In advance: Sorry, the title is a bit fuzzy
PYTHON
I have two tables. In one there are unique names for example 'A', 'B', 'C' and in the other table there is a Time series with months example 10/2021, 11/2021, 12/2021. I want to join the tables now that I have all TimeStemps for each name. So the final data should look like this:
Month
Name
10/2021
A
11/2021
A
12/2021
A
10/2021
B
11/2021
B
12/2021
B
10/2021
C
11/2021
C
12/2021
C
from cartesian product in pandas
df1 = pd.DataFrame([1, 2, 3], columns=['A'])
df2 = pd.DataFrame(["a", "b", "c"], columns=['B'])
df = (df1.assign(key=1)
.merge(df2.assign(key=1), on="key")
.drop("key", axis=1)
)
A B
0 1 a
1 1 b
2 1 c
3 2 a
4 2 b
5 2 c
6 3 a
7 3 b
8 3 c
If you are only trying to get the cartesian product of the values - you can do it using itertools.product
import pandas as pd
from itertools import product
df1 = pd.DataFrame(list('abcd'), columns=['letters'])
df2 = pd.DataFrame(list('1234'), columns=['numbers'])
df_combined = pd.DataFrame(product(df1['letters'], df2['numbers']), columns=['letters', 'numbers'])
output
letters numbers
0 a 1
1 a 2
2 a 3
3 a 4
4 b 1
5 b 2
6 b 3
7 b 4
8 c 1
9 c 2
10 c 3
11 c 4
12 d 1
13 d 2
14 d 3
15 d 4
Related
I have to copy columns from one DataFrame A to another DataFrame B. The column names in A and B do not match.
What is the best way to do it? There are several columns like this. Do I need to write for each column like B["SO"] = A["Sales Order"] etc.
i would use pd.concat
combined_df = pd.concat([df1, df2[['column_a', 'column_b']]], axis=1)
also gives you the power to concat different size dateframes , outer join etc.
Use:
df1 = pd.DataFrame({
'SO':list('abcdef'),
'RI':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
})
print (df1)
SO RI C
0 a 4 7
1 b 5 8
2 c 4 9
3 d 5 4
4 e 5 2
5 f 4 3
df2 = pd.DataFrame({
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')
})
print (df2)
D E F
0 1 5 a
1 3 3 a
2 5 6 a
3 7 9 b
4 1 2 b
5 0 4 b
Create dictionary for rename, select columns matched, rename by dict and DataFrame.join to original - DataFrames matched by index values:
d = {'SO':'Sales Order',
'RI':'Retail Invoices'}
df11 = df1[d.keys()].rename(columns=d)
print (df11)
Sales Order Retail Invoices
0 a 4
1 b 5
2 c 4
3 d 5
4 e 5
5 f 4
df = df2.join(df11)
print (df)
D E F Sales Order Retail Invoices
0 1 5 a a 4
1 3 3 a b 5
2 5 6 a c 4
3 7 9 b d 5
4 1 2 b e 5
5 0 4 b f 4
Make a dictionary of abbreviations. And try this code.
Ex:
full_form_dict = {'SO':'Sales Order',
'RI':'Retail Invoices',}
A_col = list(A.columns)
B_col = [v for k,v in full_form_dict.items() if k in A_col]
# to loop over A_col
# B_col = [v for col in A_col for k,v in full_form_dict.items() if k == col]
I want the following data to be converted like the below expected output.
Values of 2nd column must be grouped and displayed in a single row based on values in 1st column.
I can use my own logic in Python to do this, but wanted to know if Pandas or any other library in Python provides such functionality to make it easier.
Input:
1 A
1 B
1 B
2 D
3 A
1 C
4 D
2 A
1 A
3 B
4 A
2 D
2 C
4 C
4 B
4 A
3 A
The expected result:
1 A B B C A
2 D A D C
3 A B A
4 D A C B A
Use assuming 0 is the first column and 1 is the second. if first column is index replace 0 with df.index
m=df.groupby(0)[1].apply(list)
print(pd.DataFrame(m.values.tolist(),index=m.index).rename_axis(None).fillna(''))
0 1 2 3 4
1 A B B C A
2 D A D C
3 A B A
4 D A C B A
Yes pandas can do it:
import pandas as pd
# Create dataframe (or import it)
df = pd.DataFrame({"id": [1, 1, 1, 2, 2, 3, 1, 4], "letter" : ["A", "A", "B", "D", "A", "C", "B", "B"]})
print(df)
Result:
id letter
0 1 A
1 1 A
2 1 B
3 2 D
4 2 A
5 3 C
6 1 B
7 4 B
Then:
df.groupby("id").sum()
print(df)
Result:
id letter
1 AABB
2 DA
3 C
4 B
You can use:
df.groupby('id').sum()['letter'].apply(lambda x: ' '.join(x))
id
1 A B B C A
2 D A D C
3 A B A
4 D A C B A
How can I extract a column from pandas dataframe attach it to rows while keeping the other columns same.
This is my example dataset.
import pandas as pd
import numpy as np
df = pd.DataFrame({'ID': np.arange(0,5),
'sample_1' : [5,6,7,8,9],
'sample_2' : [10,11,12,13,14],
'group_id' : ["A","B","C","D","E"]})
The output I'm looking for is:
df2 = pd.DataFrame({'ID': [0, 1, 2, 3, 4, 0, 1, 2, 3, 4],
'sample_1' : [5,6,7,8,9,10,11,12,13,14],
'group_id' : ["A","B","C","D","E","A","B","C","D","E"]})
I have tried to slice the dataframe and concat using pd.concat but it was giving NaN values.
My original dataset is large.
You could do this using stack: Set the index to the columns you don't want to modify, call stack, sort by the "sample" column, then reset your index:
df.set_index(['ID','group_id']).stack().sort_values(0).reset_index([0,1]).reset_index(drop=True)
ID group_id 0
0 0 A 5
1 1 B 6
2 2 C 7
3 3 D 8
4 4 E 9
5 0 A 10
6 1 B 11
7 2 C 12
8 3 D 13
9 4 E 14
Using pd.wide_to_long:
res = pd.wide_to_long(df, stubnames='sample_', i='ID', j='group_id')
res.index = res.index.droplevel(1)
res = res.rename(columns={'sample_': 'sample_1'}).reset_index()
print(res)
ID group_id sample_1
0 0 A 5
1 1 B 6
2 2 C 7
3 3 D 8
4 4 E 9
5 0 A 10
6 1 B 11
7 2 C 12
8 3 D 13
9 4 E 14
The function you are looking for is called melt
For example:
df2 = pd.melt(df, id_vars=['ID', 'group_id'], value_vars=['sample_1', 'sample_2'], value_name='sample_1')
df2 = df2.drop('variable', axis=1)
I have the following DF and f(a,b) function:
A B
0 5 3
1 4 2
2 7 1
f(a,b):
return (a+b,a-b)
I want to a apply f(a,b) on columns A,B...
and return two values into two new columns df[sum,sub]
A B C D
0 5 3 8 2
1 4 2 6 2
2 7 1 8 6
Using apply with axis=1
import pandas as pd
df = pd.DataFrame({"A": [5, 4, 7], "B":[3, 2, 1]})
def f(a,b):
return (a+b,a-b)
df[["sum", "sub"]] = df.apply(lambda row: f(row["A"], row["B"]), axis=1).apply(pd.Series)
print(df)
Output:
A B sum sub
0 5 3 8 2
1 4 2 6 2
2 7 1 8 6
This is one way. I strongly recommend you don't use pd.DataFrame.apply with a row-wise calculation, as this unnecessarily sidesteps pandas vectorisation.
def f(a, b):
return a + b, a - b
def foo(df, a, b):
return f(df[a], df[b])
df['C'], df['D'] = df.pipe(foo, 'A', 'B')
print(df)
A B C D
0 5 3 8 2
1 4 2 6 2
2 7 1 8 6
This question already has answers here:
How can I replicate rows of a Pandas DataFrame?
(10 answers)
Closed 11 months ago.
I want to replicate rows in a Pandas Dataframe. Each row should be repeated n times, where n is a field of each row.
import pandas as pd
what_i_have = pd.DataFrame(data={
'id': ['A', 'B', 'C'],
'n' : [ 1, 2, 3],
'v' : [ 10, 13, 8]
})
what_i_want = pd.DataFrame(data={
'id': ['A', 'B', 'B', 'C', 'C', 'C'],
'v' : [ 10, 13, 13, 8, 8, 8]
})
Is this possible?
You can use Index.repeat to get repeated index values based on the column then select from the DataFrame:
df2 = df.loc[df.index.repeat(df.n)]
id n v
0 A 1 10
1 B 2 13
1 B 2 13
2 C 3 8
2 C 3 8
2 C 3 8
Or you could use np.repeat to get the repeated indices and then use that to index into the frame:
df2 = df.loc[np.repeat(df.index.values, df.n)]
id n v
0 A 1 10
1 B 2 13
1 B 2 13
2 C 3 8
2 C 3 8
2 C 3 8
After which there's only a bit of cleaning up to do:
df2 = df2.drop("n", axis=1).reset_index(drop=True)
id v
0 A 10
1 B 13
2 B 13
3 C 8
4 C 8
5 C 8
Note that if you might have duplicate indices to worry about, you could use .iloc instead:
df.iloc[np.repeat(np.arange(len(df)), df["n"])].drop("n", axis=1).reset_index(drop=True)
id v
0 A 10
1 B 13
2 B 13
3 C 8
4 C 8
5 C 8
which uses the positions, and not the index labels.
You could use set_index and repeat
In [1057]: df.set_index(['id'])['v'].repeat(df['n']).reset_index()
Out[1057]:
id v
0 A 10
1 B 13
2 B 13
3 C 8
4 C 8
5 C 8
Details
In [1058]: df
Out[1058]:
id n v
0 A 1 10
1 B 2 13
2 C 3 8
It's something like the uncount in tidyr:
https://tidyr.tidyverse.org/reference/uncount.html
I wrote a package (https://github.com/pwwang/datar) that implements this API:
from datar import f
from datar.tibble import tribble
from datar.tidyr import uncount
what_i_have = tribble(
f.id, f.n, f.v,
'A', 1, 10,
'B', 2, 13,
'C', 3, 8
)
what_i_have >> uncount(f.n)
Output:
id v
0 A 10
1 B 13
1 B 13
2 C 8
2 C 8
2 C 8
Not the best solution, but I want to share this: you could also use pandas.reindex() and .repeat():
df.reindex(df.index.repeat(df.n)).drop('n', axis=1)
Output:
id v
0 A 10
1 B 13
1 B 13
2 C 8
2 C 8
2 C 8
You can further append .reset_index(drop=True) to reset the .index.