How to interpret this CNN architecture - python

How does this CNN architecture work from an input layer to the first convolution layer? hx98 are input matrix dimensions, is n the number of channels or the number of inputs?
It doesn't seem like n is the number of channels because 25 is the number of feature maps and their dimensions do not indicate they are two channels.
However if n is the number of inputs and matrices are single channel, I haven't found a single CNN architecture anywhere that takes multiple input matrices and convolute them together. Most example convolute them seperately and then concatenate.
In my example, n is 2, one is matrix with BER values and another with connection line-rate values.
What mistake am I making? How does this CNN work.

In CNN the image pixels with height and width are multiplied with the
kernel weights of the convolution layer and are added to create a
feature map.
The kernel will pass through all the channels of the
image (3 channels for RGB, 1 channel for GreyScale) based on the
strides defined in the convolution layer.
After the convolution, the size of the image is reduced.
To get the same output dimension as the input dimension, you need to add padding. Padding consists of adding
the right number of rows and columns on each side of the matrix. For
details, please refer to this
documentation.
Thank You.

Related

Tensorflow CNN for different input size

I'm trying to make conv network for image regression.
As shown in below, one image [224 x 224] has one GT value {x}.
It's easy to make train [224 x 224] and valid/test with [224 x 224] images.
However, I'd like to apply CNN for different image sizes.
For example, [224 x 229] image, I want to get 5 regression values 'at once'.
Simply, I can do that by just sliding windows of [224 x 224] x 5 times, but apparently it is too slow.
I think using conv for different image size is possible. But FCL is not.
If I change image size to [455 x 256]
lhs shape= [4608,1024] rhs shape= [2048,1024]
error occurred. Is there any way to handle it?
Fully connected layers have a fixed size input. Thus, changing the input size will cause a wrong-size error.
One way to tackle this problem, and allow for different image sizes is to use a fully convolutional network.
An example with easy numbers:
Assuming for example the conv layer's output is of size 16X16, you can create a "classifier layer" of size 4x4 with stride 4, that would output for each of the 4 4x4 squares comprising the 16x16 feature map, a single value per dimension. Such filter would be of size 4x4xn_dim, in your case n_dim will be 5, and the final output would be of size 4x4x5, corresponding to 5 outputs (one for each regression value) for each 4x4 square.
You will notice you can play with the shape of the last conv filter to obtain different sizes for the final output, corresponding to different parts of the input image, but really, looking at all of it.
You can work out the numbers for your own example.
You probably would like to read about basic methods for semantic segmentaion.
Also see basic fully conv nets.

Should a 1D CNN need padding to retain input length?

Shouldn't a 1D CNN with stride = 1 and 1 filter have output length equal to input length without the need for padding?
I thought this was the case, but created a Keras model with these specifications that says the output shape is (17902,1) when the input shape is (17910,1). I'm wondering why the dimension has been reduced, since the stride is 1 and it's a 1D convolution.
model = keras.Sequential([
layers.Conv1D(filters=1,kernel_size=9,strides=1,activation=tf.nn.relu,input_shape=X_train[0].shape)
])
I expect that the output shape of this model should be (17910,1), but clearly I'm missing a source of reduction in dimension in this conv. layer.
The length of your output vector is dependent on the length of the input and your kernel size. Since you have a kernel size of 9 you'll get 17902 convolutions with your input and thus an output of shape (17902,1) (without padding).
For better understanding:
Without padding:
With padding:
Whether you should use padding or not is more a question of accuracy. As Ian Goodfellow, Yoshua Bengio and Aaaron Courville in their Deep Learning book found, the optimal padding (at least for 2D images) lies somewhere between "none" and "same"
So my suggestion would be, to try two different CNNs, which have the same architecture except the padding and take the one which has the better accuracy.
(Source: https://www.slideshare.net/xavigiro/recurrent-neural-networks-2-d2l3-deep-learning-for-speech-and-language-upc-2017)

Kernel size change in convolutional neural networks

I have been working on creating a convolutional neural network from scratch, and am a little confused on how to treat kernel size for hidden convolutional layers. For example, say I have an MNIST image as input (28 x 28) and put it through the following layers.
Convolutional layer with kernel_size = (5,5) with 32 output channels
new dimension of throughput = (32, 28, 28)
Max Pooling layer with pool_size (2,2) and step (2,2)
new dimension of throughput = (32, 14, 14)
If I now want to create a second convolutional layer with kernel size = (5x5) and 64 output channels, how do I proceed? Does this mean that I only need two new filters (2 x 32 existing channels) or does the kernel size change to be (32 x 5 x 5) since there are already 32 input channels?
Since the initial input was a 2D image, I do not know how to conduct convolution for the hidden layer since the input is now 3 dimensional (32 x 14 x 14).
you need 64 kernel, each with the size of (32,5,5) .
depth(#channels) of kernels, 32 in this case, or 3 for a RGB image, 1 for gray scale etc, should always match the input depth, but values are all the same.
e.g. if you have a 3x3 kernel like this : [-1 0 1; -2 0 2; -1 0 1] and now you want to convolve it with an input with N as depth or say channel, you just copy this 3x3 kernel N times in 3rd dimension, the following math is just like the 1 channel case, you sum all values in all N channels which your kernel window is currently on them after multiplying the kernel values with them and get the value of just 1 entry or pixel. so what you get as output in the end is a matrix with 1 channel:) how much depth you want your matrix for next layer to have? that's the number of kernels you should apply. hence in your case it would be a kernel with this size (64 x 32 x 5 x 5) which is actually 64 kernels with 32 channels for each and same 5x5 values in all cahnnels.
("I am not a very confident english speaker hope you get what I said, it would be nice if someone edit this :)")
You essentially answered your own question. YOU are building the network solver. It seems like your convolutional layer output is [channels out] = [channels in] * [number of kernels]. I had to infer this from the wording of your question. In general, this is how it works: you specify the kernel size of the layer and how many kernels to use. Since you have one input channel you are essentially saying that there are 32 kernels in your first convolution layer. That is 32 unique 5x5 kernels. Each of these kernels will be applied to the one input channel. More in general, each of the layer kernels (32 in your example) is applied to each of the input channels. And that is the key. If you build code to implement the convolution layer according to these generalities, then your subsequent convolution layers are done. In the next layer you specify two kernels per channel. In your example there would be 32 input channels, the hidden layer has 2 kernels per channel, and the output would be 64 channels.
You could then down sample by applying a pooling layer, then flatten the 64 channels [turn a matrix into a vector by stacking the columns or rows], and pass it as a column vector into a fully connected network. That is the basic scheme of convolutional networks.
The work comes when you try to code up backpropagation through the convolutional layers. But the OP didn’t ask about that. I’ll just say this, you will come to a place where you have the stored input matrix (one channel), you have a gradient from a lower layer in the form of a matrix and is the size of the layer kernel, and you need to backpropagate it up to the next convolutional layer.
The simple approach is to rotate your stored channel matrix by 180 degrees and then convolve it with the gradient. The explanation for this is long and tedious, too much to write here, and not a lot on the internet explains it well.
A more sophisticated approach is to apply “correlation” between the input gradient and the stored channel matrix. Note I specifically said “correlation” as opposed to “convolution” and that is key. If you think they “almost” the same thing, then I recommend you take some time and learn about the differences.
If you would like to have a look at my CNN solver here's a link to the project. It's C++ and no documentation, sorry :) It's all in a header file called layer.h, find the class FilterLayer2D. I think the code is pretty readable (what programmer doesn't think his code is readable :) )
https://github.com/sraber/simplenet.git
I also wrote a paper on basic fully connected networks. I wrote it so that I would forget what I learned in my self study. Maybe you'll get something out of it. It's at this link:
http://www.raberfamily.com/scottblog/scottblog.htm

Keras Conv2D: filters vs kernel_size

What's the difference between those two? It would also help to explain in the more general context of convolutional networks.
Also, as a side note, what is channels? In other words, please break down the 3 terms for me: channels vs filters vs kernel.
Each convolution layer consists of several convolution channels (aka. depth or filters). In practice, they are a number such as 64, 128, 256, 512 etc. This is equal to number of channels in the output of a convolutional layer. kernel_size, on the other hand, is the size of these convolution filters. In practice, they take values such as 3x3 or 1x1 or 5x5. To abbreviate, they can be written as 1 or 3 or 5 as they are mostly square in practice.
Edit
Following quote should make it more clear.
Discussion on vlfeat
Suppose X is an input with size W x H x D x N (where N is the size of the batch) to a convolutional layer containing filter F (with size FW x FH x FD x K) in a network.
The number of feature channels D is the third dimension of the input X here (for example, this is typically 3 at the first input to the network if the input consists of colour images).
The number of filters K is the fourth dimension of F.
The two concepts are closely linked because if the number of filters in a layer is K, it produces an output with K feature channels. So the input to the next layer will have K feature channels.
The FW x FH above is filter size you are looking for.
Added
You should be familiar with filters. You can consider each filter to be responsible for extracting some type of feature from a raw image. The CNNs try to learn such filters i.e. the filters parametrized in CNNs are learned during training of CNNs. You apply each filter in a Conv2D to each input channel and combine these to get output channels. So, the number of filters and the number of output channels are the same.

Can I put several different images as channels?

Normally, we set input images 'height','width','channels'.
In 'channels', we set 1 for gray level pictures, and 3 for RGB pictures.
My question is, should it be the same picture using this channels? Like mentioned above.
Or I can set series of images to channels?
(e.g. I have 10 images discrete in space at one moment, so I set channels 10 as one input)
Will there be any problem and is it the right way to do?
Or I should just set 10 input for these 10 images?
Thanks for answering!
No, it won't be the same, because the number of channels of input layer determines the shape of convolutional filters, hence the number of parameters and how they are applied.
Compare these two convolutional networks:
[32x32x3] input shape, batch_size=5, 5x5 receptive field, then each neuron in the conv layer will have weights to a [5x5x3] region in the input volume, for a total of 5*5*3 = 75 weights (and +1 bias parameter).
[32x32x15] input shape, batch_size=1, same 5x5 receptive field, then each neuron will have weights to a [5x5x15] region, for a total of 5*5*15 = 325 weights (and the same +1 bias parameter).
In both cases, the two conv layers sees 15 RGB images, but the second network will use 5 times more parameters to learn the same data, while the first one will reuse the same parameters for different images. Also note that the second network will have dedicated parameters to each first image, each second image, etc.
Obviously, the first approach is better, not only because it saves the resources, it's also invariant to the order of training images in a batch.

Categories