is a graph telling which tensors go where.
To create a model, you define it's start end end points.
In the example.
They take an existing model: model = keras.applications.InceptionV3(...)
They want to expand this model, so they get its output tensor: model.output
They pass this tensor as the input of a GlobalAveragePooling2D layer
They get this layer's output tensor as new_output
They pass this as input to yet another layer: Dense(N_CLASSES, ....)
And get its output as new_output (this var was replaced as they are not interested in keeping its old value...)
But, as it works with the functional API, we don't have a model yet, only a graph. In order to create a model, we use Model defining the input tensor and the output tensor:
new_model = Model(old_model.inputs, new_output)
Now you have your model.
If you use it in another var, as I did (new_model), the old model will still exist in model. And these models are sharing the same layers, in a way that whenever you train one of them, the other gets updated as well.
Question: how does it know what other layers we want in between?
When you do:
outputTensor = SomeLayer(...)(inputTensor)
you have a connection between the input and output. (Keras will use the inner tensorflow mechanism and add these tensors and nodes to the graph). The output tensor cannot exist without the input. The entire InceptionV3 model is connected from start to end. Its input tensor goes through all the layers to yield an ouptut tensor. There is only one possible way for the data to follow, and the graph is the way.
When you get the output of this model and use it to get further outputs, all your new outputs are connected to this, and thus to the first input of the model.
Probably the attribute _keras_history that is added to the tensors is closely related to how it tracks the graph.
So, doing Model(old_model.inputs, new_output) will naturally follow the only way possible: the graph.
If you try doing this with tensors that are not connected, you will get an error.
Side question 1
Prefer to import from "keras.models". Basically, this module will import from the other module:
https://github.com/keras-team/keras/blob/master/keras/models.py
Notice that the file keras/models.py imports Model from keras.engine.training. So, it's the same thing.
Side question 2
It's not new_layer = keras.layers.Dense(...)(prev_layer).
It is output_tensor = keras.layers.Dense(...)(input_tensor).
You're doing two things in the same line:
Creating a layer - with keras.layers.Dense(...)
Calling the layer with an input tensor to get an output tensor
If you wanted to use the same layer with different inputs:
denseLayer = keras.layers.Dense(...) #creating a layer
output1 = denseLayer(input1) #calling a layer with an input and getting an output
output2 = denseLayer(input2) #calling the same layer on another input
output3 = denseLayer(input3) #again
Bonus - Creating a functional model that is equal to a sequential model
If you create this sequential model:
model = Sequential()
model.add(Layer1(...., input_shape=some_shape))
model.add(Layer2(...))
model.add(Layer3(...))
You're doing exactly the same as:
inputTensor = Input(some_shape)
outputTensor = Layer1(...)(inputTensor)
outputTensor = Layer2(...)(outputTensor)
outputTensor = Layer3(...)(outputTensor)
model = Model(inputTensor,outputTensor)
What is the difference?
Well, functional API models are totally free to be build anyway you want. You can create branches:
out1 = Layer1(..)(inputTensor)
out2 = Layer2(..)(inputTensor)
You can join tensors:
joinedOut = Concatenate()([out1,out2])
With this, you can create anything you want with all kinds of fancy stuff, branches, gates, concatenations, additions, etc., which you can't do with a sequential model.
In fact, a Sequential model is also a Model, but created for a quick use in models without branches.
There's this way of building a model from a pretrained one that you may build upon.
See https://keras.io/applications/#fine-tune-inceptionv3-on-a-new-set-of-classes:
base_model = InceptionV3(weights='imagenet', include_top=False)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(200, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
for layer in base_model.layers:
layer.trainable = False
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
Each time a layer is added by an op like "x=Dense(...", information about the computational graph is updated. You can type this interactively to see what it contains:
x.graph.__dict__
You can see there's all kinds of attributes, including about previous and next layers. These are internal implementation details and possibly change over time.

Keras retrieve value of node before activation function

Imagine a fully-connected neural network with its last two layers of the following structure:
[Dense]
units = 612
activation = softplus
[Dense]
units = 1
activation = sigmoid
The output value of the net is 1, but I'd like to know what the input x to the sigmoidal function was (must be some high number, since sigm(x) is 1 here).
Folllowing indraforyou's answer I managed to retrieve the output and weights of Keras layers:
outputs = [layer.output for layer in model.layers[-2:]]
functors = [K.function( [model.input]+[K.learning_phase()], [out] ) for out in outputs]
test_input = np.array(...)
layer_outs = [func([test_input, 0.]) for func in functors]
print layer_outs[-1][0] # -> array([[ 1.]])
dense_0_out = layer_outs[-2][0] # shape (612, 1)
dense_1_weights = model.layers[-1].weights[0].get_value() # shape (1, 612)
dense_1_bias = model.layers[-1].weights[1].get_value()
x = np.dot(dense_0_out, dense_1_weights) + dense_1_bias
print x # -> -11.7
How can x be a negative number? In that case the last layers output should be a number closer to 0.0 than 1.0. Are dense_0_out or dense_1_weights the wrong outputs or weights?
Since you're using get_value(), I'll assume that you're using Theano backend. To get the value of the node before the sigmoid activation, you can traverse the computation graph.
The graph can be traversed starting from outputs (the result of some computation) down to its inputs using the owner field.
In your case, what you want is the input x of the sigmoid activation op. The output of the sigmoid op is model.output. Putting these together, the variable x is model.output.owner.inputs[0].
If you print out this value, you'll see Elemwise{add,no_inplace}.0, which is an element-wise addition op. It can be verified from the source code of Dense.call():
def call(self, inputs):
output = K.dot(inputs, self.kernel)
if self.use_bias:
output = K.bias_add(output, self.bias)
if self.activation is not None:
output = self.activation(output)
return output
The input to the activation function is the output of K.bias_add().
With a small modification of your code, you can get the value of the node before activation:
x = model.output.owner.inputs[0]
func = K.function([model.input] + [K.learning_phase()], [x])
print func([test_input, 0.])
For anyone using TensorFlow backend: use x = model.output.op.inputs[0] instead.
I can see a simple way just changing a little the model structure. (See at the end how to use the existing model and change only the ending).
The advantages of this method are:
You don't have to guess if you're doing the right calculations
You don't need to care about the dropout layers and how to implement a dropout calculation
This is a pure Keras solution (applies to any backend, either Theano or Tensorflow).
There are two possible solutions below:
Option 1 - Create a new model from start with the proposed structure
Option 2 - Reuse an existing model changing only its ending
Model structure
You could just have the last dense separated in two layers at the end:
[Dense]
units = 612
activation = softplus
[Dense]
units = 1
#no activation
[Activation]
activation = sigmoid
Then you simply get the output of the last dense layer.
I'd say you should create two models, one for training, the other for checking this value.
Option 1 - Building the models from the beginning:
from keras.models import Model
#build the initial part of the model the same way you would
#add the Dense layer without an activation:
#if using the functional Model API
denseOut = Dense(1)(outputFromThePreviousLayer)
sigmoidOut = Activation('sigmoid')(denseOut)
#if using the sequential model - will need the functional API
model.add(Dense(1))
sigmoidOut = Activation('sigmoid')(model.output)
Create two models from that, one for training, one for checking the output of dense:
#if using the functional API
checkingModel = Model(yourInputs, denseOut)
#if using the sequential model:
checkingModel = model
trainingModel = Model(checkingModel.inputs, sigmoidOut)
Use trianingModel for training normally. The two models share weights, so training one is training the other.
Use checkingModel just to see the outputs of the Dense layer, using checkingModel.predict(X)
Option 2 - Building this from an existing model:
from keras.models import Model
#find the softplus dense layer and get its output:
softplusOut = oldModel.layers[indexForSoftplusLayer].output
#or should this be the output from the dropout? Whichever comes immediately after the last Dense(1)
#recreate the dense layer
outDense = Dense(1, name='newDense', ...)(softPlusOut)
#create the new model
checkingModel = Model(oldModel.inputs,outDense)
It's important, since you created a new Dense layer, to get the weights from the old one:
wgts = oldModel.layers[indexForDense].get_weights()
checkingModel.get_layer('newDense').set_weights(wgts)
In this case, training the old model will not update the last dense layer in the new model, so, let's create a trainingModel:
outSigmoid = Activation('sigmoid')(checkingModel.output)
trainingModel = Model(checkingModel.inputs,outSigmoid)
Use checkingModel for checking the values you want with checkingModel.predict(X). And train the trainingModel.
So this is for fellow googlers, the working of the keras API has changed significantly since the accepted answer was posted. The working code for extracting a layer's output before activation (for tensorflow backend) is:
model = Your_Keras_Model()
the_tensor_you_need = model.output.op.inputs[0] #<- this is indexable, if there are multiple inputs to this node then you can find it with indexing.
In my case, the final layer was a dense layer with activation softmax, so the tensor output I needed was <tf.Tensor 'predictions/BiasAdd:0' shape=(?, 1000) dtype=float32>.
(TF backend)
Solution for Conv layers.
I had the same question, and to rewrite a model's configuration was not an option.
The simple hack would be to perform the call function manually. It gives control over the activation.
Copy-paste from the Keras source, with self changed to layer. You can do the same with any other layer.
def conv_no_activation(layer, inputs, activation=False):
if layer.rank == 1:
outputs = K.conv1d(
inputs,
layer.kernel,
strides=layer.strides[0],
padding=layer.padding,
data_format=layer.data_format,
dilation_rate=layer.dilation_rate[0])
if layer.rank == 2:
outputs = K.conv2d(
inputs,
layer.kernel,
strides=layer.strides,
padding=layer.padding,
data_format=layer.data_format,
dilation_rate=layer.dilation_rate)
if layer.rank == 3:
outputs = K.conv3d(
inputs,
layer.kernel,
strides=layer.strides,
padding=layer.padding,
data_format=layer.data_format,
dilation_rate=layer.dilation_rate)
if layer.use_bias:
outputs = K.bias_add(
outputs,
layer.bias,
data_format=layer.data_format)
if activation and layer.activation is not None:
outputs = layer.activation(outputs)
return outputs
Now we need to modify the main function a little. First, identify the layer by its name. Then retrieve activations from the previous layer. And at last, compute the output from the target layer.
def get_output_activation_control(model, images, layername, activation=False):
"""Get activations for the input from specified layer"""
inp = model.input
layer_id, layer = [(n, l) for n, l in enumerate(model.layers) if l.name == layername][0]
prev_layer = model.layers[layer_id - 1]
conv_out = conv_no_activation(layer, prev_layer.output, activation=activation)
functor = K.function([inp] + [K.learning_phase()], [conv_out])
return functor([images])
Here is a tiny test. I'm using VGG16 model.
a_relu = get_output_activation_control(vgg_model, img, 'block4_conv1', activation=True)[0]
a_no_relu = get_output_activation_control(vgg_model, img, 'block4_conv1', activation=False)[0]
print(np.sum(a_no_relu < 0))
> 245293
Set all negatives to zero to compare with the results retrieved after an embedded in VGG16 ReLu operation.
a_no_relu[a_no_relu < 0] = 0
print(np.allclose(a_relu, a_no_relu))
> True
easy way to define new layer with new activation function:
def change_layer_activation(layer):
if isinstance(layer, keras.layers.Conv2D):
config = layer.get_config()
config["activation"] = "linear"
new = keras.layers.Conv2D.from_config(config)
elif isinstance(layer, keras.layers.Dense):
config = layer.get_config()
config["activation"] = "linear"
new = keras.layers.Dense.from_config(config)
weights = [x.numpy() for x in layer.weights]
return new, weights
I had the same problem but none of the other answers worked for me. Im using a newer version of Keras with Tensorflow so some answers dont work now. Also the structure of the model is given so i can't change it easely. The general idea is to create a copy of the original model that will work exactly like the original one but spliting the activation from the outputs layers. Once this is done we can easely access the outputs values before the activation is applied.
First we will create a copy of the original model but with no activation on the outputs layers. This will be done using Keras clone_model function (See Docs).
from tensorflow.keras.models import clone_model
from tensorflow.keras.layers import Activation
original_model = get_model()
def f(layer):
config = layer.get_config()
if not isinstance(layer, Activation) and layer.name in original_model.output_names:
config.pop('activation', None)
layer_copy = layer.__class__.from_config(config)
return layer_copy
copy_model = clone_model(model, clone_function=f)
This alone will only make a clone with new weights so we must copy the original_model weights to the new one:
copy_model.build(original_model.input_shape)
copy_model.set_weights(original_model.get_weights())
Now we will add the activations layers:
from tensorflow.keras.models import Model
old_outputs = [ original_model.get_layer(name=name) for name in copy_model.output_names ]
new_outputs = [ Activation(old_output.activation)(output) if old_output.activation else output
for output, old_output in zip(copy_model.outputs, old_outputs) ]
copy_model = Model(copy_model.inputs, new_outputs)
Finally we could create a new model whose evaluation will be the outputs with no activation applied:
no_activation_outputs = [ copy_model.get_layer(name=name).output for name in original_model.output_names ]
no_activation_model = Model(copy.inputs, no_activation_outputs)
Now we could use copy_model like the original_model and no_activation_model to access pre-activation outputs. Actually you could even modify the code to split a custom set of layers instead of the outputs.

Categories