webscraping stars from imdb page using beautifulsoup - python

I am trying to get the name of stars from an IMDb page. below is my code
from requests import get
url = 'https://www.imdb.com/search/title/?title_type=tv_movie,tv_series&user_rating=6.0,10.0&adult=include&ref_=adv_prv'
response = get(url)
from bs4 import BeautifulSoup
html_soup = BeautifulSoup(response.text, 'html.parser')
movie_containers = html_soup.find_all('div', 'lister-item mode-advanced')
first_movie = movie_containers[0]
first_stars = first_movie.select('a[href*="name"]')
first_stars
I got the following output
[Bob Odenkirk,
Rhea Seehorn,
Jonathan Banks,
Michael Mando]
i am trying to get only the names of the stars and first_stars.text gives the following error
AttributeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_3104\1297903165.py in <module>
1 first_stars = first_movie.select('a[href*="name"]')
----> 2 first_stars.text
~\Anaconda3\lib\site-packages\bs4\element.py in __getattr__(self, key)
2288 """Raise a helpful exception to explain a common code fix."""
2289 raise AttributeError(
-> 2290 "ResultSet object has no attribute '%s'. You're probably treating a list of elements like a single element. Did you call find_all() when you meant to call find()?" % key
2291 )
AttributeError: ResultSet object has no attribute 'text'. You're probably treating a list of elements like a single element. Did you call find_all() when you meant to call find()?
when i tried
first_stars = first_movie.find('a[href*="name"]')
first_stars.text
i also got the following error
AttributeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_3104\2359725208.py in <module>
1 first_stars = first_movie.find('a[href*="name"]')
----> 2 first_stars.text
AttributeError: 'NoneType' object has no attribute 'text'
Any idea how i can extract only the name of the stars?

If you need the star name without distinction this might help.
block = soup.find_all("div", attrs={"class":"lister-item mode-advanced"})
starList= list()
for star in block:
starList.append(star.find("p", attrs={"class":""}).text.replace("Stars:", "").replace("\n", "").strip())
print(starList)
It prints
['Bob Odenkirk, Rhea Seehorn, Jonathan Banks, Michael Mando', 'Jason Bateman, Laura Linney, Sofia Hublitz, Skylar Gaertner', 'Gia Sandhu, Anson Mount, Ethan Peck, Jess Bush', 'Josh Brolin, Imogen Poots, Lili Taylor, Tom Pelphrey', 'Pablo Schreiber, Shabana Azmi, Natasha Culzac, Olive Gray', 'Titus Welliver, Mimi Rogers, Madison Lintz, Stephen A. Chang', 'Rachel Griffiths, Sophia Ali, Shannon Berry, Jenna Clause', 'Adam Scott, Zach Cherry, Britt Lower, Tramell Tillman', 'Milo Ventimiglia, Mandy Moore, Sterling K. Brown, Chrissy Metz', 'Emilia Clarke, Peter Dinklage, Kit Harington, Lena Headey', 'Bryan Cranston, Aaron Paul, Anna Gunn, Betsy Brandt', 'Millie Bobby Brown, Finn Wolfhard, Winona Ryder, David Harbour', 'Joe Locke, Kit Connor, Yasmin Finney, William Gao', 'John C. Reilly, Quincy Isaiah, Jason Clarke, Gaby Hoffmann', 'Bill Hader, Stephen Root, Sarah Goldberg, Anthony Carrigan', 'Kaley Cuoco, Zosia Mamet, Griffin Matthews, Rosie Perez', 'Caitríona Balfe, Sam Heughan, Sophie Skelton, Richard Rankin', 'Evan Rachel Wood, Jeffrey Wright, Ed Harris, Thandiwe Newton', 'Patrick Stewart, Alison Pill, Michelle Hurd, Santiago Cabrera', 'Nicola Coughlan, Jonathan Bailey, Ruth Gemmell, Florence Hunt', 'Andrew Lincoln, Norman Reedus, Melissa McBride, Lauren Cohan', 'Cillian Murphy, Paul Anderson, Sophie Rundle, Helen McCrory', 'Manuel Garcia-Rulfo, Becki Newton, Neve Campbell, Christopher Gorham', 'Jane Fonda, Lily Tomlin, Sam Waterston, Martin Sheen', 'Ellen Pompeo, Chandra Wilson, James Pickens Jr., Justin Chambers', 'Alexander Dreymon, Eliza Butterworth, Arnas Fedaravicius, Mark Rowley', 'Luke Grimes, Kelly Reilly, Wes Bentley, Cole Hauser', 'Elisabeth Moss, Wagner Moura, Phillipa Soo, Chris Chalk', "Scott Whyte, Nolan North, Steven Pacey, Emily O'Brien", 'Steve Carell, Jenna Fischer, John Krasinski, Rainn Wilson', 'Jodie Whittaker, Peter Capaldi, Pearl Mackie, Matt Smith', 'Ansel
Elgort, Ken Watanabe, Rachel Keller, Shô Kasamatsu', 'James Spader, Megan Boone, Diego Klattenhoff, Ryan Eggold', 'Mark Harmon, David McCallum, Sean Murray, Pauley Perrette', 'Zendaya, Hunter Schafer, Angus Cloud, Jacob Elordi', 'Niv Sultan, Shaun Toub, Shervin Alenabi, Arash Marandi', 'Asa Butterfield, Gillian Anderson, Emma Mackey, Ncuti Gatwa', 'Jack Lowden, Kristin Scott Thomas, Gary Oldman, Chris Reilly', 'Karl Urban, Jack Quaid, Antony Starr, Erin Moriarty', 'Mariska Hargitay, Christopher Meloni, Ice-T, Dann Florek', "Nathan Fillion, Alyssa Diaz, Richard T. Jones, Melissa O'Neil", "Saoirse-Monica Jackson, Louisa Harland, Tara Lynne O'Neill, Kathy Kiera Clarke", 'Donald Glover, Brian Tyree Henry, LaKeith Stanfield, Zazie Beetz', 'Jennifer Aniston, Courteney Cox, Lisa Kudrow, Matt LeBlanc', 'Jared Padalecki, Jensen Ackles, Jim Beaver, Misha Collins', 'Julia Roberts, Sean Penn, Dan Stevens, Betty Gilpin', 'James Gandolfini, Lorraine Bracco, Edie Falco, Michael Imperioli', 'Natasha Lyonne, Charlie Barnett, Greta Lee, Elizabeth Ashley', 'Jean Smart, Hannah Einbinder, Carl Clemons-Hopkins, Rose Abdoo', 'Katheryn Winnick, Gustaf Skarsgård, Alexander Ludwig, Georgia Hirst']
or if you need both title and its stars
block = soup.find_all("div", attrs={"class":"lister-item mode-advanced"})
starList= list()
movieDict = dict()
for star in block:
movieDict = {
"moviename":star.find("h3", attrs={"class":"lister-item-header"}).text.split("\n")[2],
"stars": star.find("p", attrs={"class":""}).text.replace("Stars:", "").replace("\n", "").strip()
}
starList.append(movieDict)
print(starList)
this will print
[{'moviename': 'Better Call Saul', 'stars': 'Bob Odenkirk, Rhea Seehorn, Jonathan Banks, Michael
Mando'}, {'moviename': 'Ozark', 'stars': 'Jason Bateman, Laura Linney, Sofia Hublitz, Skylar Gaertner'}, {'moviename': 'Star Trek: Strange New Worlds', 'stars': 'Gia Sandhu, Anson Mount, Ethan Peck, Jess Bush'}, {'moviename': 'Outer Range', 'stars': 'Josh Brolin, Imogen Poots, Lili Taylor,
Tom Pelphrey'}, {'moviename': 'Halo', 'stars': 'Pablo Schreiber, Shabana Azmi, Natasha Culzac, Olive Gray'}, {'moviename': 'Bosch: Legacy', 'stars': 'Titus Welliver, Mimi Rogers, Madison Lintz,
Stephen A. Chang'}, {'moviename': 'The Wilds', 'stars': 'Rachel Griffiths, Sophia Ali, Shannon Berry, Jenna Clause'}, {'moviename': 'Severance', 'stars': 'Adam Scott, Zach Cherry, Britt Lower, Tramell Tillman'}, {'moviename': 'This Is Us', 'stars': 'Milo Ventimiglia, Mandy Moore, Sterling K. Brown, Chrissy Metz'}, {'moviename': 'Game of Thrones', 'stars': 'Emilia Clarke, Peter Dinklage, Kit Harington, Lena Headey'}, {'moviename': 'Breaking Bad', 'stars': 'Bryan Cranston, Aaron Paul, Anna Gunn, Betsy Brandt'}, {'moviename': 'Stranger Things', 'stars': 'Millie Bobby Brown, Finn Wolfhard, Winona Ryder, David Harbour'}, {'moviename': 'Heartstopper', 'stars': 'Joe Locke, Kit
Connor, Yasmin Finney, William Gao'}, {'moviename': 'Winning Time: The Rise of the Lakers Dynasty', 'stars': 'John C. Reilly, Quincy Isaiah, Jason Clarke, Gaby Hoffmann'}, {'moviename': 'Barry', 'stars': 'Bill Hader, Stephen Root, Sarah Goldberg, Anthony Carrigan'}, {'moviename': 'The Flight Attendant', 'stars': 'Kaley Cuoco, Zosia Mamet, Griffin Matthews, Rosie Perez'}, {'moviename':
'Outlander', 'stars': 'Caitríona Balfe, Sam Heughan, Sophie Skelton, Richard Rankin'}, {'moviename': 'Westworld', 'stars': 'Evan Rachel Wood, Jeffrey Wright, Ed Harris, Thandiwe Newton'}, {'moviename': 'Star Trek: Picard', 'stars': 'Patrick Stewart, Alison Pill, Michelle Hurd, Santiago Cabrera'}, {'moviename': 'Bridgerton', 'stars': 'Nicola Coughlan, Jonathan Bailey, Ruth Gemmell, Florence Hunt'}, {'moviename': 'The Walking Dead', 'stars': 'Andrew Lincoln, Norman Reedus, Melissa McBride, Lauren Cohan'}, {'moviename': 'Peaky Blinders', 'stars': 'Cillian Murphy, Paul Anderson,
Sophie Rundle, Helen McCrory'}, {'moviename': 'The Lincoln Lawyer', 'stars': 'Manuel Garcia-Rulfo, Becki Newton, Neve Campbell, Christopher Gorham'}, {'moviename': 'Grace and Frankie', 'stars':
'Jane Fonda, Lily Tomlin, Sam Waterston, Martin Sheen'}, {'moviename': "Grey's Anatomy", 'stars': 'Ellen Pompeo, Chandra Wilson, James Pickens Jr., Justin Chambers'}, {'moviename': 'The Last Kingdom', 'stars': 'Alexander Dreymon, Eliza Butterworth, Arnas Fedaravicius, Mark Rowley'}, {'moviename': 'Yellowstone', 'stars': 'Luke Grimes, Kelly Reilly, Wes Bentley, Cole Hauser'}, {'moviename': 'Shining Girls', 'stars': 'Elisabeth Moss, Wagner Moura, Phillipa Soo, Chris Chalk'}, {'moviename': 'Love, Death & Robots', 'stars': "Scott Whyte, Nolan North, Steven Pacey, Emily O'Brien"}, {'moviename': 'The Office', 'stars': 'Steve Carell, Jenna Fischer, John Krasinski, Rainn Wilson'}, {'moviename': 'Doctor Who', 'stars': 'Jodie Whittaker, Peter Capaldi, Pearl Mackie, Matt Smith'}, {'moviename': 'Tokyo Vice', 'stars': 'Ansel Elgort, Ken Watanabe, Rachel Keller, Shô Kasamatsu'}, {'moviename': 'The Blacklist', 'stars': 'James Spader, Megan Boone, Diego Klattenhoff, Ryan
Eggold'}, {'moviename': 'NCIS: Naval Criminal Investigative Service', 'stars': 'Mark Harmon, David McCallum, Sean Murray, Pauley Perrette'}, {'moviename': 'Euphoria', 'stars': 'Zendaya, Hunter Schafer, Angus Cloud, Jacob Elordi'}, {'moviename': 'Tehran', 'stars': 'Niv Sultan, Shaun Toub, Shervin Alenabi, Arash Marandi'}, {'moviename': 'Sex Education', 'stars': 'Asa Butterfield, Gillian Anderson, Emma Mackey, Ncuti Gatwa'}, {'moviename': 'Slow Horses', 'stars': 'Jack Lowden, Kristin Scott Thomas, Gary Oldman, Chris Reilly'}, {'moviename': 'The Boys', 'stars': 'Karl Urban, Jack Quaid, Antony Starr, Erin Moriarty'}, {'moviename': 'Law & Order: Special Victims Unit', 'stars': 'Mariska Hargitay, Christopher Meloni, Ice-T, Dann Florek'}, {'moviename': 'The Rookie', 'stars': "Nathan Fillion, Alyssa Diaz, Richard T. Jones, Melissa O'Neil"}, {'moviename': 'Derry Girls', 'stars': "Saoirse-Monica Jackson, Louisa Harland, Tara Lynne O'Neill, Kathy Kiera Clarke"}, {'moviename': 'Atlanta', 'stars': 'Donald Glover, Brian Tyree Henry, LaKeith Stanfield, Zazie Beetz'}, {'moviename': 'Friends', 'stars': 'Jennifer Aniston, Courteney Cox, Lisa Kudrow, Matt LeBlanc'}, {'moviename': 'Supernatural', 'stars': 'Jared Padalecki, Jensen Ackles, Jim Beaver, Misha Collins'}, {'moviename': 'Gaslit', 'stars': 'Julia Roberts, Sean Penn, Dan Stevens, Betty Gilpin'}, {'moviename': 'The Sopranos', 'stars': 'James Gandolfini, Lorraine Bracco, Edie Falco, Michael Imperioli'}, {'moviename': 'Russian Doll', 'stars': 'Natasha Lyonne, Charlie Barnett, Greta Lee, Elizabeth Ashley'}, {'moviename': 'Hacks', 'stars': 'Jean Smart, Hannah Einbinder, Carl Clemons-Hopkins, Rose Abdoo'}, {'moviename': 'Vikings', 'stars': 'Katheryn Winnick, Gustaf Skarsgård, Alexander Ludwig, Georgia Hirst'}]

You have to iterate the ResultSet:
first_stars = [s.text for s in first_movie.select('a[href*="name"]')]
first_stars
Output:
['Bob Odenkirk', 'Rhea Seehorn', 'Jonathan Banks', 'Michael Mando']

Related

cleaning up web scrape data and combining together?

The website URL is https://www.justia.com/lawyers/criminal-law/maine
I'm wanting to scrape only the name of the lawyer and where their office is.
response = requests.get(url)
soup= BeautifulSoup(response.text,"html.parser")
Lawyer_name= soup.find_all("a","url main-profile-link")
for i in Lawyer_name:
print(i.find(text=True))
address= soup.find_all("span","-address -hide-landscape-tablet")
for x in address:
print(x.find_all(text=True))
The name prints out just find but the address is printing off with extra that I want to remove:
['\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t88 Hammond Street', '\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tBangor,\t\t\t\t\tME 04401\t\t\t\t\t\t ']
so the output I'm attempting to get for each lawyer is like this (the 1st one example):
Hunter J Tzovarras
88 Hammond Street
Bangor, ME 04401
two issues I'm trying to figure out
How can I clean up the address so it is easier to read?
How can I save the matching lawyer name with the address so they
don't get mixed up.
Use x.get_text() instead of x.find_all
for x in address:
print(x.get_text(strip=True))
Full working code:
import pandas as pd
import requests
from bs4 import BeautifulSoup
url = 'https://www.justia.com/lawyers/criminal-law/maine'
response = requests.get(url)
soup= BeautifulSoup(response.text,"html.parser")
n=[]
ad=[]
Lawyer_name= [x.get('title').strip() for x in soup.select('a.lawyer-avatar')]
n.extend(Lawyer_name)
#print(Lawyer_name)
address= [x.get_text(strip=True).replace('\t','').strip() for x in soup.find_all("span",class_="-address -hide-landscape-tablet")]
#print(address)
ad.extend(address)
df = pd.DataFrame(data=list(zip(n,ad)),columns=[['Lawyer_name','address']])
print(df)
Output:
Lawyer_name address
0 William T. Bly Esq 119 Main StreetKennebunk,ME 04043
1 John S. Webb 949 Main StreetSanford,ME 04073
2 William T. Bly Esq 20 Oak StreetEllsworth,ME 04605
3 Christopher Causey Esq 16 Middle StSaco,ME 04072
4 Robert Van Horn 88 Hammond StreetBangor,ME 04401
5 John S. Webb 37 Western Ave., Unit #307Kennebunk,ME 04043
6 Hunter J Tzovarras 4 Union Park RoadTopsham,ME 04086
7 Michael Stephen Bowser Jr. 241 Main StreetP.O. Box 57Saco,ME 04072
8 Richard Regan 6 City CenterSuite 301Portland,ME 04101
9 Robert Guillory Esq 75 Pearl St. Suite 400Portland,ME 04101
10 Dylan R. Boyd 160 Capitol StreetP.O. Box 79Augusta,ME 04332
11 Luke Rioux Esq 10 Stoney Brook LaneLyman,ME 04002
12 David G. Webbert 15 Columbia Street, Ste. 301Bangor,ME 04401
13 Amy Fairfield 32 Saco AveOld Orchard Beach,ME 04064
14 Mr. Richard Lyman Hartley 62 Portland Rd., Ste. 44Kennebunk,ME 04043
15 Neal L Weinstein Esq 647 U.S. Route One#203York,ME 03909
16 Albert Hansen 76 Tandberg Trail (Route 115)Windham,ME 04062
17 Russell Goldsmith Esq Two Canal PlazaPO Box 4600Portland,ME 04112
18 Miklos Pongratz Esq 18 Market Square Suite 5Houlton,ME 04730
19 Bradford Pattershall Esq 5 Island View DrCumberland Foreside,ME 04110
20 Michele D L Kenney 12 Silver StreetP.O. Box 559Waterville,ME 04903
21 John Simpson 344 Mount Hope Ave.Bangor,ME 04402
22 Mariah America Gleaton 192 Main StreetEllsworth,ME 04605
23 Wayne Foote Esq 85 Brackett StreetPortland,ME 04102
24 Will Ashe 16 Union StreetBrunswick,ME 04011
25 Peter J Cyr Esq 482 Congress Street Suite 402Portland,ME 04101
26 Jonathan Steven Handelman Esq PO Box 335York,ME 03909
27 Richard Smith Berne 36 Ossipee Trl W.Standish,ME 04084
28 Meredith G. Schmid 75 Pearl St.Suite 216Portland,ME 04101
29 Gregory LeClerc 28 Long Sands Road, Suite 5York,ME 03909
30 Cory McKenna 20 Mechanic StCamden,ME 04843
31 Thomas P. Elias P.O. Box 1049304 Hancock St. Suite 1KBangor,ME...
32 Christopher MacLean 1250 Forest Avenue, Ste 3APortland,ME 04103
33 Zachary J. Smith 415 Congress StreetSuite 202Portland,ME 04101
34 Stephen Sweatt 919 Ridge RoadP.O. BOX 119Bowdoinham,ME 04008
35 Michael Turndorf Esq 1250 Forest Avenue, Ste 3APortland,ME 04103
36 Andrews Bruce Campbell Esq 133 State StreetAugusta,ME 04330
37 Timothy Zerillo 110 Portland StreetFryeburg,ME 04037
38 Walter McKee Esq 440 Walnut Hill RdNorth Yarmouth,ME 04097
39 Shelley Carter 70 State StreetEllsworth,ME 04605
for your second query You can save them into a dictionary like this -
url = 'https://www.justia.com/lawyers/criminal-law/maine'
response = requests.get(url)
soup= BeautifulSoup(response.text,"html.parser")
# parse all names and save them in a list
lawyer_names = soup.find_all("a","url main-profile-link")
lawyer_names = [name.find(text=True).strip() for name in lawyer_names]
# parse all addresses and save them in a list
lawyer_addresses = soup.find_all("span","-address -hide-landscape-tablet")
lawyer_addresses = [re.sub('\s+',' ', address.get_text(strip=True)) for address in lawyer_addresses]
# map names with addresses
lawyer_dict = dict(zip(lawyer_names, lawyer_addresses))
print(lawyer_dict)
Output dictionary -
{'Albert Hansen': '62 Portland Rd., Ste. 44Kennebunk, ME 04043',
'Amber Lynn Tucker': '415 Congress St., Ste. 202P.O. Box 7542Portland, ME 04112',
'Amy Fairfield': '10 Stoney Brook LaneLyman, ME 04002',
'Andrews Bruce Campbell Esq': '919 Ridge RoadP.O. BOX 119Bowdoinham, ME 04008',
'Bradford Pattershall Esq': 'Two Canal PlazaPO Box 4600Portland, ME 04112',
'Christopher Causey Esq': '949 Main StreetSanford, ME 04073',
'Cory McKenna': '75 Pearl St.Suite 216Portland, ME 04101',
'David G. Webbert': '160 Capitol StreetP.O. Box 79Augusta, ME 04332',
'David Nelson Wood Esq': '120 Main StreetSuite 110Saco, ME 04072',
'Dylan R. Boyd': '6 City CenterSuite 301Portland, ME 04101',
'Gregory LeClerc': '36 Ossipee Trl W.Standish, ME 04084',
'Hunter J Tzovarras': '88 Hammond StreetBangor, ME 04401',
'John S. Webb': '16 Middle StSaco, ME 04072',
'John Simpson': '5 Island View DrCumberland Foreside, ME 04110',
'Jonathan Steven Handelman Esq': '16 Union StreetBrunswick, ME 04011',
'Luke Rioux Esq': '75 Pearl St. Suite 400Portland, ME 04101',
'Mariah America Gleaton': '12 Silver StreetP.O. Box 559Waterville, ME 04903',
'Meredith G. Schmid': 'PO Box 335York, ME 03909',
'Michael Stephen Bowser Jr.': '37 Western Ave., Unit #307Kennebunk, ME 04043',
'Michael Turndorf Esq': '415 Congress StreetSuite 202Portland, ME 04101',
'Michele D L Kenney': '18 Market Square Suite 5Houlton, ME 04730',
'Miklos Pongratz Esq': '76 Tandberg Trail (Route 115)Windham, ME 04062',
'Mr. Richard Lyman Hartley': '15 Columbia Street, Ste. 301Bangor, ME 04401',
'Neal L Weinstein Esq': '32 Saco AveOld Orchard Beach, ME 04064',
'Peter J Cyr Esq': '85 Brackett StreetPortland, ME 04102',
'Richard Regan': '4 Union Park RoadTopsham, ME 04086',
'Richard Smith Berne': '482 Congress Street Suite 402Portland, ME 04101',
'Robert Guillory Esq': '241 Main StreetP.O. Box 57Saco, ME 04072',
'Robert Van Horn': '20 Oak StreetEllsworth, ME 04605',
'Russell Goldsmith Esq': '647 U.S. Route One#203York, ME 03909',
'Shelley Carter': '110 Portland StreetFryeburg, ME 04037',
'Thaddeus Day Esq': '440 Walnut Hill RdNorth Yarmouth, ME 04097',
'Thomas P. Elias': '28 Long Sands Road, Suite 5York, ME 03909',
'Timothy Zerillo': '1250 Forest Avenue, Ste 3APortland, ME 04103',
'Todd H Crawford Jr': '1288 Roosevelt Trl, Ste #3P.O. Box 753Raymond, ME 04071',
'Walter McKee Esq': '133 State StreetAugusta, ME 04330',
'Wayne Foote Esq': '344 Mount Hope Ave.Bangor, ME 04402',
'Will Ashe': '192 Main StreetEllsworth, ME 04605',
'William T. Bly Esq': '119 Main StreetKennebunk, ME 04043',
'Zachary J. Smith': 'P.O. Box 1049304 Hancock St. Suite 1KBangor, ME 04401'}

How to insert a variable in xpath within a for loop?

for i in range(length):
# print(i)
driver.execute_script("window.history.go(-1)")
range = driver.find_element_by_xpath("(//a[#class = 'button'])[i]").click()
content2 = driver.page_source.encode('utf-8').strip()
soup2 = BeautifulSoup(content2,"html.parser")
name2 = soup2.find('h1', {'data-qa-target': 'ProviderDisplayName'}).text
phone2 = soup2.find('a', {'class': 'click-to-call-button-secondary hg-track mobile-click-to-call'}).text
print(name2, phone2)
Hey guy I am trying to scrape the First and last Name, Telephone for each person this website: https://www.healthgrades.com/family-marriage-counseling-directory. I want the (l.4) button to adapt to the variable (i). if i manually change i to a number everything works perfectly fine. But as soon as I placed in the variable i it doesn't work, any help much appreciated!
Instead of this :
range = driver.find_element_by_xpath("(//a[#class = 'button'])[i]").click()
do this :
range = driver.find_element_by_xpath(f"(//a[#class = 'button'])[{i}]").click()
Update 1 :
driver = webdriver.Chrome(driver_path)
driver.maximize_window()
driver.implicitly_wait(50)
driver.get("https://www.healthgrades.com/family-marriage-counseling-directory")
for name in driver.find_elements(By.CSS_SELECTOR, "a[data-qa-target='provider-details-provider-name']"):
print(name.text)
Output :
Noe Gutierrez, MSW
Melissa Huston, LCSW
Gina Kane, LMHC
Dr. Mary Marino, PHD
Emili-Erin Puente, MED
Richard Vogel, LMFT
Lynn Bednarz, LCPC
Nicole Palow, LMHC
Dennis Hart, LPCC
Dr. Robert Meeks, PHD
Jody Davis
Dr. Kim Logan, PHD
Artemis Paschalis, LMHC
Mark Webb, LMFT
Deirdre Holland, LCSW-R
John Paul Dilorenzo, LMHC
Joseph Hayes, LPC
Dr. Maylin Batista, PHD
Ella Gray, LCPC
Cynthia Mack-Ernsdorff, MA
Dr. Edward Muldrow, PHD
Rachel Sievers, LMFT
Dr. Lisa Burton, PHD
Ami Owen, LMFT
Sharon Lorber, LCSW
Heather Rowley, LCMHC
Dr. Bonnie Bryant, PHD
Marilyn Pearlman, LCSW
Charles Washam, BCD
Dr. Liliana Wolf, PHD
Christy Kobe, LCSW
Dana Paine, LPCC
Scott Kohner, LCSW
Elizabeth Krzewski, LMHC
Luisa Contreras, LMFT
Dr. Joel Nunez, PHD
Susanne Sacco, LISW
Lauren Reminger, MA
Thomas Recher, AUD
Kristi Smith, LCSW
Kecia West, LPC
Gregory Douglas, MED
Gina Smith, LCPC
Anne Causey, LPC
Dr. David Greenfield, PHD
Olga Rothschild, LMHC
Dr. Susan Levin, PHD
Ferguson Jennifer, LMHC
Marci Ober, LMFT
Christopher Checke, LMHC
Process finished with exit code 0
Update 2 :
leng = len(driver.find_elements(By.CSS_SELECTOR, "a[data-qa-target='provider-details-provider-name']"))
for i in range(leng):
driver.find_element_by_xpath(f"(//a[text()='View Profile'])[{i}]").click()

startswith() function help needed in Pandas Dataframe

I have a Name Column in Dataframe in which there are Multiple names.
DataFrame
import pandas as pd
df = pd.DataFrame({'name': ['Brailey, Mr. William Theodore Ronald', 'Roger Marie Bricoux',
"Mr. Roderick Robert Crispin",
"Cunningham"," Mr. Alfred Fleming"]})`
OUTPUT
Name
0 Brailey, Mr. William Theodore Ronald
1 Roger Marie Bricoux
2 Mr. Roderick Robert Crispin
3 Cunningham
4 Mr. Alfred Fleming
I wrote a row classification function, like if I pass a row/name it should return output class
mus = ['Brailey, Mr. William Theodore Ronald', 'Roger Marie Bricoux', 'John Frederick Preston Clarke']
def classify_role(row):
if row.loc['name'] in mus:
return 'musician'
Calling a function
is_brailey = df['name'].str.startswith('Brailey')
print(classify_role(df[is_brailey].iloc[0]))
Should show 'musician'
But output is showing different class I think I am writing something wrong here in classify_role()
Must be this row
if row.loc['name'] in mus:
Summary:
I am in need of a solution if I put first name of a person in startswith() who is in musi it should return musician
EDIT: If want test if values exist in lists you can create dictionary and test membership by Series.isin:
mus = ['Brailey, Mr. William Theodore Ronald', 'Roger Marie Bricoux',
'John Frederick Preston Clarke']
cat1 = ['Mr. Alfred Fleming','Cunningham']
d = {'musician':mus, 'category':cat1}
for k, v in d.items():
df.loc[df['Name'].isin(v), 'type'] = k
print (df)
Name type
0 Brailey, Mr. William Theodore Ronald musician
1 Roger Marie Bricoux musician
2 Mr. Roderick Robert Crispin NaN
3 Cunningham category
4 Mr. Alfred Fleming category
Your solution should be changed:
mus = ['Brailey, Mr. William Theodore Ronald', 'Roger Marie Bricoux',
'John Frederick Preston Clarke']
def classify_role(row):
if row in mus:
return 'musician'
df['type'] = df['Name'].apply(classify_role)
print (df)
Name type
0 Brailey, Mr. William Theodore Ronald musician
1 Roger Marie Bricoux musician
2 Mr. Roderick Robert Crispin None
3 Cunningham None
4 Mr. Alfred Fleming None
You can pass values in tuple to Series.str.startswith, solution should be expand to match more categories by dictionary:
d = {'musician': ['Brailey, Mr. William Theodore Ronald'],
'cat1':['Roger Marie Bricoux', 'Cunningham']}
for k, v in d.items():
df.loc[df['Name'].str.startswith(tuple(v)), 'type'] = k
print (df)
Name type
0 Brailey, Mr. William Theodore Ronald musician
1 Roger Marie Bricoux cat1
2 Mr. Roderick Robert Crispin NaN
3 Cunningham cat1
4 Mr. Alfred Fleming NaN

Scraping table by beautiful soup 4

Hello I am trying to scrape this table in this url: https://www.espn.com/nfl/stats/player/_/stat/rushing/season/2018/seasontype/2/table/rushing/sort/rushingYards/dir/desc
There are 50 rows in this table.. however if you click Show more (just below the table), more of the rows appear. My beautiful soup code works fine, But the problem is it retrieves only the first 50 rows. It doesnot retrieve rows that appear after clicking the Show more. How can i get all the rows including first 50 and also those appears after clicking Show more?
Here is the code:
#Request to get the target wiki page
rqst = requests.get("https://www.espn.com/nfl/stats/player/_/stat/rushing/season/2018/seasontype/2/table/rushing/sort/rushingYards/dir/desc")
soup = BeautifulSoup(rqst.content,'lxml')
table = soup.find_all('table')
NFL_player_stats = pd.read_html(str(table))
players = NFL_player_stats[0]
players.shape
out[0]: (50,1)
Using DevTools in Firefox I see it gets data (in JSON format) for next page from
https://site.web.api.espn.com/apis/common/v3/sports/football/nfl/statistics/byathlete?region=us&lang=en&contentorigin=espn&isqualified=false&limit=50&category=offense%3Arushing&sort=rushing.rushingYards%3Adesc&season=2018&seasontype=2&page=2
If you change value in page= then you can get other pages.
import requests
url = 'https://site.web.api.espn.com/apis/common/v3/sports/football/nfl/statistics/byathlete?region=us&lang=en&contentorigin=espn&isqualified=false&limit=50&category=offense%3Arushing&sort=rushing.rushingYards%3Adesc&season=2018&seasontype=2&page='
for page in range(1, 4):
print('\n---', page, '---\n')
r = requests.get(url + str(page))
data = r.json()
#print(data.keys())
for item in data['athletes']:
print(item['athlete']['displayName'])
Result:
--- 1 ---
Ezekiel Elliott
Saquon Barkley
Todd Gurley II
Joe Mixon
Chris Carson
Christian McCaffrey
Derrick Henry
Adrian Peterson
Phillip Lindsay
Nick Chubb
Lamar Miller
James Conner
David Johnson
Jordan Howard
Sony Michel
Marlon Mack
Melvin Gordon
Alvin Kamara
Peyton Barber
Kareem Hunt
Matt Breida
Tevin Coleman
Aaron Jones
Doug Martin
Frank Gore
Gus Edwards
Lamar Jackson
Isaiah Crowell
Mark Ingram II
Kerryon Johnson
Josh Allen
Dalvin Cook
Latavius Murray
Carlos Hyde
Austin Ekeler
Deshaun Watson
Kenyan Drake
Royce Freeman
Dion Lewis
LeSean McCoy
Mike Davis
Josh Adams
Alfred Blue
Cam Newton
Jamaal Williams
Tarik Cohen
Leonard Fournette
Alfred Morris
James White
Mitchell Trubisky
--- 2 ---
Rashaad Penny
LeGarrette Blount
T.J. Yeldon
Alex Collins
C.J. Anderson
Chris Ivory
Marshawn Lynch
Russell Wilson
Blake Bortles
Wendell Smallwood
Marcus Mariota
Bilal Powell
Jordan Wilkins
Kenneth Dixon
Ito Smith
Nyheim Hines
Dak Prescott
Jameis Winston
Elijah McGuire
Patrick Mahomes
Aaron Rodgers
Jeff Wilson Jr.
Zach Zenner
Raheem Mostert
Corey Clement
Jalen Richard
Damien Williams
Jaylen Samuels
Marcus Murphy
Spencer Ware
Cordarrelle Patterson
Malcolm Brown
Giovani Bernard
Chase Edmonds
Justin Jackson
Duke Johnson
Taysom Hill
Kalen Ballage
Ty Montgomery
Rex Burkhead
Jay Ajayi
Devontae Booker
Chris Thompson
Wayne Gallman
DJ Moore
Theo Riddick
Alex Smith
Robert Woods
Brian Hill
Dwayne Washington
--- 3 ---
Ryan Fitzpatrick
Tyreek Hill
Andrew Luck
Ryan Tannehill
Josh Rosen
Sam Darnold
Baker Mayfield
Jeff Driskel
Rod Smith
Matt Ryan
Tyrod Taylor
Kirk Cousins
Cody Kessler
Darren Sproles
Josh Johnson
DeAndre Washington
Trenton Cannon
Javorius Allen
Jared Goff
Julian Edelman
Jacquizz Rodgers
Kapri Bibbs
Andy Dalton
Ben Roethlisberger
Dede Westbrook
Case Keenum
Carson Wentz
Brandon Bolden
Curtis Samuel
Stevan Ridley
Keith Ford
Keenan Allen
John Kelly
Kenjon Barner
Matthew Stafford
Tyler Lockett
C.J. Beathard
Cameron Artis-Payne
Devonta Freeman
Brandin Cooks
Isaiah McKenzie
Colt McCoy
Stefon Diggs
Taylor Gabriel
Jarvis Landry
Tavon Austin
Corey Davis
Emmanuel Sanders
Sammy Watkins
Nathan Peterman
EDIT: get all data as DataFrame
import requests
import pandas as pd
url = 'https://site.web.api.espn.com/apis/common/v3/sports/football/nfl/statistics/byathlete?region=us&lang=en&contentorigin=espn&isqualified=false&limit=50&category=offense%3Arushing&sort=rushing.rushingYards%3Adesc&season=2018&seasontype=2&page='
df = pd.DataFrame() # emtpy DF at start
for page in range(1, 4):
print('page:', page)
r = requests.get(url + str(page))
data = r.json()
#print(data.keys())
for item in data['athletes']:
player_name = item['athlete']['displayName']
position = item['athlete']['position']['abbreviation']
gp = item['categories'][0]['totals'][0]
other_values = item['categories'][2]['totals']
row = [player_name, position, gp] + other_values
df = df.append( [row] ) # append one row
df.columns = ['NAME', 'POS', 'GP', 'ATT', 'YDS', 'AVG', 'LNG', 'BIG', 'TD', 'YDS/G', 'FUM', 'LST', 'FD']
print(len(df)) # 150
print(df.head(20))

A better/faster way to handle human names in Pandas columns?

I am dealing with a large amount of data that includes the standard five columns for human names (prefix, firstname, middlename, lastname, suffix) and I would like to merge them in a separate column as a readable name. The issue I have is with handling blank values - the issue creates spacing problems. Also, I cannot modify the original columns. My current process feels a little insane (but it works!) so I am looking for a more elegant solution.
My current code:
def add_space_prefix(x):
x = str(x)
if len(x) > 0:
return x + ' '
else:
return x
def add_space_middle(x):
x = str(x)
if len(x) > 0:
return ' ' + x
else:
return x
def add_space_suffix(x):
x = str(x)
if len(x) > 0:
return ', ' + x
else:
return x`
df["middlename"] =
df["middlename"].map(lambda x: add_space_middle(x))
df["prefix"] = df["prefix"].map(lambda x: add_space_prefix(x))
df["suffix"] = df["suffix"].map(lambda x: add_space_suffix(x))
df['fullname'] = df["prefix"] + df["firstname"] + df[
"middlename"] + ' ' + df["lastname"] + df['suffix']
Sample Dataframe
prefix firstname middlename lastname suffix fullname
0 Michael Hobart Jr. Michael Jobart, Jr.
1 Mr. Alan Lilt Mr. Alan Lilt
2 Jon A. Smith III Jon A. Smith, III
3 Joe Miller Joe Miller
4 Mika Jennifer Shabosky Mika Jennifer Shabosky
5 Mrs. Angela Calder Mrs. Angela Calder
6 Boris Al Bert Esq. Boris Al Bert, Esq.
7 Dr. Natasha Chorus Dr. Natasha Chorus
8 Bill Gibbons Bill Gibbons
Option 1
' '.join and pd.Series.str
In this solution we join the entire row by spaces. This may lead to spaces at the beginning or end of the string or with 2 or more spaces in the middle. We handle this by chaining string accessor methods.
df.assign(
lastname=df.lastname + ','
).apply(' '.join, 1).str.replace('\s+', ' ').str.strip(' ,')
0 Michael Hobart, Jr.
1 Mr. Alan Lilt
2 Jon A. Smith, III
3 Joe Miller
4 Mika Jennifer Shabosky
5 Mrs. Angela Calder
6 Boris Al Bert, Esq.
7 Dr. Natasha Chorus
8 Bill Gibbons
dtype: object
df['fullname'] = df.assign(
lastname=df.lastname + ','
).apply(' '.join, 1).str.replace('\s+', ' ').str.strip(' ,')
df
prefix firstname middlename lastname suffix fullname
0 Michael Hobart Jr. Michael Hobart, Jr.
1 Mr. Alan Lilt Mr. Alan Lilt
2 Jon A. Smith III Jon A. Smith, III
3 Joe Miller Joe Miller
4 Mika Jennifer Shabosky Mika Jennifer Shabosky
5 Mrs. Angela Calder Mrs. Angela Calder
6 Boris Al Bert Esq. Boris Al Bert, Esq.
7 Dr. Natasha Chorus Dr. Natasha Chorus
8 Bill Gibbons Bill Gibbons
Option 2
list comprehension
In this solution, we perform the same activities as with the first solution, but we bundle the string operations together and within a comprehension.
[re.sub(r'\s+', ' ', ' '.join(s)).strip(' ,')
for s in df.assign(lastname=df.lastname + ',').values.tolist()]
['Michael Hobart, Jr.',
'Mr. Alan Lilt',
'Jon A. Smith, III',
'Joe Miller',
'Mika Jennifer Shabosky',
'Mrs. Angela Calder',
'Boris Al Bert, Esq.',
'Dr. Natasha Chorus',
'Bill Gibbons']
df['fullname'] = [re.sub(r'\s+', ' ', ' '.join(s)).strip(' ,')
for s in df.assign(lastname=df.lastname + ',').values.tolist()]
df
prefix firstname middlename lastname suffix fullname
0 Michael Hobart Jr. Michael Hobart, Jr.
1 Mr. Alan Lilt Mr. Alan Lilt
2 Jon A. Smith III Jon A. Smith, III
3 Joe Miller Joe Miller
4 Mika Jennifer Shabosky Mika Jennifer Shabosky
5 Mrs. Angela Calder Mrs. Angela Calder
6 Boris Al Bert Esq. Boris Al Bert, Esq.
7 Dr. Natasha Chorus Dr. Natasha Chorus
8 Bill Gibbons Bill Gibbons
Option 3
pd.replace and pd.DataFrame.stack
This one is a bit different in that we replace blanks '' with np.nan so that when we stack the np.nan are naturally dropped. This makes for the joining with ' ' more straight forward.
df.assign(
lastname=df.lastname + ','
).replace('', np.nan).stack().groupby(level=0).apply(' '.join).str.strip(',')
0 Michael Hobart, Jr.
1 Mr. Alan Lilt
2 Jon A. Smith, III
3 Joe Miller
4 Mika Jennifer Shabosky
5 Mrs. Angela Calder
6 Boris Al Bert, Esq.
7 Dr. Natasha Chorus
8 Bill Gibbons
dtype: object
df['fullname'] = df.assign(
lastname=df.lastname + ','
).replace('', np.nan).stack().groupby(level=0).apply(' '.join).str.strip(',')
df
prefix firstname middlename lastname suffix fullname
0 Michael Hobart Jr. Michael Hobart, Jr.
1 Mr. Alan Lilt Mr. Alan Lilt
2 Jon A. Smith III Jon A. Smith, III
3 Joe Miller Joe Miller
4 Mika Jennifer Shabosky Mika Jennifer Shabosky
5 Mrs. Angela Calder Mrs. Angela Calder
6 Boris Al Bert Esq. Boris Al Bert, Esq.
7 Dr. Natasha Chorus Dr. Natasha Chorus
8 Bill Gibbons Bill Gibbons
Timing
bundling within a comprehension is fastest!
%timeit df.assign(fullname=df.replace('', np.nan).stack().groupby(level=0).apply(' '.join))
%timeit df.assign(fullname=df.apply(' '.join, 1).str.replace('\s+', ' ').str.strip())
%timeit df.assign(fullname=[re.sub(r'\s+', ' ', ' '.join(s)).strip() for s in df.values.tolist()])
100 loops, best of 3: 2.51 ms per loop
1000 loops, best of 3: 979 µs per loop
1000 loops, best of 3: 384 µs per loop

Categories