was trying to declare variable t in the first iteration of a recursion
class c:
def __init__(self, a):
self.n=a
def a():
t=c(5)
def b():
print(t.n)
b()
does print t
def d():
try:
t
print(t.n)
except:
t=c(5)
d()
doenst print t
I don't understand the difference and why in the first function does work and the second doesn't
it won't print t because t is a local variable to each function call and is not recognized in the context of the other calls to d. if you want to use it you either have to make it global or pass it as an argument
def d(t=None):
try:
print(t.n)
except:
t=c(5)
d(t=t)
d()
More explanation
(There is a great video about this by mCoding i recommend you watch, and the content of the channel is pretty good)
Why is it local in d but not b ?
What happens is: at compile time python will look at your function and see is t defined anywhere in your function? if yes (the case of d , even if the variable is assigned after it's usage), it will take the value from that scope, if not it will try finding it in the next scope and so on. if it doesn't find it, it will assume it's a global.
for example:
variable = 1
def method_1():
print(variable)
variable = 2
method_1()
will throw an error even tho variable is defined in the global scope because the compiler found that we are assigning variable inside the function
on the other hand:
variable = 1
def method_2()
print(variable)
method_2()
will work because the compiler considers variable global
In the second code, when an exception occurs because t is not defined it moves to the except block, and what does the except block do?
It creates a variable called t but it is a local variable to that call of the function on the stack and then calls the function again which does the same thing because when you call the function again a new memory is allocated to that function call on the stack and t is not defined in that function call. Hence, it throws an exception and does the same thing again.
As you can see in the picture an Infinite number of function calls is made until a stack overflow error happens which leads to the termination of your running program because it never breaks out of the try-except block because each time a function call is made t is defined locally to the function call and make another call which doesn't have t defined in it's scope.
EDIT2:
A minimal demonstration is:
code = """\
a=1
def f1():
print(a)
print(f1.__closure__)
f1()
"""
def foo():
exec(code)
foo()
Which gives:
None
Traceback (most recent call last):
File "D:/workfiles/test_eval_rec.py", line 221, in <module>
foo()
File "D:/workfiles//test_eval_rec.py", line 219, in foo
exec(code)
File "<string>", line 5, in <module>
File "<string>", line 3, in f1
NameError: name 'a' is not defined
It can be seen that the __closure__ attribute of function defined inside code str passed to exec() is None, making calling the function fails.
Why does this happen and how can I define a function successfully?
I find several questions that may be related.
Closure lost during callback defined in exec()
Using exec() with recursive functions
Why exec() works differently when invoked inside of function and how to avoid it
Why are closures broken within exec?
NameError: name 'self' is not defined IN EXEC/EVAL
These questions are all related to "defining a function insdie exec()". I think the fourth question here is closest to the essence of these problems. The common cause of these problems is that when defining a function in exec(), the __closure__ attribute of the function object can not be set correctly and will always be None. However, many existing answers to this question didn't realize this point.
Why these questions are caused by wrong __closure__:
When defining a function, __closure__ attribute is set to a dict that contains all local symbols (at the place where the keyword def is used) that is used inside the newly defined funtion. When calling a function, local symbol tables will be retrived from the __closure__ attribute. Since the __closure__ is set to None, the local symbol tables can not be retrived as expected, making the function call fail.
These answers work by making None a correct __closure__ attribute:
Existing solutions to the questions listed above solve these problems by getting the function definition rid of the usage of local symbol, i.e, they make the local symbols used(variable, function definition) global by passing globals() as locals of exec or by using keyword global explicitly in the code string.
Why existing solution unsatisfying:
These solutions I think is just an escape of the core problem of setting __closure__ correctly when define a functioni inside exec(). And as symbols used in the function definition is made global, these solutions will produce redundant global symbol which I don't want.
Original Questions:
(You May ignore this session, I have figured something out, and what I currently want to ask is described as the session EDIT2. The original question can be viewed as a sepecial case of the question described in session EDIT2)
original title of this question is: Wrapping class function to new function with exec() raise NameError that ‘self’ is not defined
I want to wrap an existing member function to a new class function. However, exec() function failed with a NameError that ‘self’ is not defined.
I did some experiment with the following codes. I called globals() and locals() in the execed string, it seems that the locals() is different in the function definition scope when exec() is executed. "self" is in the locals() when in exec(), however, in the function definition scope inside the exec(), "self" is not in the locals().
class test_wrapper_function():
def __init__(self):
# first wrapper
def temp_func():
print("locals() inside the function definition without exec:")
print(locals())
return self.func()
print("locals() outside the function definition without exec:")
print(locals())
self.wrappered_func1 = temp_func
# third wrapper using eval
define_function_str = '''def temp_func():
print("locals() inside the function definition:")
print(locals())
print("globals() inside the function definition:")
print(globals())
return self.func()
print("locals() outside the function definition:")
print(locals())
print("globals() outside the function definition:")
print(globals())
self.wrappered_func2 = temp_func'''
exec(define_function_str)
# call locals() here, it will contains temp_func
def func(self):
print("hi!")
t = test_wrapper_function()
print("**********************************************")
t.wrappered_func1()
t.wrappered_func2()
I have read this link. In the exec(), memeber function, attribute of "self" can be accessed without problem, while in the function difinition in the exec(), "self" is not available any more. Why does this happen?
Why I want to do this:
I am building a PyQt program. I want to create several similar slots(). These slots can be generated by calling one member function with different arguments. I decided to generate these slots using exec() function of python. I also searched with the keyword "nested name scope in python exec", I found this question may be related, but there is no useful answer.
To be more specific. I want to define a family of slots like func_X (X can be 'a', 'b', 'c'...), each do something like self.do_something_on(X). Here, do_something is a member function of my QWidget. So I use a for loop to create these slots function. I used codes like this:
class MyWidget():
def __init__(self):
self.create_slots_family()
def do_something(self, character):
# in fact, this function is much more complex. Do some simplification.
print(character)
def create_slots_i(self, character):
# want to define a function like this:
# if character is 'C', define self.func_C such that self.func_C() works like self.do_something(C)
create_slot_command_str = "self.func_" + character + " = lambda:self.do_something('" + character + "')"
print(create_slot_command_str)
exec(create_slot_command_str)
def create_slots_family(self):
for c in ["A", "B", "C", "D"]:
self.create_slots_i(c)
my_widget = MyWidget()
my_widget.func_A()
Note that, as far as I know, the Qt slots should not accept any parameter, so I have to wrap self.do_something(character) to be a series function self.func_A, self.func_C and so on for all the possible characters.
So the above is what I want to do orignially.
EDIT1:
(You May ignore this session, I have figured something out, and what I currently want to ask is described as the session EDIT2. This simplified version of original question can also be viewed as a sepecial case of the question described in session EDIT2)
As #Mad Physicist suggested. I provide a simplified version here, deleting some codes used for experiments.
class test_wrapper_function():
def __init__(self):
define_function_str = '''\
def temp_func():
return self.func()
self.wrappered_func2 = temp_func'''
exec(define_function_str)
def func(self):
print("hi!")
t = test_wrapper_function()
t.wrappered_func2()
I expected this to print a "hi". However, I got the following exception:
Traceback (most recent call last):
File "D:/workfiles/test_eval_class4.py", line 12, in <module>
t.wrappered_func2()
File "<string>", line 2, in temp_func
NameError: name 'self' is not defined
Using Exec
You've already covered most of the problems and workarounds with exec, but I feel that there is still value in adding a summary.
The key issue is that exec only knows about globals and locals, but not about free variables and the non-local namespace. That is why the docs say
If exec gets two separate objects as globals and locals, the code will be executed as if it were embedded in a class definition.
There is no way to make it run as though it were in a method body. However, as you've already noted, you can make exec create a closure and use that instead of the internal namespace by adding a method body to your snippet. However, there are still a couple of subtle restrictions there.
Your example of what you are trying to do showcases the issues perfectly, so I will use a modified version of that. The goal is to make a method that binds to self and has a variable argument in the exec string.
class Test:
def create_slots_i(self, c):
create_slot_command_str = f"self.func_{c} = lambda: self.do_something('{c}')"
exec(create_slot_command_str)
def do_something(self, c):
print(f'I did {c}!')
There are different ways of getting exec to "see" variables: literals, globals, and internal closures.
Literals. This works robustly, but only for simple types that can be easily instantiated from a string. The usage of c above is a perfect example. This will not help you with a complex object like self:
>>> t = Test()
>>> t.create_slots_i('a')
>>> t.func_a()
...
NameError: name 'self' is not defined
This happens exactly because exec has no concept of free variables. Since self is passed to it via the default locals(), it does not bind the reference to a closure.
globals. You can pass in a name self to exec via globals. There are a couple of ways of doing this, each with its own issues. Remember that globals are accessed by a function through its __globals__ (look at the table under "Callable types") attribute. Normally __globals__ refers to the __dict__ of the module in which a function is defined. In exec, this is the case by default as well, since that's what globals() returns.
Add to globals: You can create a global variable named self, which will make your problem go away, sort of:
>>> self = t
>>> t.func_a()
I did a!
But of course this is a house of cards that falls apart as soon as you delete, self, modify it, or try to run this on multiple instances:
>>> del self
>>> t.func_a()
...
NameError: name 'self' is not defined
Copy globals. A much more versatile solution, on the surface of it, is to copy globals() when you run exec in create_slots_i:
def create_slots_i(self, c):
create_slot_command_str = f"self.func_{c} = lambda: self.do_something('{c}')"
g = globals().copy()
g['self'] = self
exec(create_slot_command_str, g)
This appears to work normally, and for a very limited set of cases, it actually does:
>>> t = Test()
>>> t.create_slots_i('a')
>>> t.func_a()
I did a!
But now, your function's __globals__ attribute is no longer bound to the module you created it in. If it uses any other global values, especially ones that might change, you will not be able to see the changes. For limited functionality, this is OK, but in the general case, it can be a severe handicap.
Internal Closures. This is the solution you already hit upon, where you create a closure within the exec string to let it know that you have a free variable by artificial means. For example:
class Test:
def create_slots_i(self, c):
create_slot_command_str = f"""def make_func(self):
def func_{c}():
self.do_something('{c}')
return func_{c}
self.func_{c} = make_func(self)"""
g = globals().copy()
g['self'] = self
exec(create_slot_command_str, g)
def do_something(self, c):
print(f'I did {c}!')
This approach works completely:
>>> t = Test()
>>> t.create_slots_i('a')
>>> t.func_a()
I did a!
The only real drawbacks here are security, which is always a problem with exec, and the sheer awkwardness of this monstrosity.
A Better Way
Since you are already creating closures, there is really no need to use exec at all. In fact, the only thing you are really doing is creating methods so that self.func_... will bind the method for you, since you need a function with the signature of your slot and access to self. You can write a simple method that will generate functions that you can assign to your slots directly. The advantage of doing it this way is that (a) you avoid calling exec entirely, and (b) you don't need to have a bunch of similarly named auto-generated methods polluting your class namespace. The slot generator would look something like this:
def create_slots_i(self, c):
def slot_func():
self.do_something(c) # This is a real closure now
slot_func.__name__ = f'func_{c}'
return slot_func
Since you will not be referring to these function objects anywhere except your slots, __name__ is the only way to get the "name" under which they were stored. That is the same thing that def does for you under the hood.
You can now assign slots directly:
some_widget.some_signal.connect(self.create_slots_i('a'))
Note
I originally had a more complex approach in mind for you, since I thought you cared about generating bound methods, instead of just setting __name__. In case you have a sufficiently complex scenario where it still applies, here is my original blurb:
A quick recap of the descriptor protocol: when you bind a function with the dot operator, e.g., t.func_a, python looks at the class for descriptors with that name. If your class has a data descriptor (like property, but not functions), then that descriptor will shadow anything you may have placed in the instance __dict__. However, if you have a non-data descriptor (one a __get__ method but without a __set__ method, like a function object), then it will only be bound if an instance attribute does not shadow it. Once this decision has been made, actually invoking the descriptor protocol involves calling type(t).func_a.__get__(t). That's how a bound method knows about self.
Now you can return a bound method from within your generator:
def create_slots_i(self, c):
def slot_func(self):
self.do_something(c) # This is a closure on `c`, but not on `self` until you bind it
slot_func.__name__ = f'func_{c}'
return slot_func.__get__(self)
Why this phenomena happen:
Actually the answer of the question 4 listed above can answer this question.
When call exec() on one code string, the code string is first compiled. I suppose that during compiling, the provided globals and locals is not considered. The symbol in the exec()ed code str is compiled to be in the globals. So the function defined in the code str will be considered using global variables, and thus __closure__ is set to None.
Refer to this answer for more information about what the func exec does.
How to deal with this phenomena:
Imitating the solutions provided in the previous questions, for the minimal demostration the question, it can also be modified this way to work:
a=1 # moving out of the variable 'code'
code = """\
def f1():
print(a)
print(f1.__closure__)
f1()
"""
def foo():
exec(code)
foo()
Although the __closure__ is still None, the exception can be avoided because now only the global symbol is needed and __closure__ should also be None if correctly set. You can read the part The reason why the solutions work in the question body for more information.
This was originally added in Revision 4 of the question.
TL;DR
To set correct __closure__ attribute of function defined in the code string passed to exec() function. Just wrap the total code string with a function definition.
I provide an example here to demonstrate all possible situations. Suppose you want to define a function named foo inside a code string used by exec(). The foo use function, variables that defined inside and outside the code string:
def f1():
outside_local_variable = "this is local variable defined outside code str"
def outside_local_function():
print("this is function defined outside code str")
code = """\
local_variable = "this is local variable defined inside code str"
def local_function():
print("this is function defined inside code str")
def foo():
print(local_variable)
local_function()
print(outside_local_variable)
outside_local_function()
foo()
"""
exec(code)
f1()
It can be wrapper like this:
def f1():
outside_local_variable = "this is local variable defined outside code str"
def outside_local_function():
print("this is function defined outside code str")
code = """\
def closure_helper_func(outside_local_variable, outside_local_function):
local_variable = "this is local variable defined inside code str"
def local_function():
print("this is function defined inside code str")
def foo():
print(local_variable)
local_function()
print(outside_local_variable)
outside_local_function()
foo()
closure_helper_func(outside_local_variable, outside_local_function)
"""
exec(code)
f1()
Detailed explanation:
Why the __closure__ attribute is not corretly set:
please refer to The community wiki answer.
How to set the __closure__ attribute to what's expected:
Just wrap the whole code str with a helper function definition and call the helper function once, then during compiling, the variables are considered to be local, and will be stored in the __closure__ attribute.
For the minimal demonstration in the question, it can be modified to following:
code = """\
def closure_helper_func():
a=1
def f1():
print(a)
print(f1.__closure__)
f1()
closure_helper_func()
"""
def foo():
exec(code)
foo()
This output as expected
(<cell at 0x0000019CE6239A98: int object at 0x00007FFF42BFA1A0>,)
1
The example above provide a way to add symbols that defined in the code str to the __closure__ For example, in the minimal demo, a=1 is a defined inside the code str. But what if one want to add the local symbols defined outside the code str? For example, in the code snippet in EDIT1 session, the self symbol needs to be added to the __closure__, and the symbol is provided in the locals() when exec() is called. Just add the name of these symbols to the arguments of helper function and you can handle this situation.
The following shows how to fix the problem in EDIT1 session.
class test_wrapper_function():
def __init__(self):
define_function_str = '''\
def closure_helper_func(self):
def temp_func():
return self.func()
self.wrappered_func2 = temp_func
closure_helper_func(self)
'''
exec(define_function_str)
def func(self):
print("hi!")
t = test_wrapper_function()
t.wrappered_func2()
The following shows how to fix the codes in the session "Why I want to do this"
class MyWidget():
def __init__(self):
self.create_slots_family()
def do_something(self, character):
# in fact, this function is much more complex. Do some simplification.
print(character)
def create_slots_i(self, character):
# want to define a function like this:
# if character is 'C', define self.func_C such that self.func_C() works like self.do_something(C)
# create_slot_command_str = "self.func_" + character + " = lambda:self.do_something('" + character + "')"
create_slot_command_str = """
def closure_helper_func(self):
self.func_""" + character + " = lambda:self.do_something('" + character + """')
closure_helper_func(self)
"""
# print(create_slot_command_str)
exec(create_slot_command_str)
def create_slots_family(self):
for c in ["A", "B", "C", "D"]:
self.create_slots_i(c)
my_widget = MyWidget()
my_widget.func_A()
This solution seems to be too tricky. However, I can not find a more elegant way to declare that some variables should be local symbol during compiling.
I'm creating a function dynamically, and trying to pass the handle to a class for pickling:
def my_func():
exec("""def my_collate_fn():
pass""")
loader = DataLoader(collate_fn=my_collate_fn)
This code above will throw an error saying that my_collate_fn is not defined. Weird thing is that during debugging, the handle did actually exist and I can see it under local scope, but it throws error during runtime. Is there something I missed?
For context I'm strongly avoiding lambda since Pytorch's DataLoader class can't pickle them if number of workers greater that 0.
EDIT:
When you call execyou may pass two additional parameters with dicionaries representing the global and local namespaces where the code is run.
When one creates a function with the def statement, is name is bound on the local namespace. If only globals is given, locals actually defaults to be the same dictionary.
If you do not pass a globals parameter to exec it will use the global namespace where it is called from - the function will be set in the runniong context, just as if where typed inline, and you can just use the name you used inside the exec string. Every linter on earth and some other tools will yell at you.
If you simply pass an ordinary dictionary as he globals parameter, you can retrieve your function from there:
from textwrap import dedent as D
#use of dedent will allow you to keep identation inside the string
# conforming to the indentation outside
def my_func():
namespace = {}
exec(D("""\
def my_collate_fn():
pass
"""), namespace)
return namespace["my_collate_fn"]
The bad news: this is even less pickable than a lambda (if that is possible).
If you have to pass functions around that have to be passed as arguments
to sub-processes (for which the internal mechanism is pickling the function), just declare a plain, named function, at global scope, with def. Pickle will do its best to find the function and pass it around by using its __qualname__, and it should work in most cases - just keep it simple.
I was wondering why the following works:
def wrapper():
def wrap(p=10):
def f():
print(p)
f()
return wrap
f2 = wrapper()
f2()
But this doesn't:
def f():
print(p)
def enhance(f):
def wrap(p=10):
f()
return wrap
f2 = enhance(f)
f2() # NameError: name 'p' is not defined
Is there a way I can modify the second scenario so that variable p is defined? I was playing around with function decorators but couldn't figure it out how to expose the variables to the function I'm passing into the decorators.
I think I understand what you are really asking. You're taking about decorators, not variable scope. You say you can't figure out how to "expose the variables to the function I'm passing to the decorators." In your case 2, the function you are passing to enhance doesn't have any variables (arguments). Suppose we give it an argument, like this:
def f(p):
print(p)
def enhance(f):
def wrap(p=10):
f(p) # pass the argument to f
return wrap
f2 = enhance(f)
f2()
Now you have a function, named enhance, which can be used as a decorator. The function to be decorated takes one argument. The decorator will replace this function with a new function, which can be called with one or zero arguments. If called with no arguments it will get the value "10" as a default.
Decorators replace one function with another function. In general it isn't the decorator's job to supply the arguments, except in the case of default arguments as you are trying to do. The arguments come from the code that calls the function.
because in example 2 you’re referencing p that is not defined in one function and used as a parameter in the other function each of which is defined in their own scope.
in example 1 a function defined within the scope of another ie a nested function, has access to the outer functions scope (and therefore its variables)
Can you explain me how the following decorator works:
def set_ev_cls(ev_cls, dispatchers=None):
def _set_ev_cls_dec(handler):
if 'callers' not in dir(handler):
handler.callers = {}
for e in _listify(ev_cls):
handler.callers[e] = _Caller(_listify(dispatchers), e.__module__)
return handler
return _set_ev_cls_dec
#set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def _switch_features_handler(self, ev):
datapath = ev.msg.datapath
....
Please, don't go into details on what's going on inside the function. I'm interested in how the decorator with parameters wrap methods here. By the way, it's a code snippet from Ryu (event registration mechanism).
Thank you in advance
First, a decorator is just a function that gets called with a function. In particular, the following are (almost) the same thing:
#spam
def eggs(arg): pass
def eggs(arg): pass
eggs = spam(eggs)
So, what happens when the decorator takes parameters? Same thing:
#spam(arg2)
def eggs(arg): pass
def eggs(arg): pass
eggs = spam(arg2)(eggs)
Now, notice that the function _set_ev_cls_dec, which is ultimately returned and used in place of _switch_features_handler, is a local function, defined inside the decorator. That means it can be a closure over variables from the outer function—including the parameters of the outer function. So, it can use the handler argument at call time, plus the ev_cls and dispatchers arguments that it got at decoration time.
So:
set_ev_cls_dev creates a local function and returns a closure around its ev_cls and dispatchers arguments, and returns that function.
That closure gets called with _switch_features_handler as its parameter, and it modifies and returns that parameter by adding a callers attribute, which is a dict of _Caller objects built from that closed-over dispatchers parameter and keyed off that closed-over ev_cls parameter.
Explain how it works without detailing what's going on inside? That kind of sounds like "explain without explaining," but here's a rough walkthrough:
Think of set_ev_cls as a factory for decorators. It's there to catch the arguments at the time the decorator is invoked:
#set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
And return a function, _set_ev_cls_dec that has its variables bound to:
ev_cls = ofp_event.EventOFPSwitchFeatures
dispatchers = CONFIG_DISPATCHER
Or put another way, you now have a 'customized' or 'parametrized' dispatcher that's logically equivalent to:
def custom_decorator(handler):
if 'callers' not in dir(handler):
handler.callers = {}
for e in _listify(ofp_event.EventOFPSwitchFeatures):
handler.callers[e] = _Caller(_listify(CONFIG_DISPATCHER), e.__module__)
return handler
(If you captured the values of ofp_event.EventOFPSwitchFeatures and CONFIG_DISPATCHER at the moment the #set_ev_cls(...) was called).
The custom_decorator of step 1 is applied to _switch_features_handleras a more traditional unparameterized decorator.