I am trying to figure out if I can use fastai for my problem.
I am trying to classify sequences of floats. Each sequence is a vector of 24 floats. In principle, item 0 in the vector effects item 1, which effects item 2, etc., so an LSTM is of interest. I am open treating the data as a non-sequence and modeling with some kind of 1d CNN as well. I would like to be able to be able to predict (binary classification) the label for each vector I pass in to the model.
Can fastai support this kind of model? I have a LSTM trained in keras on this data that performs well, but I need to use torch or fastai for a variety of reasons. The architecture looks like this:
model = Sequential()
model.add(Bidirectional(LSTM(32, input_shape=(n_timesteps,n_features))))
model.add(Dropout(0.5))
model.add(Dense(12, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(n_outputs, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
I've used fastai a bunch for image and text classification, but I can't figure out how to formulate this problem in fastai. Any ideas?
Related
i'm working on a classification problem (human activity classification) and i used CNN the code of model is :
model = Sequential()
model.add(Conv2D(100, (2, 2), activation = 'relu', input_shape = X_train[0].shape))
model.add(Dropout(0.1))
#adding pooling layer
model.add(MaxPool2D(2,2))
model.add(Dense(64, activation = 'relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(64, activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))
compiling and fiting :
model.compile(optimizer=Adam(learning_rate = 0.001), loss = 'sparse_categorical_crossentropy', metrics = ['accuracy'])
history = model.fit(X_train, y_train, epochs = 20, validation_data= (X_test, y_test), verbose=1)
the accuracy was like this
how coul'd i increase the last value of accuracy ? and why the curve is increasing kinda fast?
There are a few avenues you can pursue here, specifically finding answers to the following questions for your particular problem. Here's a great video, although not for tensorflow, but I think the question you are asking is general enough for it to apply
What is the right amount of time to train for? Likely the answer here is somewhere between 20 epochs and 90, more specifically, it's where your two series in the plot start to diverge; in other words, your model starts to memorize the training data at the point of divergence. Tensorflow has early stopping mechanisms to help with this.
What is the performance of a naïve guesser? Is the complexity of your model proportional to the complexity/dimensionality of the problem?
What is the human insight that you can bring to the problem? Are there things you can do to the features that will help the model create separability in higher dimensions? For example, let's say your model is going to predict what activity a person is going to do at a given point in time. In this case, information related to people might be separate from time and activity data. You can create features that represent combinations of other features (assuming you have a lot of data), and encode this and feed it to your model. You can create embeddings in your model to get your model to deal with the sparsity that occurs when you combine such categorical features.
Another aspect of this that I think is very important to answer is "Why am I solving this problem?". In some cases, the answer might be "I want to learn X", in which case you might approach it differently. For example, if it's all tabular data, you might have more interpretable/better results using something like scikit-learn using a tree based model. It also, of course, depends on the amount and type of data you have. Nested cross-validation can give you great insight into what are the combinations of hyperparameters and features that will produce a model that generalizes, and also about the variation you can expect to see on unseen data.
Best of luck!
I have been trying to train a bidirectional LSTM using TensorFlow v2 keras for text classification. Below is the architecture:
model1 = Sequential()
model1.add(Embedding(vocab, 128,input_length=maxlength))
model1.add(Bidirectional(LSTM(32,dropout=0.2,recurrent_dropout=0.2,return_sequences=True)))
model1.add(Bidirectional(LSTM(16,dropout=0.2,recurrent_dropout=0.2,return_sequences=True)))
model1.add(GlobalAveragePooling1D())
model1.add(Dense(5, activation='softmax'))
model1.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model1.summary()
Now, it is the summary details where I am confused
My doubts are related to the output shapes of BiLSTM layers. How they are (283,64) & (283,32) though the number of units used is 32 & 16 respectively for the 2 layers. Here, maxlength=283, vocab=19479
I believe that the explanation for this result is the bidirectional Nature of the LSTM layers in which you have added to your neural network: The size of the layer you have added is doubled for the layer to also learn the sequence backwards. I hope you can understand, if you have any questions, you can ask me in the comments.
This is because of Bidirectional. If you remove it, you'll see that output shapes are (283,32) & (283,16). Bidirectional creates some kind of extra layer
I have a dataset and i want to decide on which ML algorithm to apply to my given problem.
Customers are to fill out an assessment questionnaire of 50 questions. Examples of the questions are, what is your job, previous job history, how much do you earn, have you been rejected for a loan etc, and the end goal is to decide whether they should be rejected or not.
I have circa 500 entries for my algorithm to learn from and have pre-processed my dataset and converted the inputs into a numpy array and wondering what would be the best algorithm to use? Should i use a classification algorithm or a neural network in tensorflow and if the latter, what would be the layers I should use?
Thanks
How about beginning with xgboost or random forest? - So plain "old" ML?
The advantage would be that you could visualize the decision tree of the model once trained.
If using a NN in tensorflow (or even easier: keras with tensorflow backend), you could go with a MLP (multi layer perceptron), since the questions answers have fixed position in the input. You don't need many layers.
Important is that you normalize your input data columnwise, so that the input numbers are not much bigger/smaller than +1/-1, respectively. Introductory books often miss this point, though important.
Since your target labeling is "accept" or "reject", binary classifier will do it (also in the machine learning approach). (You use 0 and 1 as labels).
For NN, you don't need for such kind of classification that many layers or neurons. Try the smallest network first. let's say 10 neurons in first layer, then 7 neurons in the next layer (probably even less) and then 1 output neuron for the binary decision.
With Keras this would be:
from keras.models import Sequential
from keras.layers import Dense
def create_mlp(n_input = 500): # number of columns of input data 500 here
model = Sequential()
model.add(Dense(10, input_dim=n_input, kernel_initializer='normal', activation='relu')) # init = kernel_initializer
model.add(Dense(7, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['acc'])
return model
model = create_mlp(500) # this will generate the correct NN compiled.
Your data frame (or Numpy input array must have as rows the samples,
the columns are for each answer for a question 1 column.
the answers you have to encode in a numeric form. Numbers should be small - the best between -1 and 1. NNs don't like big numbers. Thus column-wise normalization can help.)
That's it. I learned all this stuff last year. Good luck for learning. It will be tons of fun!
I am going through tutorial for handwritten text recognition. And to do hand written digit recognition the author has constructed a Keras model as follows:
# # Creating CNN model
input_shape = (28,28,1)
number_of_classes = 10
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(number_of_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),metrics=['accuracy'])
model.summary()
history = model.fit(X_train, y_train,epochs=5, shuffle=True,
batch_size = 200,validation_data= (X_test, y_test))
model.save('digit_classifier2.h5')
Source (here)
I am very confused that on how has the author choose these layers. I know how Conv2D works by applying filters to an image, I know what is activation function. In short I have a rough understanding of what each term means.
What I am finding it difficult is how do I know what is happening in each step of this code?
For example lets take this python code:
values_List=[11,34,43]
for index, num in enumerate(values_List):
print(index,num)
I know that line 1 initializes a list named values_List
Line 2 iterates through this list
Line 3 prints output as (index of a number , number)
This python code is easy to understand and debug. But I am confused that if there is any error inside the keras layers. How do I proceed to debug this Keras code ? How do I see output on each step inside the Keras code ?
In short, you can't easily debug in Keras cause it is a high-level API made for the faster and easier implementations of Neural network architecture using pre-defined layers and functions there is less chance of error inside these layers or function cause it is well tested.
If you want to more fine-grained control on you you need to implement in Low-level API like Tensorflow v1 or use tf.GradientTape with tf-keras in TensorFlow v2 to see gradients at each step.
You can also try Tensorwatch by Microsoft for a deeper understanding of your model -
https://github.com/microsoft/tensorwatch
I have two GPU installed on two different machines. I want to build a cluster that allows me to learn a Keras model by using the two GPUs together.
Keras blog shows two slices of code in Distributed training section and link official Tensorflow documentation.
My problem is that I don't know how to learn my model and put into practice what is reported in Tensorflow documentation.
For example, what should I do if I want to execute the following code on a cluster of multiple GPU?
# For a single-input model with 2 classes (binary classification):
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
# Generate dummy data
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))
# Train the model, iterating on the data in batches of 32 samples
model.fit(data, labels, epochs=10, batch_size=32)
In the first and second part of the blog he explains how to use keras models with tensorflow.
Also I found this example of keras with distributed training.
And here is another with horovod.