Leetcode Reverse String problem not accepting in-place solution - python

I am posting two solutions below which I tried in leetcode for the problem no : 344
https://leetcode.com/problems/reverse-string/
Solution 1
class Solution:
def reverseString(self, s: List[str]) -> None:
return s[::-1]
Solution 2
class Solution:
def reverseString(self, s: List[str]) -> None:
first = 0
last = len(s) - 1
while first <= last:
s[first], s[last] = s[last], s[first]
first += 1
last -= 1
return s
As I understand, both solutions are in-place. However, solution 1 is not accepted and prompts as wrong answer. Solution 2 is accepted. Could someone help me out?

Question is saying do not return anything that means you need to do inplace reversing.
Also this is list of string not a string so whatever you change inside function it will be reflected in the list because lists are mutable.
Correct Solution will be
class Solution:
def reverseString(self, s: List[str]) -> None:
"""
Do not return anything, modify s in-place instead.
"""
s.reverse()
Also If you want to do in your style then correct line will be
s[:] = s[::-1]

The first solution creates a new list and does not change the parameter (which also feels cleaner).
Edit: Never mind the following part. It won't do anything. Thanks.
However you could do something like
s = s[::-1]
instead of the return statement.

The first one is not in-place. Your function signature indicates you return nothing yet you do.

Related

how can I optimize this code? fliping all the vowels in a string

This code takes all the vowels in a string and flip thier positions.
class Solution:
def reverseVowels(self, s: str) -> str:
list_vowels= [x for x in s if x in 'aeiouAEIOU'][::-1]
list=[x for x in s]
z=0
for number in range(0,len(s)):
if list[number] in 'aeiouAEIOU':
list[number]=list_vowels[z]
z+=1
return "".join(list)
I'm still a beginner but I have this feeling that if I submit this code in an interview for exemple, I won't be taken seriously.
Thanks to who ever took time to help me.
The code can be simplified as follows.
use reverse iterator reversed to get successive elements of vowels in reverse order as needed
Use Python PEP 8 Style Guide for naming functions and variables
Making use of a 'constant' rather than defining vowels multiple times (aids code maintainability)
In Python it's highly discouraged to use builtin functions as variable names (e.g. list)
Not clear why the solution uses a method rather than a standalone function but kept as posted (looks like a Leetcode answer template).
Code
class Solution:
def reverse_vowels(self, s: str, VOWELS: str = 'aeiouAEIOU') -> str:
# iterator with vowels reverse
rev_vowels = reversed([c for c in s if c in VOWELS])
# Choose character for non-vowles, elese choose next element of reverse iterator for vowel
return ''.join(c if not c in VOWELS else next(rev_vowels) for c in s)
Test
Sol = Solution()
for t in ['aeio', 'hello']:
print(f'{t} -> {Sol.reverse_vowels(t)}')
Output
aeio -> oiea
hello -> holle

python, printing longest length of string in a list

My question is to write a function which returns the longest string and ignores any non-strings, and if there are no strings in the input list, then it should return None.
my answer:
def longest_string(x):
for i in max(x, key=len):
if not type(i)==str:
continue
if
return max
longest_string(['cat', 'dog', 'horse'])
I'm a beginner so I have no idea where to start. Apologies if this is quite simple.
This is how i would do it:
def longest_string(x):
Strings = [i for i in x if isinstance(i, str)]
return(max(Strings, key=len)) if Strings else None
Based on your code:
def longest_string(x):
l = 0
r = None
for s in x:
if isinstance(s, str) and len(s) > l:
l = len(s)
r = s
return r
print(longest_string([None, 'cat', 1, 'dog', 'horse']))
# horse
def longest_string(items):
try:
return max([x for x in items if isinstance(x, str)], key=len)
except ValueError:
return None
def longest_string(items):
strings = (s for s in items if isinstance(s, str))
longest = max(strings, key=len) if strings else None
return longest
print(longest_string(['cat', 'dog', 'horse']))
Your syntax is wrong (second-to-last line: if with no condition) and you are returning max which you did not define manually. In actuality, max is a built-in Python function which you called a few lines above.
In addition, you are not looping through all strings, you are looping through the longest string. Your code should instead be
def longest_string(l):
strings = [item for item in l if type(item) == str]
if len(strings):
return max(strings, key=len)
return None
You're on a good way, you could iterate the list and check each item is the longest:
def longest_string(x)
# handle case of 0 strings
if len(x) == 0:
return None
current_longest = ""
# Iterate the strings
for i in x:
# Handle nonestring
if type(i) != str:
continue
# if the current string is longer than the longest, replace the string.
if len(i) > len(current_longest):
current_longest = i
# This condition handles multiple elements where none are strings and should return None.
if len(current_longest) > 0:
return current_longest
else:
return None
Since you are a beginner, I recommend you to start using python's built-in methods to sort and manage lists. Is the best when it comes to logic and leaves less room for bugs.
def longest_string(x):
x = filter(lambda obj: isinstance(obj, str), x)
longest = max(list(x), key=lambda obj: len(obj), default=None)
return longest
Nonetheless, you were in a good way. Just avoid using python´s keywords for variable names (such as max, type, list, etc.)
EDIT: I see a lot of answers using one-liner conditionals, list comprehension, etc. I think those are fantastic solutions, but for the level of programming the OP is at, my answer attempts to document each step of the process and be as readable as possible.
First of all, I would highly suggest defining the type of the x argument in your function.
For example; since I see you are passing a list, you can define the type like so:
def longest_string(x: list):
....
This not only makes it more readable for potential collaborators but helps enormously when creating docstrings and/or combined with using an IDE that shows type hints when writing functions.
Next, I highly suggest you break down your "specs" into some pseudocode, which is enormously helpful for taking things one step at a time:
returns the longest string
ignores any non-strings
if there are no strings in the input list, then it should return None.
So to elaborate on those "specifications" further, we can write:
Return the longest string from a list.
Ignore any element from the input arg x that is not of type str
if no string is present in the list, return None
From here we can proceed to writing the function.
def longest_string(x: list):
# Immediately verify the input is the expected type. if not, return None (or raise Exception)
if type(x) != list:
return None # input should always be a list
# create an empty list to add all strings to
str_list = []
# Loop through list
for element in x:
# check type. if not string, continue
if type(element) != str:
pass
# at this point in our loop the element has passed our type check, and is a string.
# add the element to our str_list
str_list.append(element)
# we should now have a list of strings
# however we should handle an edge case where a list is passed to the function that contains no strings at all, which would mean we now have an empty str_list. let's check that
if not str_list: # an empty list evaluates to False. if not str_list is basically saying "if str_list is empty"
return None
# if the program has not hit one of the return statements yet, we should now have a list of strings (or at least 1 string). you can check with a simple print statement (eg. print(str_list), print(len(str_list)) )
# now we can check for the longest string
# we can use the max() function for this operation
longest_string = max(str_list, key=len)
# return the longest string!
return longest_string

Perform a function on result of another function if not none

I have a small snippet of code with two functions in it.
I want to call the first function if it receives a response then perform a function on that response. Then assign the result to another variable.
In a verbose way it looks like:
result = get_something()
if result:
answer = transform(result)
alternatively I could do
if get_something():
answer = transform(get_something())
but that requires calling the first function twice
is there a way to do all of this on one line a bit like a ternary (maybe as a lambda)
answer = transform(result) if get_something() else None
Obviously in the above there is nothing to state what result is but I need to say basically where result = get_something()
I can do that in a list comprehension but that seems a bit dumb
answer = [transform(x) for x in [get_something()] if x][0]
In the latest Python version (Python 3.8) there's a new assignment that may be useful for you, :=:
There is new syntax := that assigns values to variables as part of a larger expression. It is affectionately known as “walrus operator” due to its resemblance to the eyes and tusks of a walrus.
if (n := len(a)) > 10:
print(f"List is too long ({n} elements, expected <= 10)")
In this example, the assignment expression helps avoid calling len() twice:
We can in Python 3.8 with assignment expressions:
if (result := get_something()) is not None:
# do something with result
Although I don't fully understand the reasons for doing things this way (which is less clear than any of the others), here's an example using lambda:
>>> def get_something(flag): # Added the flag argument, to mimic different return values
... return 5 if flag else None
...
>>> answer = (lambda func, arg: func(arg) if arg else None)(int, get_something(True))
>>> answer
5
>>> answer = (lambda func, arg: func(arg) if arg else None)(int, get_something(False))
>>> answer
>>>

Why does [""] not behave as expected in recursion?

I am going through popular interview questions, and came up with the following solution to "Compute all permutations of a string."
def perm(s):
if len(s) == 0:
return ['']
else:
l = []
prev = perm(s[1:])
for old_str in prev:
for i in range(len(old_str)):
new_str = old_str[0:i] + s[0] + old_str[i:]
l.append(new_str)
return l
However, this solution returns [] on all input. If I make the string in the base case any string other than the empty string, the computation runs as expected. For example, with 'hi' in the base case, perm('abc') returns
['abchi', 'bachi', 'bcahi', 'bchai', 'acbhi', 'cabhi', 'cbahi', 'cbhai', 'achbi', 'cahbi', 'chabi', 'chbai', 'abhci', 'bahci', 'bhaci', 'bhcai', 'ahbci', 'habci', 'hbaci', 'hbcai', 'ahcbi', 'hacbi', 'hcabi', 'hcbai']
As far as I can tell the algorithm for this code is correct. I am unsure of why the empty string isn't behaving as I anticipate, while other strings do. I have referenced this thread for better solutions, but I am still puzzled by why this one doesn't work.
You should probably add a special case for len(s)==1.
As written, the recursion will go down to the base case with an empty string, and then prev will be []. The for loop that follows this will never run, because prev is empty, so the final result will be empty too.

Python idiom to return first item or None

I'm calling a bunch of methods that return a list. The list may be empty. If the list is non-empty, I want to return the first item; otherwise, I want to return None. This code works:
def main():
my_list = get_list()
if len(my_list) > 0:
return my_list[0]
return None
but it seems to me that there should be a simple one-line idiom for doing this. Is there?
Python 2.6+
next(iter(your_list), None)
If your_list can be None:
next(iter(your_list or []), None)
Python 2.4
def get_first(iterable, default=None):
if iterable:
for item in iterable:
return item
return default
Example:
x = get_first(get_first_list())
if x:
...
y = get_first(get_second_list())
if y:
...
Another option is to inline the above function:
for x in get_first_list() or []:
# process x
break # process at most one item
for y in get_second_list() or []:
# process y
break
To avoid break you could write:
for x in yield_first(get_first_list()):
x # process x
for y in yield_first(get_second_list()):
y # process y
Where:
def yield_first(iterable):
for item in iterable or []:
yield item
return
The best way is this:
a = get_list()
return a[0] if a else None
You could also do it in one line, but it's much harder for the programmer to read:
return (get_list()[:1] or [None])[0]
(get_list() or [None])[0]
That should work.
BTW I didn't use the variable list, because that overwrites the builtin list() function.
The most python idiomatic way is to use the next() on a iterator since list is iterable. just like what #J.F.Sebastian put in the comment on Dec 13, 2011.
next(iter(the_list), None) This returns None if the_list is empty. see next() Python 2.6+
or if you know for sure the_list is not empty:
iter(the_list).next() see iterator.next() Python 2.2+
If you find yourself trying to pluck the first thing (or None) from a list comprehension you can switch to a generator to do it like:
next((x for x in blah if cond), None)
Pro: works if blah isn't indexable Con: it's unfamiliar syntax. It's useful while hacking around and filtering stuff in ipython though.
The OP's solution is nearly there, there are just a few things to make it more Pythonic.
For one, there's no need to get the length of the list. Empty lists in Python evaluate to False in an if check. Just simply say
if list:
Additionally, it's a very Bad Idea to assign to variables that overlap with reserved words. "list" is a reserved word in Python.
So let's change that to
some_list = get_list()
if some_list:
A really important point that a lot of solutions here miss is that all Python functions/methods return None by default. Try the following below.
def does_nothing():
pass
foo = does_nothing()
print foo
Unless you need to return None to terminate a function early, it's unnecessary to explicitly return None. Quite succinctly, just return the first entry, should it exist.
some_list = get_list()
if some_list:
return list[0]
And finally, perhaps this was implied, but just to be explicit (because explicit is better than implicit), you should not have your function get the list from another function; just pass it in as a parameter. So, the final result would be
def get_first_item(some_list):
if some_list:
return list[0]
my_list = get_list()
first_item = get_first_item(my_list)
As I said, the OP was nearly there, and just a few touches give it the Python flavor you're looking for.
Python idiom to return first item or None?
The most Pythonic approach is what the most upvoted answer demonstrated, and it was the first thing to come to my mind when I read the question. Here's how to use it, first if the possibly empty list is passed into a function:
def get_first(l):
return l[0] if l else None
And if the list is returned from a get_list function:
l = get_list()
return l[0] if l else None
New in Python 3.8, Assignment Expressions
Assignment expressions use the in-place assignment operator (informally called the walrus operator), :=, new in Python 3.8, allows us to do the check and assignment in-place, allowing the one-liner:
return l[0] if (l := get_list()) else None
As a long-time Python user, this feels like we're trying to do too much on one line - I feel it would be better style to do the presumptively equally performant:
if l := get_list():
return l[0]
return None
In support of this formulation is Tim Peter's essay in the PEP proposing this change to the language. He didn't address the first formulation, but based on the other formulations he did like, I don't think he would mind.
Other ways demonstrated to do this here, with explanations
for
When I began trying to think of clever ways to do this, this is the second thing I thought of:
for item in get_list():
return item
This presumes the function ends here, implicitly returning None if get_list returns an empty list. The below explicit code is exactly equivalent:
for item in get_list():
return item
return None
if some_list
The following was also proposed (I corrected the incorrect variable name) which also uses the implicit None. This would be preferable to the above, as it uses the logical check instead of an iteration that may not happen. This should be easier to understand immediately what is happening. But if we're writing for readability and maintainability, we should also add the explicit return None at the end:
some_list = get_list()
if some_list:
return some_list[0]
slice or [None] and select zeroth index
This one is also in the most up-voted answer:
return (get_list()[:1] or [None])[0]
The slice is unnecessary, and creates an extra one-item list in memory. The following should be more performant. To explain, or returns the second element if the first is False in a boolean context, so if get_list returns an empty list, the expression contained in the parentheses will return a list with 'None', which will then be accessed by the 0 index:
return (get_list() or [None])[0]
The next one uses the fact that and returns the second item if the first is True in a boolean context, and since it references my_list twice, it is no better than the ternary expression (and technically not a one-liner):
my_list = get_list()
return (my_list and my_list[0]) or None
next
Then we have the following clever use of the builtin next and iter
return next(iter(get_list()), None)
To explain, iter returns an iterator with a .next method. (.__next__ in Python 3.) Then the builtin next calls that .next method, and if the iterator is exhausted, returns the default we give, None.
redundant ternary expression (a if b else c) and circling back
The below was proposed, but the inverse would be preferable, as logic is usually better understood in the positive instead of the negative. Since get_list is called twice, unless the result is memoized in some way, this would perform poorly:
return None if not get_list() else get_list()[0]
The better inverse:
return get_list()[0] if get_list() else None
Even better, use a local variable so that get_list is only called one time, and you have the recommended Pythonic solution first discussed:
l = get_list()
return l[0] if l else None
Regarding idioms, there is an itertools recipe called nth.
From itertools recipes:
def nth(iterable, n, default=None):
"Returns the nth item or a default value"
return next(islice(iterable, n, None), default)
If you want one-liners, consider installing a library that implements this recipe for you, e.g. more_itertools:
import more_itertools as mit
mit.nth([3, 2, 1], 0)
# 3
mit.nth([], 0) # default is `None`
# None
Another tool is available that only returns the first item, called more_itertools.first.
mit.first([3, 2, 1])
# 3
mit.first([], default=None)
# None
These itertools scale generically for any iterable, not only for lists.
for item in get_list():
return item
Frankly speaking, I do not think there is a better idiom: your is clear and terse - no need for anything "better". Maybe, but this is really a matter of taste, you could change if len(list) > 0: with if list: - an empty list will always evaluate to False.
On a related note, Python is not Perl (no pun intended!), you do not have to get the coolest code possible.
Actually, the worst code I have seen in Python, was also very cool :-) and completely unmaintainable.
By the way, most of the solution I have seen here do not take into consideration when list[0] evaluates to False (e.g. empty string, or zero) - in this case, they all return None and not the correct element.
my_list[0] if len(my_list) else None
Not sure how pythonic this is but until there is a first function in the library I include this in the source:
first = lambda l, default=None: next(iter(l or []), default)
It's just one line (conforms to black) and avoids dependencies.
Out of curiosity, I ran timings on two of the solutions. The solution which uses a return statement to prematurely end a for loop is slightly more costly on my machine with Python 2.5.1, I suspect this has to do with setting up the iterable.
import random
import timeit
def index_first_item(some_list):
if some_list:
return some_list[0]
def return_first_item(some_list):
for item in some_list:
return item
empty_lists = []
for i in range(10000):
empty_lists.append([])
assert empty_lists[0] is not empty_lists[1]
full_lists = []
for i in range(10000):
full_lists.append(list([random.random() for i in range(10)]))
mixed_lists = empty_lists[:50000] + full_lists[:50000]
random.shuffle(mixed_lists)
if __name__ == '__main__':
ENV = 'import firstitem'
test_data = ('empty_lists', 'full_lists', 'mixed_lists')
funcs = ('index_first_item', 'return_first_item')
for data in test_data:
print "%s:" % data
for func in funcs:
t = timeit.Timer('firstitem.%s(firstitem.%s)' % (
func, data), ENV)
times = t.repeat()
avg_time = sum(times) / len(times)
print " %s:" % func
for time in times:
print " %f seconds" % time
print " %f seconds avg." % avg_time
These are the timings I got:
empty_lists:
index_first_item:
0.748353 seconds
0.741086 seconds
0.741191 seconds
0.743543 seconds avg.
return_first_item:
0.785511 seconds
0.822178 seconds
0.782846 seconds
0.796845 seconds avg.
full_lists:
index_first_item:
0.762618 seconds
0.788040 seconds
0.786849 seconds
0.779169 seconds avg.
return_first_item:
0.802735 seconds
0.878706 seconds
0.808781 seconds
0.830074 seconds avg.
mixed_lists:
index_first_item:
0.791129 seconds
0.743526 seconds
0.744441 seconds
0.759699 seconds avg.
return_first_item:
0.784801 seconds
0.785146 seconds
0.840193 seconds
0.803380 seconds avg.
try:
return a[0]
except IndexError:
return None
def head(iterable):
try:
return iter(iterable).next()
except StopIteration:
return None
print head(xrange(42, 1000) # 42
print head([]) # None
BTW: I'd rework your general program flow into something like this:
lists = [
["first", "list"],
["second", "list"],
["third", "list"]
]
def do_something(element):
if not element:
return
else:
# do something
pass
for li in lists:
do_something(head(li))
(Avoiding repetition whenever possible)
Borrowing more_itertools.first_true code yields something decently readable:
def first_true(iterable, default=None, pred=None):
return next(filter(pred, iterable), default)
def get_first_non_default(items_list, default=None):
return first_true(items_list, default, pred=lambda x: x!=default)
Following code covers several scenarios by using lambda:
l1 = [1,2,3]
l2 = []
l3 = None
first_elem = lambda x: x[0] if x else None
print(first_elem(l1))
print(first_elem(l2))
print(first_elem(l3))
Using the and-or trick:
a = get_list()
return a and a[0] or None
Probably not the fastest solution, but nobody mentioned this option:
dict(enumerate(get_list())).get(0)
if get_list() can return None you can use:
dict(enumerate(get_list() or [])).get(0)
Advantages:
-one line
-you just call get_list() once
-easy to understand
My use case was only to set the value of a local variable.
Personally I found the try and except style cleaner to read
items = [10, 20]
try: first_item = items[0]
except IndexError: first_item = None
print first_item
than slicing a list.
items = [10, 20]
first_item = (items[:1] or [None, ])[0]
print first_item
How about this:
(my_list and my_list[0]) or None
Note: This should work fine for lists of objects but it might return incorrect answer in case of number or string list per the comments below.
You could use Extract Method. In other words extract that code into a method which you'd then call.
I wouldn't try to compress it much more, the one liners seem harder to read than the verbose version. And if you use Extract Method, it's a one liner ;)
Several people have suggested doing something like this:
list = get_list()
return list and list[0] or None
That works in many cases, but it will only work if list[0] is not equal to 0, False, or an empty string. If list[0] is 0, False, or an empty string, the method will incorrectly return None.
I've created this bug in my own code one too many times !
isn't the idiomatic python equivalent to C-style ternary operators
cond and true_expr or false_expr
ie.
list = get_list()
return list and list[0] or None
if mylist != []:
print(mylist[0])
else:
print(None)

Categories