I run the following code to animate a moving sphere, in which the coordinates are in a text file:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from matplotlib import cm
from matplotlib import animation
import pandas as pd
df = pd.read_csv('/path/to/text/file', sep=" ", header=None)
fig = plt.figure(facecolor='black')
ax = plt.axes(projection = "3d")
u = np.linspace(0, 2*np.pi, 100)
v = np.linspace(0, np.pi, 100)
r = 4
ax.set_xlim(0, 60)
ax.set_ylim(0, 60)
ax.set_zlim(0, 60)
x0 = r * np.outer(np.cos(u), np.sin(v)) + df[1][0]
y0 = r * np.outer(np.sin(u), np.sin(v)) + df[2][0]
z0 = r * np.outer(np.ones(np.size(u)), np.cos(v)) + df[3][0]
surface_color = "tab:blue"
def init():
ax.plot_trisurf(x0, y0, z0, linewidth=0, antialiased=False)
return fig,
def animate(i):
# remove previous collections
ax.collections.clear()
x = df[1][i]
y = df[2][i]
z = df[3][i]
# add the new sphere
ax.plot_trisurf(x, y, z, linewidth=0, antialiased=False)
return fig,
ani = animation. FuncAnimation(fig, animate, init_func = init, frames = 500, interval = 2)
plt.show()
I get the following error "ValueError: x and y must be equal-length 1D arrays" even though I'm sure the arrays are of equal size. How do I make them equal size and solve this error?
As a sample of whats in the file:
0.196812 19.992262 29.989437 30.040883 0.080273 39.999358 30.009271 30.052325
0.288626 19.998165 29.986778 30.083568 0.305931 39.993330 30.011351 30.126911
0.080401 20.012453 29.982994 30.138681 0.224338 39.986476 30.010048 30.204666
0.380893 20.017042 29.984149 30.196864 0.289713 39.984835 30.009015 30.285159
0.396571 20.009539 29.998625 30.259610 0.350441 39.993791 30.017738 30.361558
0.647959 20.012771 29.995641 30.328414 0.275493 39.992826 30.019380 30.433242
0.741711 20.000002 29.978545 30.397738 0.248958 39.992041 30.010427 30.508367
0.867323 19.991656 29.971294 30.464908 0.313612 39.999097 30.004667 30.591674
The text file is very large, around 20,000 lines.
If the surface you are about to plot has a parametric equation (such as a sphere), use the meshgrid approach (x, y, z must be 2D arrays) and call ax.plot_surface. Instead, you used 1D arrays and later called ax.plot_trisurf: this function is better suited when it's not easy to represent the surface with a meshgrid approach (which is not your case). Do not complicate your life: keep it simply!
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from matplotlib import cm
from matplotlib import animation
import pandas as pd
df = pd.read_csv('path/to/file', sep=" ", header=None)
fig = plt.figure(facecolor='black')
ax = plt.axes(projection = "3d")
u = np.linspace(0, 2*np.pi, 40)
v = np.linspace(0, np.pi, 20)
u, v = np.meshgrid(u, v)
r = 4
ax.set_xlim(0, 60)
ax.set_ylim(0, 60)
ax.set_zlim(0, 60)
x0 = r * np.outer(np.cos(u), np.sin(v)) + df[1][0]
y0 = r * np.outer(np.sin(u), np.sin(v)) + df[2][0]
z0 = r * np.outer(np.ones(np.size(u)), np.cos(v)) + df[3][0]
surface_color = "tab:blue"
def init():
ax.plot_surface(x0, y0, z0, color=surface_color)
return fig,
def animate(i):
# remove previous collections
ax.collections.clear()
x = df[1][i]
y = df[2][i]
z = df[3][i]
# add the new sphere
ax.plot_surface(x0 + x, y0 + y, z0 + z, color=surface_color)
return fig,
ani = animation. FuncAnimation(fig, animate, init_func = init, frames = 500, interval = 2)
plt.show()
Related
I have 4 arrays x, y, z and T of length n and I want to plot a 3D curve using matplotlib. The (x, y, z) are the points positions and T is the value of each point (which is plotted as color), like the temperature of each point. How can I do it?
Example code:
import numpy as np
from matplotlib import pyplot as plt
fig = plt.figure()
ax = fig.gca(projection='3d')
n = 100
cmap = plt.get_cmap("bwr")
theta = np.linspace(-4 * np.pi, 4 * np.pi, n)
z = np.linspace(-2, 2, n)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
T = (2*np.random.rand(n) - 1) # All the values are in [-1, 1]
What I found over the internet:
It's possible to use cmap with scatter like shown in the docs and in this stackoverflow question
ax = plt.gca()
ax.scatter(x, y, z, cmap=cmap, c=T)
The problem is that scatter is a set of points, not a curve.
In this stackoverflow question the solution was divide in n-1 intervals and each interval we use a different color like
t = (T - np.min(T))/(np.max(T)-np.min(T)) # Normalize
for i in range(n-1):
plt.plot(x[i:i+2], y[i:i+2], z[i:i+2], c=cmap(t[i])
The problem is that each segment has only one color, but it should be an gradient. The last value is not even used.
Useful links:
Matplotlib - Colormaps
Matplotlib - Tutorial 3D
This is a case where you probably need to use Line3DCollection. This is the recipe:
create segments from your array of coordinates.
create a Line3DCollection object.
add that collection to the axis.
set the axis limits.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Line3DCollection
from matplotlib.cm import ScalarMappable
from matplotlib.colors import Normalize
def get_segments(x, y, z):
"""Convert lists of coordinates to a list of segments to be used
with Matplotlib's Line3DCollection.
"""
points = np.ma.array((x, y, z)).T.reshape(-1, 1, 3)
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
n = 100
cmap = plt.get_cmap("bwr")
theta = np.linspace(-4 * np.pi, 4 * np.pi, n)
z = np.linspace(-2, 2, n)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
T = np.cos(theta)
segments = get_segments(x, y, z)
c = Line3DCollection(segments, cmap=cmap, array=T)
ax.add_collection(c)
fig.colorbar(c)
ax.set_xlim(x.min(), x.max())
ax.set_ylim(y.min(), y.max())
ax.set_zlim(z.min(), z.max())
plt.show()
I want to create an animation of a moving sphere in matplotlib. For some reason it isnt working:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from matplotlib import cm
from matplotlib import animation
import pandas as pd
fig = plt.figure(facecolor='black')
ax = plt.axes(projection = "3d")
u = np.linspace(0, 2*np.pi, 100)
v = np.linspace(0, np.pi, 100)
r = 4
ax.set_xlim(0, 60)
ax.set_ylim(0, 60)
ax.set_zlim(0, 60)
x0 = r * np.outer(np.cos(u), np.sin(v)) + 10
y0 = r * np.outer(np.sin(u), np.sin(v)) + 10
z0 = r * np.outer(np.ones(np.size(u)), np.cos(v)) + 50
def init():
ax.plot_surface(x0,y0,z0)
return fig,
def animate(i):
ax.plot_surface(x0 + 1, y0 + 1, z0 + 1)
return fig,
ani = animation. FuncAnimation(fig, animate, init_func = init, frames = 90, interval = 300)
plt.show()
Here, I have attempted to move the sphere by (1,1,1) in each new iteration, but it fails to do so.
There are a couple of mistakes with your approach:
In your animate function you are adding a sphere at each iteration. Unfortunately, Poly3DCollection objects (created by ax.plot_surface) cannot be modified after they have been created, hence to animate a surface we need to remove the surface of the previous iteration and add a new one.
In your animation the sphere didn't move because at each iteration you were adding a new sphere at the same location as the previous one.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from matplotlib import cm
from matplotlib import animation
import pandas as pd
fig = plt.figure(facecolor='black')
ax = plt.axes(projection = "3d")
u = np.linspace(0, 2*np.pi, 100)
v = np.linspace(0, np.pi, 100)
r = 4
ax.set_xlim(0, 60)
ax.set_ylim(0, 60)
ax.set_zlim(0, 60)
x0 = r * np.outer(np.cos(u), np.sin(v)) + 10
y0 = r * np.outer(np.sin(u), np.sin(v)) + 10
z0 = r * np.outer(np.ones(np.size(u)), np.cos(v)) + 50
surface_color = "tab:blue"
def init():
ax.plot_surface(x0, y0, z0, color=surface_color)
return fig,
def animate(i):
# remove previous collections
ax.collections.clear()
# add the new sphere
ax.plot_surface(x0 + i, y0 + i, z0 + i, color=surface_color)
return fig,
ani = animation. FuncAnimation(fig, animate, init_func = init, frames = 90, interval = 300)
plt.show()
I am trying to plot the following function on a unit sphere, the points should be on the sphere and fill up the whole sphere however some of the points are falling off. Any suggestions why? I believe it is because the sphere is not spanning 1,1,1 3D grid but I am not sure how to edit my code to fix this.
from itertools import product, combinations
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
def d(kx,ky):
M = 1
B = 1
vf = 1
kxx,kyy = np.meshgrid(kx,ky)
x = (vf*kxx)/(np.sqrt(((((vf**2)*(kxx**2)))+((vf**2)*(kyy**2))+(M-B*(kxx**2+(kyy**2)))**2)))
y = (vf*kxx)/(np.sqrt(((((vf**2)*(kxx**2)))+((vf**2)*(kyy**2))+(M-B*(kxx**2+(kyy**2)))**2)))
z = (M-B*(kxx**2+(kyy**2)))/(np.sqrt(((((vf**2)*(kxx**2)))+((vf**2)*(kyy**2))+(M-B*(kxx**2+(kyy**2)))**2)))
return x,y,z
kx = np.linspace(-2, 2, 10)
ky = np.linspace(-2, 2, 10)
xi, yi, zi = d(kx,ky)
phi = np.linspace(0, np.pi, 100)
theta = np.linspace(0, 2*np.pi, 100)
phi, theta = np.meshgrid(phi, theta)
x = np.sin(phi) * np.cos(theta)
y = np.sin(phi) * np.sin(theta)
z = np.cos(phi)
fig = plt.figure(figsize=plt.figaspect(1.))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(x, y, z, color="w", rstride=1, cstride=1)
ax.scatter(xi,yi,zi,color="k",s=20)
plt.show()
Thank you kindly,
I'm looking for help to draw a 3D cone using matplotlib.
My goal is to draw a HSL cone, then base on the vertex coordinats i will select the color.
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
theta1 = np.linspace(0, 2*np.pi, 100)
r1 = np.linspace(-2, 0, 100)
t1, R1 = np.meshgrid(theta1, r1)
X1 = R1*np.cos(t1)
Y1 = R1*np.sin(t1)
Z1 = 5+R1*2.5
theta2 = np.linspace(0, 2*np.pi, 100)
r2 = np.linspace(0, 2, 100)
t2, R2 = np.meshgrid(theta2, r2)
X2 = R2*np.cos(t2)
Y2 = R2*np.sin(t2)
Z2 = -5+R2*2.5
ax.set_xlabel('x axis')
ax.set_ylabel('y axis')
ax.set_zlabel('z axis')
# ax.set_xlim(-2.5, 2.5)
# ax.set_ylim(-2.5, 2.5)
# ax.set_zlim(0, 5)
ax.set_aspect('equal')
ax.plot_surface(X1, Y1, Z1, alpha=0.8, color="blue")
ax.plot_surface(X2, Y2, Z2, alpha=0.8, color="blue")
# ax.plot_surface(X, Y, Z, alpha=0.8)
#fig. savefig ("Cone.png", dpi=100, transparent = False)
plt.show()
HSL CONE
My cone
So my question now is how to define color of each element.
i have found a solution, maybe it will be usefull for others.
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
import colorsys
from matplotlib.tri import Triangulation
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
n_angles = 80
n_radii = 20
# An array of radii
# Does not include radius r=0, this is to eliminate duplicate points
radii = np.linspace(0.0, 0.5, n_radii)
# An array of angles
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
# Repeat all angles for each radius
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
# Convert polar (radii, angles) coords to cartesian (x, y) coords
# (0, 0) is added here. There are no duplicate points in the (x, y) plane
x = np.append(0, (radii*np.cos(angles)).flatten())
y = np.append(0, (radii*np.sin(angles)).flatten())
# Pringle surface
z = 1+-np.sqrt(x**2+y**2)*2
print(x.shape, y.shape, angles.shape, radii.shape, z.shape)
# NOTE: This assumes that there is a nice projection of the surface into the x/y-plane!
tri = Triangulation(x, y)
triangle_vertices = np.array([np.array([[x[T[0]], y[T[0]], z[T[0]]],
[x[T[1]], y[T[1]], z[T[1]]],
[x[T[2]], y[T[2]], z[T[2]]]]) for T in tri.triangles])
x2 = np.append(0, (radii*np.cos(angles)).flatten())
y2 = np.append(0, (radii*np.sin(angles)).flatten())
# Pringle surface
z2 = -1+np.sqrt(x**2+y**2)*2
# NOTE: This assumes that there is a nice projection of the surface into the x/y-plane!
tri2 = Triangulation(x2, y2)
triangle_vertices2 = np.array([np.array([[x2[T[0]], y2[T[0]], z2[T[0]]],
[x2[T[1]], y2[T[1]], z2[T[1]]],
[x2[T[2]], y2[T[2]], z2[T[2]]]]) for T in tri2.triangles])
triangle_vertices = np.concatenate([triangle_vertices, triangle_vertices2])
midpoints = np.average(triangle_vertices, axis=1)
def find_color_for_point(pt):
c_x, c_y, c_z = pt
angle = np.arctan2(c_x, c_y)*180/np.pi
if (angle < 0):
angle = angle + 360
if c_z < 0:
l = 0.5 - abs(c_z)/2
#l=0
if c_z == 0:
l = 0.5
if c_z > 0:
l = (1 - (1-c_z)/2)
if c_z > 0.97:
l = (1 - (1-c_z)/2)
col = colorsys.hls_to_rgb(angle/360, l, 1)
return col
facecolors = [find_color_for_point(pt) for pt in midpoints] # smooth gradient
# facecolors = [np.random.random(3) for pt in midpoints] # random colors
coll = Poly3DCollection(
triangle_vertices, facecolors=facecolors, edgecolors=None)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.add_collection(coll)
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.set_zlim(-1, 1)
ax.elev = 50
plt.show()
Inspired from Jake Vanderplas with Python Data Science Handbook, when you are drawing some 3-D plot whose base is a circle, it is likely that you would try:
# Actually not sure about the math here though:
u, v = np.mgrid[0:2*np.pi:100j, 0:np.pi:20j]
x = np.cos(u)*np.sin(v)
y = np.sin(u)*np.sin(v)
and then think about the z-axis. Since viewing from the z-axis the cone is just a circle, so the relationships between z and x and y is clear, which is simply: z = np.sqrt(x ** 2 + y ** 2). Then you can draw the cone based on the codes below:
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
def f(x, y):
return np.sqrt(x ** 2 + y ** 2)
fig = plt.figure()
ax = plt.axes(projection='3d')
# Can manipulate with 100j and 80j values to make your cone looks different
u, v = np.mgrid[0:2*np.pi:100j, 0:np.pi:80j]
x = np.cos(u)*np.sin(v)
y = np.sin(u)*np.sin(v)
z = f(x, y)
ax.plot_surface(x, y, z, cmap=cm.coolwarm)
# Some other effects you may want to try based on your needs:
# ax.plot_surface(x, y, -z, cmap=cm.coolwarm)
# ax.scatter3D(x, y, z, color="b")
# ax.plot_wireframe(x, y, z, color="b")
# ax.plot_wireframe(x, y, -z, color="r")
# Can set your view from different angles.
ax.view_init(azim=15, elev=15)
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
plt.show()
ax.set_ylabel("y")
ax.set_zlabel("z")
plt.show()
And from my side, the cone looks like:
and hope it helps.
I am having problems with matplotlibs 3dplot. If I plot two 3d objects, the one that is supposed to be in front is sometimes in the back. Take for example the following code
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as pl
import numpy as np
fig = pl.figure()
ax = fig.add_subplot(111, projection='3d')
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
X = 10 * np.outer(np.cos(u), np.sin(v))
Y = 10 * np.outer(np.sin(u), np.sin(v))
Z = 10 * np.outer(np.ones(np.size(u)), np.cos(v))
ax.plot_surface(X+10,Y,Z, rstride=4, cstride=4, color='b')
u=np.linspace(-2,2,100)
X = 10 * np.outer(np.ones(len(u)), u)
Y = 10 * np.outer(u, np.ones(len(u)))
Z = 10 * np.zeros((len(u), len(u)))
ax.plot_surface(Z,X,Y, rstride=4, cstride=4, color='b')
pl.show()
It is supposed to plot a plane, with a sphere in from of it, but the sphere appears to be behind the plane.