I have loaded the 'load_iris' toy dataset in the Scikit learn library.
{'data': array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2],
[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5. , 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1],
[5.4, 3.7, 1.5, 0.2],
[4.8, 3.4, 1.6, 0.2],
[4.8, 3. , 1.4, 0.1],
[4.3, 3. , 1.1, 0.1],
[5.8, 4. , 1.2, 0.2],
[5.7, 4.4, 1.5, 0.4],
[5.4, 3.9, 1.3, 0.4],
[5.1, 3.5, 1.4, 0.3],
[5.7, 3.8, 1.7, 0.3],
[5.1, 3.8, 1.5, 0.3],
[5.4, 3.4, 1.7, 0.2],
[5.1, 3.7, 1.5, 0.4],
[4.6, 3.6, 1. , 0.2],
[5.1, 3.3, 1.7, 0.5],
[4.8, 3.4, 1.9, 0.2],
[5. , 3. , 1.6, 0.2],
[5. , 3.4, 1.6, 0.4],
[5.2, 3.5, 1.5, 0.2],
[5.2, 3.4, 1.4, 0.2],
[4.7, 3.2, 1.6, 0.2],
[4.8, 3.1, 1.6, 0.2],
[5.4, 3.4, 1.5, 0.4],
[5.2, 4.1, 1.5, 0.1],
[5.5, 4.2, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.2],
[5. , 3.2, 1.2, 0.2],
[5.5, 3.5, 1.3, 0.2],
[4.9, 3.6, 1.4, 0.1],
[4.4, 3. , 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
[5. , 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
[4.4, 3.2, 1.3, 0.2],
[5. , 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
[4.8, 3. , 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
[4.6, 3.2, 1.4, 0.2],
[5.3, 3.7, 1.5, 0.2],
[5. , 3.3, 1.4, 0.2],
[7. , 3.2, 4.7, 1.4],
[6.4, 3.2, 4.5, 1.5],
[6.9, 3.1, 4.9, 1.5],
[5.5, 2.3, 4. , 1.3],
[6.5, 2.8, 4.6, 1.5],
[5.7, 2.8, 4.5, 1.3],
[6.3, 3.3, 4.7, 1.6],
[4.9, 2.4, 3.3, 1. ],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5. , 2. , 3.5, 1. ],
[5.9, 3. , 4.2, 1.5],
[6. , 2.2, 4. , 1. ],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3. , 4.5, 1.5],
[5.8, 2.7, 4.1, 1. ],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4. , 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3. , 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3. , 5. , 1.7],
[6. , 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1. ],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1. ],
[5.8, 2.7, 3.9, 1.2],
[6. , 2.7, 5.1, 1.6],
[5.4, 3. , 4.5, 1.5],
[6. , 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3. , 4.1, 1.3],
[5.5, 2.5, 4. , 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3. , 4.6, 1.4],
[5.8, 2.6, 4. , 1.2],
[5. , 2.3, 3.3, 1. ],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3. , 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3. , 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6. , 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3. , 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3. , 5.8, 2.2],
[7.6, 3. , 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2. ],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3. , 5.5, 2.1],
[5.7, 2.5, 5. , 2. ],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3. , 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6. , 2.2, 5. , 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2. ],
[7.7, 2.8, 6.7, 2. ],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6. , 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3. , 4.9, 1.8],
[6.4, 2.8, 5.6, 2.1],
[7.2, 3. , 5.8, 1.6],
[7.4, 2.8, 6.1, 1.9],
[7.9, 3.8, 6.4, 2. ],
[6.4, 2.8, 5.6, 2.2],
[6.3, 2.8, 5.1, 1.5],
[6.1, 2.6, 5.6, 1.4],
[7.7, 3. , 6.1, 2.3],
[6.3, 3.4, 5.6, 2.4],
[6.4, 3.1, 5.5, 1.8],
[6. , 3. , 4.8, 1.8],
[6.9, 3.1, 5.4, 2.1],
[6.7, 3.1, 5.6, 2.4],
[6.9, 3.1, 5.1, 2.3],
[5.8, 2.7, 5.1, 1.9],
[6.8, 3.2, 5.9, 2.3],
[6.7, 3.3, 5.7, 2.5],
[6.7, 3. , 5.2, 2.3],
[6.3, 2.5, 5. , 1.9],
[6.5, 3. , 5.2, 2. ],
[6.2, 3.4, 5.4, 2.3],
[5.9, 3. , 5.1, 1.8]]),
'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
'frame': None,
'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'),
'DESCR': '.. _iris_dataset:\n\nIris plants dataset\n--------------------\n\n**Data Set Characteristics:**\n\n :Number of Instances: 150 (50 in each of three classes)\n :Number of Attributes: 4 numeric, predictive attributes and the class\n :Attribute Information:\n - sepal length in cm\n - sepal width in cm\n - petal length in cm\n - petal width in cm\n - class:\n - Iris-Setosa\n - Iris-Versicolour\n - Iris-Virginica\n \n :Summary Statistics:\n\n ============== ==== ==== ======= ===== ====================\n Min Max Mean SD Class Correlation\n ============== ==== ==== ======= ===== ====================\n sepal length: 4.3 7.9 5.84 0.83 0.7826\n sepal width: 2.0 4.4 3.05 0.43 -0.4194\n petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)\n petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)\n ============== ==== ==== ======= ===== ====================\n\n :Missing Attribute Values: None\n :Class Distribution: 33.3% for each of 3 classes.\n :Creator: R.A. Fisher\n :Donor: Michael Marshall (MARSHALL%PLU#io.arc.nasa.gov)\n :Date: July, 1988\n\nThe famous Iris database, first used by Sir R.A. Fisher. The dataset is taken\nfrom Fisher\'s paper. Note that it\'s the same as in R, but not as in the UCI\nMachine Learning Repository, which has two wrong data points.\n\nThis is perhaps the best known database to be found in the\npattern recognition literature. Fisher\'s paper is a classic in the field and\nis referenced frequently to this day. (See Duda & Hart, for example.) The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant. One class is linearly separable from the other 2; the\nlatter are NOT linearly separable from each other.\n\n.. topic:: References\n\n - Fisher, R.A. "The use of multiple measurements in taxonomic problems"\n Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n Mathematical Statistics" (John Wiley, NY, 1950).\n - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.\n (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.\n - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n Structure and Classification Rule for Recognition in Partially Exposed\n Environments". IEEE Transactions on Pattern Analysis and Machine\n Intelligence, Vol. PAMI-2, No. 1, 67-71.\n - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions\n on Information Theory, May 1972, 431-433.\n - See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II\n conceptual clustering system finds 3 classes in the data.\n - Many, many more ...',
'feature_names': ['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)'],
'filename': 'iris.csv',
'data_module': 'sklearn.datasets.data'}
I wish to convert this dataset, which is in array form into a data frame but am unable to do so with the following command, which return the first 4 columns completely filled with Nan
y = pd.DataFrame(datasets.load_iris(),columns = ['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)','target'])
The command gives the following table, which is not correct
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
0 NaN NaN NaN NaN 0
1 NaN NaN NaN NaN 0
2 NaN NaN NaN NaN 0
3 NaN NaN NaN NaN 0
4 NaN NaN NaN NaN 0
... ... ... ... ... ...
145 NaN NaN NaN NaN 2
146 NaN NaN NaN NaN 2
147 NaN NaN NaN NaN 2
148 NaN NaN NaN NaN 2
149 NaN NaN NaN NaN 2
How to do it?
How to get data correctly converted from np.array into pd.DataFrame
Use the as_frame=True option:
df = datasets.load_iris(as_frame=True)['data']
output:
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2
.. ... ... ... ...
145 6.7 3.0 5.2 2.3
146 6.3 2.5 5.0 1.9
147 6.5 3.0 5.2 2.0
148 6.2 3.4 5.4 2.3
149 5.9 3.0 5.1 1.8
[150 rows x 4 columns]
If you also want the target:
iris = datasets.load_iris(as_frame=True)
df = iris['data']
df['target'] = iris['target']
output:
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0
.. ... ... ... ... ...
145 6.7 3.0 5.2 2.3 2
146 6.3 2.5 5.0 1.9 2
147 6.5 3.0 5.2 2.0 2
148 6.2 3.4 5.4 2.3 2
149 5.9 3.0 5.1 1.8 2
I have a string which has this structure:
{0: [array([5.1, 3.5, 1.4, 0.2]), array([4.9, 3. , 1.4, 0.2]), 1: [array([7. , 3.2, 4.7, 1.4]), array([6.4, 3.2, 4.5, 1.5]), 2: [array([6.3, 3.3, 6. , 2.5]), array([7.1, 3. , 5.9, 2.1])]}
It is in the form of a python dictionary containing numpy arrays.
How can I turn this string into a python dictionary containing numpy arrays?
Thanks for the replies already. I can't simply just change the string because the string is an output of a python file that I want to pipe to another one. I could go and change the format of this output, but I was rather hoping to avoid that.
In an interactive ipython session is created an alias:
In [7]: array = np.array
and edited a copy-n-paste of your sample. I had to add a couple of closing ]:
In [8]: data = {0: [array([5.1, 3.5, 1.4, 0.2]), array([4.9, 3. , 1.4, 0.2])], 1
...: : [array([7. , 3.2, 4.7, 1.4]), array([6.4, 3.2, 4.5, 1.5])], 2: [array(
...: [6.3, 3.3, 6. , 2.5]), array([7.1, 3. , 5.9, 2.1])]}
Now a simple execute works:
In [9]: data
Out[9]:
{0: [array([5.1, 3.5, 1.4, 0.2]), array([4.9, 3. , 1.4, 0.2])],
1: [array([7. , 3.2, 4.7, 1.4]), array([6.4, 3.2, 4.5, 1.5])],
2: [array([6.3, 3.3, 6. , 2.5]), array([7.1, 3. , 5.9, 2.1])]}
or with a string (corrected):
In [10]: astr="{0: [array([5.1, 3.5, 1.4, 0.2]), array([4.9, 3. , 1.4, 0.2])], 1
...: : [array([7. , 3.2, 4.7, 1.4]), array([6.4, 3.2, 4.5, 1.5])], 2: [array
...: ([6.3, 3.3, 6. , 2.5]), array([7.1, 3. , 5.9, 2.1])]}"
In [11]: astr
Out[11]: '{0: [array([5.1, 3.5, 1.4, 0.2]), array([4.9, 3. , 1.4, 0.2])], 1: [array([7. , 3.2, 4.7, 1.4]), array([6.4, 3.2, 4.5, 1.5])], 2: [array([6.3, 3.3, 6. , 2.5]), array([7.1, 3. , 5.9, 2.1])]}'
I can do an exec or eval:
In [15]: eval(astr)
Out[15]:
{0: [array([5.1, 3.5, 1.4, 0.2]), array([4.9, 3. , 1.4, 0.2])],
1: [array([7. , 3.2, 4.7, 1.4]), array([6.4, 3.2, 4.5, 1.5])],
2: [array([6.3, 3.3, 6. , 2.5]), array([7.1, 3. , 5.9, 2.1])]}
Use of eval is often discouraged because it can be hacked. But the safer ast_eval only works with dict, list and tuples, not np.array. One way or other you have to edit the string so it is a valid Python/numpy expression.
I changed how the string was being being produced so that it was in the form of a dictionary containing python lists instead of numpy arrays.
With this I could just use ast.literal_eval() to deseriealize it.
I have a 2D array A where i am adding one element to B after every iteration, the problem is that my code works for 1D array. But since i am trying to pass a 2D array, the columns are turning into lines.
For example:
import numpy as np
test = np.array([
[1, 5, 4, 2, 2, 2.3, 1.27, 1.22, 1, 1.14],
[2, 3.01, 7.7, 9.6, 2.8, 5.4, 2.1, 7.47, 1, 4],
[3, 8, 6.7, 7.1, 5.1, 4.7, 5.9, 4.7, 3.8, 3.05],
[4, 6, 9.7, 3.3, 5.64, 8.41, 2.16, 3.38, 5.3, 8.5],
[5, 4.25, 5.28, 1.8, 2.24, 2.79, 7.68, 9.56, 1.1, 1.47],
[6, 5.18, 6.95, 2.63, 3.60, 4.83, 1.34, 1.86, 2.50, 3.64]])
A = test[0:6, 0:10]
print(A)
B = A[0:3, :]
for i in A[3:]:
B = np.append(B, i)
print(B.shape)
The output is:
(40,)
(50,)
(60,)
What i want to do is add 1 line (sample) while keeping the column length that is 10, the expected output would be:
[1, 5, 4, 2, 2, 2.3, 1.27, 1.22, 1, 1.14],
[2, 3.01, 7.7, 9.6, 2.8, 5.4, 2.1, 7.47, 1, 4],
[3, 8, 6.7, 7.1, 5.1, 4.7, 5.9, 4.7, 3.8, 3.05],
[1, 5, 4, 2, 2, 2.3, 1.27, 1.22, 1, 1.14],
[2, 3.01, 7.7, 9.6, 2.8, 5.4, 2.1, 7.47, 1, 4],
[3, 8, 6.7, 7.1, 5.1, 4.7, 5.9, 4.7, 3.8, 3.05],
[4, 6, 9.7, 3.3, 5.64, 8.41, 2.16, 3.38, 5.3, 8.5],
[1, 5, 4, 2, 2, 2.3, 1.27, 1.22, 1, 1.14],
[2, 3.01, 7.7, 9.6, 2.8, 5.4, 2.1, 7.47, 1, 4],
[3, 8, 6.7, 7.1, 5.1, 4.7, 5.9, 4.7, 3.8, 3.05],
[4, 6, 9.7, 3.3, 5.64, 8.41, 2.16, 3.38, 5.3, 8.5],
[5, 4.25, 5.28, 1.8, 2.24, 2.79, 7.68, 9.56, 1.1, 1.47],
[[1. 5. 4. 2. 2. 2.3 1.27 1.22 1. 1.14]
[2. 3.01 7.7 9.6 2.8 5.4 2.1 7.47 1. 4. ]
[3. 8. 6.7 7.1 5.1 4.7 5.9 4.7 3.8 3.05]
[4. 6. 9.7 3.3 5.64 8.41 2.16 3.38 5.3 8.5 ]
[5. 4.25 5.28 1.8 2.24 2.79 7.68 9.56 1.1 1.47]
[6. 5.18 6.95 2.63 3.6 4.83 1.34 1.86 2.5 3.64]]
But what the code actually outputs:
[1. 5. 4. 2. 2. 2.3 1.27 1.22 1. 1.14 2. 3.01 7.7 9.6
2.8 5.4 2.1 7.47 1. 4. 3. 8. 6.7 7.1 5.1 4.7 5.9 4.7
3.8 3.05 4. 6. 9.7 3.3 5.64 8.41 2.16 3.38 5.3 8.5 5. 4.25
5.28 1.8 2.24 2.79 7.68 9.56 1.1 1.47 6. 5.18 6.95 2.63 3.6 4.83
1.34 1.86 2.5 3.64]
If I understand correctly, what you want is:
B = np.append(B, i[None,:], 0)
which adds a dimension to i and appends along first axis axis=0. But appending to numpy array is costly and discouraged. I suggest using lists and converting to numpy array at the end.
output of your code:
(4, 10)
(5, 10)
(6, 10)