What does the << / >> operator signify? (Python3) [duplicate] - python

This question already has answers here:
What are bitwise shift (bit-shift) operators and how do they work?
(10 answers)
Closed 10 months ago.
The expression (8 >> 1) evaluates to 4. Additionally, (8 << 1) evaluates to 16. I have no idea what the double arrow operator does, does anybody know?

Double arrow operation is bit-shift.
Basically, it looks at your number in binary then "shifts" your entire number to one place left, or one place right.
For example:
8 >> 1 ->
8 becomes: 00001000
shifting 1 place right: 00000100
which is 4.
Similarly,
8 << 1 ->
8 becomes: 00001000
shifting 1 place left: 00010000
which is 16.
There are some edge cases here and there such as logical shift versus arithmetic shift.
Usually, you can use them to do a very quick operation to multiply a number by 2 or divide them by 2, but that is language-dependent, and needs more detail to understand perfectly. In Python particularly, not so much as explained by #paxdiablo in the comments as follows:
bit shifting left in Python is not necessarily faster than multiplication, it has optimisations to avoid expanding its arbitrary precision integers in the latter case
More details on here: What are bitwise shift (bit-shift) operators and how do they work?

Shifting operators. These operators accept integers as arguments. They shift the first argument to the left (<<) or right (>>) by the number of bits given by the second argument.
One example would be 0101 << 1 = 1010 etc
Image from wikipedia
Read it here.

These operators shift the bits in the number, right >> or left <<. In binary notation, shifting a number to the left yeilds 2 * that number. For example, 3: 0011, 6: 0110, 12: 1100

Related

What is the behavior of the & operator when comparing a list and an integer in Python [duplicate]

Consider this code:
x = 1 # 0001
x << 2 # Shift left 2 bits: 0100
# Result: 4
x | 2 # Bitwise OR: 0011
# Result: 3
x & 1 # Bitwise AND: 0001
# Result: 1
I can understand the arithmetic operators in Python (and other languages), but I never understood 'bitwise' operators quite well. In the above example (from a Python book), I understand the left-shift but not the other two.
Also, what are bitwise operators actually used for? I'd appreciate some examples.
Bitwise operators are operators that work on multi-bit values, but conceptually one bit at a time.
AND is 1 only if both of its inputs are 1, otherwise it's 0.
OR is 1 if one or both of its inputs are 1, otherwise it's 0.
XOR is 1 only if exactly one of its inputs are 1, otherwise it's 0.
NOT is 1 only if its input is 0, otherwise it's 0.
These can often be best shown as truth tables. Input possibilities are on the top and left, the resultant bit is one of the four (two in the case of NOT since it only has one input) values shown at the intersection of the inputs.
AND | 0 1 OR | 0 1 XOR | 0 1 NOT | 0 1
----+----- ---+---- ----+---- ----+----
0 | 0 0 0 | 0 1 0 | 0 1 | 1 0
1 | 0 1 1 | 1 1 1 | 1 0
One example is if you only want the lower 4 bits of an integer, you AND it with 15 (binary 1111) so:
201: 1100 1001
AND 15: 0000 1111
------------------
IS 9 0000 1001
The zero bits in 15 in that case effectively act as a filter, forcing the bits in the result to be zero as well.
In addition, >> and << are often included as bitwise operators, and they "shift" a value respectively right and left by a certain number of bits, throwing away bits that roll of the end you're shifting towards, and feeding in zero bits at the other end.
So, for example:
1001 0101 >> 2 gives 0010 0101
1111 1111 << 4 gives 1111 0000
Note that the left shift in Python is unusual in that it's not using a fixed width where bits are discarded - while many languages use a fixed width based on the data type, Python simply expands the width to cater for extra bits. In order to get the discarding behaviour in Python, you can follow a left shift with a bitwise and such as in an 8-bit value shifting left four bits:
bits8 = (bits8 << 4) & 255
With that in mind, another example of bitwise operators is if you have two 4-bit values that you want to pack into an 8-bit one, you can use all three of your operators (left-shift, and and or):
packed_val = ((val1 & 15) << 4) | (val2 & 15)
The & 15 operation will make sure that both values only have the lower 4 bits.
The << 4 is a 4-bit shift left to move val1 into the top 4 bits of an 8-bit value.
The | simply combines these two together.
If val1 is 7 and val2 is 4:
val1 val2
==== ====
& 15 (and) xxxx-0111 xxxx-0100 & 15
<< 4 (left) 0111-0000 |
| |
+-------+-------+
|
| (or) 0111-0100
One typical usage:
| is used to set a certain bit to 1
& is used to test or clear a certain bit
Set a bit (where n is the bit number, and 0 is the least significant bit):
unsigned char a |= (1 << n);
Clear a bit:
unsigned char b &= ~(1 << n);
Toggle a bit:
unsigned char c ^= (1 << n);
Test a bit:
unsigned char e = d & (1 << n);
Take the case of your list for example:
x | 2 is used to set bit 1 of x to 1
x & 1 is used to test if bit 0 of x is 1 or 0
what are bitwise operators actually used for? I'd appreciate some examples.
One of the most common uses of bitwise operations is for parsing hexadecimal colours.
For example, here's a Python function that accepts a String like #FF09BE and returns a tuple of its Red, Green and Blue values.
def hexToRgb(value):
# Convert string to hexadecimal number (base 16)
num = (int(value.lstrip("#"), 16))
# Shift 16 bits to the right, and then binary AND to obtain 8 bits representing red
r = ((num >> 16) & 0xFF)
# Shift 8 bits to the right, and then binary AND to obtain 8 bits representing green
g = ((num >> 8) & 0xFF)
# Simply binary AND to obtain 8 bits representing blue
b = (num & 0xFF)
return (r, g, b)
I know that there are more efficient ways to acheive this, but I believe that this is a really concise example illustrating both shifts and bitwise boolean operations.
I think that the second part of the question:
Also, what are bitwise operators actually used for? I'd appreciate some examples.
Has been only partially addressed. These are my two cents on that matter.
Bitwise operations in programming languages play a fundamental role when dealing with a lot of applications. Almost all low-level computing must be done using this kind of operations.
In all applications that need to send data between two nodes, such as:
computer networks;
telecommunication applications (cellular phones, satellite communications, etc).
In the lower level layer of communication, the data is usually sent in what is called frames. Frames are just strings of bytes that are sent through a physical channel. This frames usually contain the actual data plus some other fields (coded in bytes) that are part of what is called the header. The header usually contains bytes that encode some information related to the status of the communication (e.g, with flags (bits)), frame counters, correction and error detection codes, etc. To get the transmitted data in a frame, and to build the frames to send data, you will need for sure bitwise operations.
In general, when dealing with that kind of applications, an API is available so you don't have to deal with all those details. For example, all modern programming languages provide libraries for socket connections, so you don't actually need to build the TCP/IP communication frames. But think about the good people that programmed those APIs for you, they had to deal with frame construction for sure; using all kinds of bitwise operations to go back and forth from the low-level to the higher-level communication.
As a concrete example, imagine some one gives you a file that contains raw data that was captured directly by telecommunication hardware. In this case, in order to find the frames, you will need to read the raw bytes in the file and try to find some kind of synchronization words, by scanning the data bit by bit. After identifying the synchronization words, you will need to get the actual frames, and SHIFT them if necessary (and that is just the start of the story) to get the actual data that is being transmitted.
Another very different low level family of application is when you need to control hardware using some (kind of ancient) ports, such as parallel and serial ports. This ports are controlled by setting some bytes, and each bit of that bytes has a specific meaning, in terms of instructions, for that port (see for instance http://en.wikipedia.org/wiki/Parallel_port). If you want to build software that does something with that hardware you will need bitwise operations to translate the instructions you want to execute to the bytes that the port understand.
For example, if you have some physical buttons connected to the parallel port to control some other device, this is a line of code that you can find in the soft application:
read = ((read ^ 0x80) >> 4) & 0x0f;
Hope this contributes.
I didn't see it mentioned above but you will also see some people use left and right shift for arithmetic operations. A left shift by x is equivalent to multiplying by 2^x (as long as it doesn't overflow) and a right shift is equivalent to dividing by 2^x.
Recently I've seen people using x << 1 and x >> 1 for doubling and halving, although I'm not sure if they are just trying to be clever or if there really is a distinct advantage over the normal operators.
I hope this clarifies those two:
x | 2
0001 //x
0010 //2
0011 //result = 3
x & 1
0001 //x
0001 //1
0001 //result = 1
Think of 0 as false and 1 as true. Then bitwise and(&) and or(|) work just like regular and and or except they do all of the bits in the value at once. Typically you will see them used for flags if you have 30 options that can be set (say as draw styles on a window) you don't want to have to pass in 30 separate boolean values to set or unset each one so you use | to combine options into a single value and then you use & to check if each option is set. This style of flag passing is heavily used by OpenGL. Since each bit is a separate flag you get flag values on powers of two(aka numbers that have only one bit set) 1(2^0) 2(2^1) 4(2^2) 8(2^3) the power of two tells you which bit is set if the flag is on.
Also note 2 = 10 so x|2 is 110(6) not 111(7) If none of the bits overlap(which is true in this case) | acts like addition.
Sets
Sets can be combined using mathematical operations.
The union operator | combines two sets to form a new one containing items in either.
The intersection operator & gets items only in both.
The difference operator - gets items in the first set but not in the second.
The symmetric difference operator ^ gets items in either set, but not both.
Try It Yourself:
first = {1, 2, 3, 4, 5, 6}
second = {4, 5, 6, 7, 8, 9}
print(first | second)
print(first & second)
print(first - second)
print(second - first)
print(first ^ second)
Result:
{1, 2, 3, 4, 5, 6, 7, 8, 9}
{4, 5, 6}
{1, 2, 3}
{8, 9, 7}
{1, 2, 3, 7, 8, 9}
This example will show you the operations for all four 2 bit values:
10 | 12
1010 #decimal 10
1100 #decimal 12
1110 #result = 14
10 & 12
1010 #decimal 10
1100 #decimal 12
1000 #result = 8
Here is one example of usage:
x = raw_input('Enter a number:')
print 'x is %s.' % ('even', 'odd')[x&1]
Another common use-case is manipulating/testing file permissions. See the Python stat module: http://docs.python.org/library/stat.html.
For example, to compare a file's permissions to a desired permission set, you could do something like:
import os
import stat
#Get the actual mode of a file
mode = os.stat('file.txt').st_mode
#File should be a regular file, readable and writable by its owner
#Each permission value has a single 'on' bit. Use bitwise or to combine
#them.
desired_mode = stat.S_IFREG|stat.S_IRUSR|stat.S_IWUSR
#check for exact match:
mode == desired_mode
#check for at least one bit matching:
bool(mode & desired_mode)
#check for at least one bit 'on' in one, and not in the other:
bool(mode ^ desired_mode)
#check that all bits from desired_mode are set in mode, but I don't care about
# other bits.
not bool((mode^desired_mode)&desired_mode)
I cast the results as booleans, because I only care about the truth or falsehood, but it would be a worthwhile exercise to print out the bin() values for each one.
Bit representations of integers are often used in scientific computing to represent arrays of true-false information because a bitwise operation is much faster than iterating through an array of booleans. (Higher level languages may use the idea of a bit array.)
A nice and fairly simple example of this is the general solution to the game of Nim. Take a look at the Python code on the Wikipedia page. It makes heavy use of bitwise exclusive or, ^.
There may be a better way to find where an array element is between two values, but as this example shows, the & works here, whereas and does not.
import numpy as np
a=np.array([1.2, 2.3, 3.4])
np.where((a>2) and (a<3))
#Result: Value Error
np.where((a>2) & (a<3))
#Result: (array([1]),)
i didnt see it mentioned, This example will show you the (-) decimal operation for 2 bit values: A-B (only if A contains B)
this operation is needed when we hold an verb in our program that represent bits. sometimes we need to add bits (like above) and sometimes we need to remove bits (if the verb contains then)
111 #decimal 7
-
100 #decimal 4
--------------
011 #decimal 3
with python:
7 & ~4 = 3 (remove from 7 the bits that represent 4)
001 #decimal 1
-
100 #decimal 4
--------------
001 #decimal 1
with python:
1 & ~4 = 1 (remove from 1 the bits that represent 4 - in this case 1 is not 'contains' 4)..
Whilst manipulating bits of an integer is useful, often for network protocols, which may be specified down to the bit, one can require manipulation of longer byte sequences (which aren't easily converted into one integer). In this case it is useful to employ the bitstring library which allows for bitwise operations on data - e.g. one can import the string 'ABCDEFGHIJKLMNOPQ' as a string or as hex and bit shift it (or perform other bitwise operations):
>>> import bitstring
>>> bitstring.BitArray(bytes='ABCDEFGHIJKLMNOPQ') << 4
BitArray('0x142434445464748494a4b4c4d4e4f50510')
>>> bitstring.BitArray(hex='0x4142434445464748494a4b4c4d4e4f5051') << 4
BitArray('0x142434445464748494a4b4c4d4e4f50510')
the following bitwise operators: &, |, ^, and ~ return values (based on their input) in the same way logic gates affect signals. You could use them to emulate circuits.
To flip bits (i.e. 1's complement/invert) you can do the following:
Since value ExORed with all 1s results into inversion,
for a given bit width you can use ExOR to invert them.
In Binary
a=1010 --> this is 0xA or decimal 10
then
c = 1111 ^ a = 0101 --> this is 0xF or decimal 15
-----------------
In Python
a=10
b=15
c = a ^ b --> 0101
print(bin(c)) # gives '0b101'
You can use bit masking to convert binary to decimal;
int a = 1 << 7;
int c = 55;
for(int i = 0; i < 8; i++){
System.out.print((a & c) >> 7);
c = c << 1;
}
this is for 8 digits you can also do for further more.

How do I directly write bits to an integer in python? [duplicate]

Consider this code:
x = 1 # 0001
x << 2 # Shift left 2 bits: 0100
# Result: 4
x | 2 # Bitwise OR: 0011
# Result: 3
x & 1 # Bitwise AND: 0001
# Result: 1
I can understand the arithmetic operators in Python (and other languages), but I never understood 'bitwise' operators quite well. In the above example (from a Python book), I understand the left-shift but not the other two.
Also, what are bitwise operators actually used for? I'd appreciate some examples.
Bitwise operators are operators that work on multi-bit values, but conceptually one bit at a time.
AND is 1 only if both of its inputs are 1, otherwise it's 0.
OR is 1 if one or both of its inputs are 1, otherwise it's 0.
XOR is 1 only if exactly one of its inputs are 1, otherwise it's 0.
NOT is 1 only if its input is 0, otherwise it's 0.
These can often be best shown as truth tables. Input possibilities are on the top and left, the resultant bit is one of the four (two in the case of NOT since it only has one input) values shown at the intersection of the inputs.
AND | 0 1 OR | 0 1 XOR | 0 1 NOT | 0 1
----+----- ---+---- ----+---- ----+----
0 | 0 0 0 | 0 1 0 | 0 1 | 1 0
1 | 0 1 1 | 1 1 1 | 1 0
One example is if you only want the lower 4 bits of an integer, you AND it with 15 (binary 1111) so:
201: 1100 1001
AND 15: 0000 1111
------------------
IS 9 0000 1001
The zero bits in 15 in that case effectively act as a filter, forcing the bits in the result to be zero as well.
In addition, >> and << are often included as bitwise operators, and they "shift" a value respectively right and left by a certain number of bits, throwing away bits that roll of the end you're shifting towards, and feeding in zero bits at the other end.
So, for example:
1001 0101 >> 2 gives 0010 0101
1111 1111 << 4 gives 1111 0000
Note that the left shift in Python is unusual in that it's not using a fixed width where bits are discarded - while many languages use a fixed width based on the data type, Python simply expands the width to cater for extra bits. In order to get the discarding behaviour in Python, you can follow a left shift with a bitwise and such as in an 8-bit value shifting left four bits:
bits8 = (bits8 << 4) & 255
With that in mind, another example of bitwise operators is if you have two 4-bit values that you want to pack into an 8-bit one, you can use all three of your operators (left-shift, and and or):
packed_val = ((val1 & 15) << 4) | (val2 & 15)
The & 15 operation will make sure that both values only have the lower 4 bits.
The << 4 is a 4-bit shift left to move val1 into the top 4 bits of an 8-bit value.
The | simply combines these two together.
If val1 is 7 and val2 is 4:
val1 val2
==== ====
& 15 (and) xxxx-0111 xxxx-0100 & 15
<< 4 (left) 0111-0000 |
| |
+-------+-------+
|
| (or) 0111-0100
One typical usage:
| is used to set a certain bit to 1
& is used to test or clear a certain bit
Set a bit (where n is the bit number, and 0 is the least significant bit):
unsigned char a |= (1 << n);
Clear a bit:
unsigned char b &= ~(1 << n);
Toggle a bit:
unsigned char c ^= (1 << n);
Test a bit:
unsigned char e = d & (1 << n);
Take the case of your list for example:
x | 2 is used to set bit 1 of x to 1
x & 1 is used to test if bit 0 of x is 1 or 0
what are bitwise operators actually used for? I'd appreciate some examples.
One of the most common uses of bitwise operations is for parsing hexadecimal colours.
For example, here's a Python function that accepts a String like #FF09BE and returns a tuple of its Red, Green and Blue values.
def hexToRgb(value):
# Convert string to hexadecimal number (base 16)
num = (int(value.lstrip("#"), 16))
# Shift 16 bits to the right, and then binary AND to obtain 8 bits representing red
r = ((num >> 16) & 0xFF)
# Shift 8 bits to the right, and then binary AND to obtain 8 bits representing green
g = ((num >> 8) & 0xFF)
# Simply binary AND to obtain 8 bits representing blue
b = (num & 0xFF)
return (r, g, b)
I know that there are more efficient ways to acheive this, but I believe that this is a really concise example illustrating both shifts and bitwise boolean operations.
I think that the second part of the question:
Also, what are bitwise operators actually used for? I'd appreciate some examples.
Has been only partially addressed. These are my two cents on that matter.
Bitwise operations in programming languages play a fundamental role when dealing with a lot of applications. Almost all low-level computing must be done using this kind of operations.
In all applications that need to send data between two nodes, such as:
computer networks;
telecommunication applications (cellular phones, satellite communications, etc).
In the lower level layer of communication, the data is usually sent in what is called frames. Frames are just strings of bytes that are sent through a physical channel. This frames usually contain the actual data plus some other fields (coded in bytes) that are part of what is called the header. The header usually contains bytes that encode some information related to the status of the communication (e.g, with flags (bits)), frame counters, correction and error detection codes, etc. To get the transmitted data in a frame, and to build the frames to send data, you will need for sure bitwise operations.
In general, when dealing with that kind of applications, an API is available so you don't have to deal with all those details. For example, all modern programming languages provide libraries for socket connections, so you don't actually need to build the TCP/IP communication frames. But think about the good people that programmed those APIs for you, they had to deal with frame construction for sure; using all kinds of bitwise operations to go back and forth from the low-level to the higher-level communication.
As a concrete example, imagine some one gives you a file that contains raw data that was captured directly by telecommunication hardware. In this case, in order to find the frames, you will need to read the raw bytes in the file and try to find some kind of synchronization words, by scanning the data bit by bit. After identifying the synchronization words, you will need to get the actual frames, and SHIFT them if necessary (and that is just the start of the story) to get the actual data that is being transmitted.
Another very different low level family of application is when you need to control hardware using some (kind of ancient) ports, such as parallel and serial ports. This ports are controlled by setting some bytes, and each bit of that bytes has a specific meaning, in terms of instructions, for that port (see for instance http://en.wikipedia.org/wiki/Parallel_port). If you want to build software that does something with that hardware you will need bitwise operations to translate the instructions you want to execute to the bytes that the port understand.
For example, if you have some physical buttons connected to the parallel port to control some other device, this is a line of code that you can find in the soft application:
read = ((read ^ 0x80) >> 4) & 0x0f;
Hope this contributes.
I didn't see it mentioned above but you will also see some people use left and right shift for arithmetic operations. A left shift by x is equivalent to multiplying by 2^x (as long as it doesn't overflow) and a right shift is equivalent to dividing by 2^x.
Recently I've seen people using x << 1 and x >> 1 for doubling and halving, although I'm not sure if they are just trying to be clever or if there really is a distinct advantage over the normal operators.
I hope this clarifies those two:
x | 2
0001 //x
0010 //2
0011 //result = 3
x & 1
0001 //x
0001 //1
0001 //result = 1
Think of 0 as false and 1 as true. Then bitwise and(&) and or(|) work just like regular and and or except they do all of the bits in the value at once. Typically you will see them used for flags if you have 30 options that can be set (say as draw styles on a window) you don't want to have to pass in 30 separate boolean values to set or unset each one so you use | to combine options into a single value and then you use & to check if each option is set. This style of flag passing is heavily used by OpenGL. Since each bit is a separate flag you get flag values on powers of two(aka numbers that have only one bit set) 1(2^0) 2(2^1) 4(2^2) 8(2^3) the power of two tells you which bit is set if the flag is on.
Also note 2 = 10 so x|2 is 110(6) not 111(7) If none of the bits overlap(which is true in this case) | acts like addition.
Sets
Sets can be combined using mathematical operations.
The union operator | combines two sets to form a new one containing items in either.
The intersection operator & gets items only in both.
The difference operator - gets items in the first set but not in the second.
The symmetric difference operator ^ gets items in either set, but not both.
Try It Yourself:
first = {1, 2, 3, 4, 5, 6}
second = {4, 5, 6, 7, 8, 9}
print(first | second)
print(first & second)
print(first - second)
print(second - first)
print(first ^ second)
Result:
{1, 2, 3, 4, 5, 6, 7, 8, 9}
{4, 5, 6}
{1, 2, 3}
{8, 9, 7}
{1, 2, 3, 7, 8, 9}
This example will show you the operations for all four 2 bit values:
10 | 12
1010 #decimal 10
1100 #decimal 12
1110 #result = 14
10 & 12
1010 #decimal 10
1100 #decimal 12
1000 #result = 8
Here is one example of usage:
x = raw_input('Enter a number:')
print 'x is %s.' % ('even', 'odd')[x&1]
Another common use-case is manipulating/testing file permissions. See the Python stat module: http://docs.python.org/library/stat.html.
For example, to compare a file's permissions to a desired permission set, you could do something like:
import os
import stat
#Get the actual mode of a file
mode = os.stat('file.txt').st_mode
#File should be a regular file, readable and writable by its owner
#Each permission value has a single 'on' bit. Use bitwise or to combine
#them.
desired_mode = stat.S_IFREG|stat.S_IRUSR|stat.S_IWUSR
#check for exact match:
mode == desired_mode
#check for at least one bit matching:
bool(mode & desired_mode)
#check for at least one bit 'on' in one, and not in the other:
bool(mode ^ desired_mode)
#check that all bits from desired_mode are set in mode, but I don't care about
# other bits.
not bool((mode^desired_mode)&desired_mode)
I cast the results as booleans, because I only care about the truth or falsehood, but it would be a worthwhile exercise to print out the bin() values for each one.
Bit representations of integers are often used in scientific computing to represent arrays of true-false information because a bitwise operation is much faster than iterating through an array of booleans. (Higher level languages may use the idea of a bit array.)
A nice and fairly simple example of this is the general solution to the game of Nim. Take a look at the Python code on the Wikipedia page. It makes heavy use of bitwise exclusive or, ^.
There may be a better way to find where an array element is between two values, but as this example shows, the & works here, whereas and does not.
import numpy as np
a=np.array([1.2, 2.3, 3.4])
np.where((a>2) and (a<3))
#Result: Value Error
np.where((a>2) & (a<3))
#Result: (array([1]),)
i didnt see it mentioned, This example will show you the (-) decimal operation for 2 bit values: A-B (only if A contains B)
this operation is needed when we hold an verb in our program that represent bits. sometimes we need to add bits (like above) and sometimes we need to remove bits (if the verb contains then)
111 #decimal 7
-
100 #decimal 4
--------------
011 #decimal 3
with python:
7 & ~4 = 3 (remove from 7 the bits that represent 4)
001 #decimal 1
-
100 #decimal 4
--------------
001 #decimal 1
with python:
1 & ~4 = 1 (remove from 1 the bits that represent 4 - in this case 1 is not 'contains' 4)..
Whilst manipulating bits of an integer is useful, often for network protocols, which may be specified down to the bit, one can require manipulation of longer byte sequences (which aren't easily converted into one integer). In this case it is useful to employ the bitstring library which allows for bitwise operations on data - e.g. one can import the string 'ABCDEFGHIJKLMNOPQ' as a string or as hex and bit shift it (or perform other bitwise operations):
>>> import bitstring
>>> bitstring.BitArray(bytes='ABCDEFGHIJKLMNOPQ') << 4
BitArray('0x142434445464748494a4b4c4d4e4f50510')
>>> bitstring.BitArray(hex='0x4142434445464748494a4b4c4d4e4f5051') << 4
BitArray('0x142434445464748494a4b4c4d4e4f50510')
the following bitwise operators: &, |, ^, and ~ return values (based on their input) in the same way logic gates affect signals. You could use them to emulate circuits.
To flip bits (i.e. 1's complement/invert) you can do the following:
Since value ExORed with all 1s results into inversion,
for a given bit width you can use ExOR to invert them.
In Binary
a=1010 --> this is 0xA or decimal 10
then
c = 1111 ^ a = 0101 --> this is 0xF or decimal 15
-----------------
In Python
a=10
b=15
c = a ^ b --> 0101
print(bin(c)) # gives '0b101'
You can use bit masking to convert binary to decimal;
int a = 1 << 7;
int c = 55;
for(int i = 0; i < 8; i++){
System.out.print((a & c) >> 7);
c = c << 1;
}
this is for 8 digits you can also do for further more.

What does this statement do (bin and int expression)? [duplicate]

Consider this code:
x = 1 # 0001
x << 2 # Shift left 2 bits: 0100
# Result: 4
x | 2 # Bitwise OR: 0011
# Result: 3
x & 1 # Bitwise AND: 0001
# Result: 1
I can understand the arithmetic operators in Python (and other languages), but I never understood 'bitwise' operators quite well. In the above example (from a Python book), I understand the left-shift but not the other two.
Also, what are bitwise operators actually used for? I'd appreciate some examples.
Bitwise operators are operators that work on multi-bit values, but conceptually one bit at a time.
AND is 1 only if both of its inputs are 1, otherwise it's 0.
OR is 1 if one or both of its inputs are 1, otherwise it's 0.
XOR is 1 only if exactly one of its inputs are 1, otherwise it's 0.
NOT is 1 only if its input is 0, otherwise it's 0.
These can often be best shown as truth tables. Input possibilities are on the top and left, the resultant bit is one of the four (two in the case of NOT since it only has one input) values shown at the intersection of the inputs.
AND | 0 1 OR | 0 1 XOR | 0 1 NOT | 0 1
----+----- ---+---- ----+---- ----+----
0 | 0 0 0 | 0 1 0 | 0 1 | 1 0
1 | 0 1 1 | 1 1 1 | 1 0
One example is if you only want the lower 4 bits of an integer, you AND it with 15 (binary 1111) so:
201: 1100 1001
AND 15: 0000 1111
------------------
IS 9 0000 1001
The zero bits in 15 in that case effectively act as a filter, forcing the bits in the result to be zero as well.
In addition, >> and << are often included as bitwise operators, and they "shift" a value respectively right and left by a certain number of bits, throwing away bits that roll of the end you're shifting towards, and feeding in zero bits at the other end.
So, for example:
1001 0101 >> 2 gives 0010 0101
1111 1111 << 4 gives 1111 0000
Note that the left shift in Python is unusual in that it's not using a fixed width where bits are discarded - while many languages use a fixed width based on the data type, Python simply expands the width to cater for extra bits. In order to get the discarding behaviour in Python, you can follow a left shift with a bitwise and such as in an 8-bit value shifting left four bits:
bits8 = (bits8 << 4) & 255
With that in mind, another example of bitwise operators is if you have two 4-bit values that you want to pack into an 8-bit one, you can use all three of your operators (left-shift, and and or):
packed_val = ((val1 & 15) << 4) | (val2 & 15)
The & 15 operation will make sure that both values only have the lower 4 bits.
The << 4 is a 4-bit shift left to move val1 into the top 4 bits of an 8-bit value.
The | simply combines these two together.
If val1 is 7 and val2 is 4:
val1 val2
==== ====
& 15 (and) xxxx-0111 xxxx-0100 & 15
<< 4 (left) 0111-0000 |
| |
+-------+-------+
|
| (or) 0111-0100
One typical usage:
| is used to set a certain bit to 1
& is used to test or clear a certain bit
Set a bit (where n is the bit number, and 0 is the least significant bit):
unsigned char a |= (1 << n);
Clear a bit:
unsigned char b &= ~(1 << n);
Toggle a bit:
unsigned char c ^= (1 << n);
Test a bit:
unsigned char e = d & (1 << n);
Take the case of your list for example:
x | 2 is used to set bit 1 of x to 1
x & 1 is used to test if bit 0 of x is 1 or 0
what are bitwise operators actually used for? I'd appreciate some examples.
One of the most common uses of bitwise operations is for parsing hexadecimal colours.
For example, here's a Python function that accepts a String like #FF09BE and returns a tuple of its Red, Green and Blue values.
def hexToRgb(value):
# Convert string to hexadecimal number (base 16)
num = (int(value.lstrip("#"), 16))
# Shift 16 bits to the right, and then binary AND to obtain 8 bits representing red
r = ((num >> 16) & 0xFF)
# Shift 8 bits to the right, and then binary AND to obtain 8 bits representing green
g = ((num >> 8) & 0xFF)
# Simply binary AND to obtain 8 bits representing blue
b = (num & 0xFF)
return (r, g, b)
I know that there are more efficient ways to acheive this, but I believe that this is a really concise example illustrating both shifts and bitwise boolean operations.
I think that the second part of the question:
Also, what are bitwise operators actually used for? I'd appreciate some examples.
Has been only partially addressed. These are my two cents on that matter.
Bitwise operations in programming languages play a fundamental role when dealing with a lot of applications. Almost all low-level computing must be done using this kind of operations.
In all applications that need to send data between two nodes, such as:
computer networks;
telecommunication applications (cellular phones, satellite communications, etc).
In the lower level layer of communication, the data is usually sent in what is called frames. Frames are just strings of bytes that are sent through a physical channel. This frames usually contain the actual data plus some other fields (coded in bytes) that are part of what is called the header. The header usually contains bytes that encode some information related to the status of the communication (e.g, with flags (bits)), frame counters, correction and error detection codes, etc. To get the transmitted data in a frame, and to build the frames to send data, you will need for sure bitwise operations.
In general, when dealing with that kind of applications, an API is available so you don't have to deal with all those details. For example, all modern programming languages provide libraries for socket connections, so you don't actually need to build the TCP/IP communication frames. But think about the good people that programmed those APIs for you, they had to deal with frame construction for sure; using all kinds of bitwise operations to go back and forth from the low-level to the higher-level communication.
As a concrete example, imagine some one gives you a file that contains raw data that was captured directly by telecommunication hardware. In this case, in order to find the frames, you will need to read the raw bytes in the file and try to find some kind of synchronization words, by scanning the data bit by bit. After identifying the synchronization words, you will need to get the actual frames, and SHIFT them if necessary (and that is just the start of the story) to get the actual data that is being transmitted.
Another very different low level family of application is when you need to control hardware using some (kind of ancient) ports, such as parallel and serial ports. This ports are controlled by setting some bytes, and each bit of that bytes has a specific meaning, in terms of instructions, for that port (see for instance http://en.wikipedia.org/wiki/Parallel_port). If you want to build software that does something with that hardware you will need bitwise operations to translate the instructions you want to execute to the bytes that the port understand.
For example, if you have some physical buttons connected to the parallel port to control some other device, this is a line of code that you can find in the soft application:
read = ((read ^ 0x80) >> 4) & 0x0f;
Hope this contributes.
I didn't see it mentioned above but you will also see some people use left and right shift for arithmetic operations. A left shift by x is equivalent to multiplying by 2^x (as long as it doesn't overflow) and a right shift is equivalent to dividing by 2^x.
Recently I've seen people using x << 1 and x >> 1 for doubling and halving, although I'm not sure if they are just trying to be clever or if there really is a distinct advantage over the normal operators.
I hope this clarifies those two:
x | 2
0001 //x
0010 //2
0011 //result = 3
x & 1
0001 //x
0001 //1
0001 //result = 1
Think of 0 as false and 1 as true. Then bitwise and(&) and or(|) work just like regular and and or except they do all of the bits in the value at once. Typically you will see them used for flags if you have 30 options that can be set (say as draw styles on a window) you don't want to have to pass in 30 separate boolean values to set or unset each one so you use | to combine options into a single value and then you use & to check if each option is set. This style of flag passing is heavily used by OpenGL. Since each bit is a separate flag you get flag values on powers of two(aka numbers that have only one bit set) 1(2^0) 2(2^1) 4(2^2) 8(2^3) the power of two tells you which bit is set if the flag is on.
Also note 2 = 10 so x|2 is 110(6) not 111(7) If none of the bits overlap(which is true in this case) | acts like addition.
Sets
Sets can be combined using mathematical operations.
The union operator | combines two sets to form a new one containing items in either.
The intersection operator & gets items only in both.
The difference operator - gets items in the first set but not in the second.
The symmetric difference operator ^ gets items in either set, but not both.
Try It Yourself:
first = {1, 2, 3, 4, 5, 6}
second = {4, 5, 6, 7, 8, 9}
print(first | second)
print(first & second)
print(first - second)
print(second - first)
print(first ^ second)
Result:
{1, 2, 3, 4, 5, 6, 7, 8, 9}
{4, 5, 6}
{1, 2, 3}
{8, 9, 7}
{1, 2, 3, 7, 8, 9}
This example will show you the operations for all four 2 bit values:
10 | 12
1010 #decimal 10
1100 #decimal 12
1110 #result = 14
10 & 12
1010 #decimal 10
1100 #decimal 12
1000 #result = 8
Here is one example of usage:
x = raw_input('Enter a number:')
print 'x is %s.' % ('even', 'odd')[x&1]
Another common use-case is manipulating/testing file permissions. See the Python stat module: http://docs.python.org/library/stat.html.
For example, to compare a file's permissions to a desired permission set, you could do something like:
import os
import stat
#Get the actual mode of a file
mode = os.stat('file.txt').st_mode
#File should be a regular file, readable and writable by its owner
#Each permission value has a single 'on' bit. Use bitwise or to combine
#them.
desired_mode = stat.S_IFREG|stat.S_IRUSR|stat.S_IWUSR
#check for exact match:
mode == desired_mode
#check for at least one bit matching:
bool(mode & desired_mode)
#check for at least one bit 'on' in one, and not in the other:
bool(mode ^ desired_mode)
#check that all bits from desired_mode are set in mode, but I don't care about
# other bits.
not bool((mode^desired_mode)&desired_mode)
I cast the results as booleans, because I only care about the truth or falsehood, but it would be a worthwhile exercise to print out the bin() values for each one.
Bit representations of integers are often used in scientific computing to represent arrays of true-false information because a bitwise operation is much faster than iterating through an array of booleans. (Higher level languages may use the idea of a bit array.)
A nice and fairly simple example of this is the general solution to the game of Nim. Take a look at the Python code on the Wikipedia page. It makes heavy use of bitwise exclusive or, ^.
There may be a better way to find where an array element is between two values, but as this example shows, the & works here, whereas and does not.
import numpy as np
a=np.array([1.2, 2.3, 3.4])
np.where((a>2) and (a<3))
#Result: Value Error
np.where((a>2) & (a<3))
#Result: (array([1]),)
i didnt see it mentioned, This example will show you the (-) decimal operation for 2 bit values: A-B (only if A contains B)
this operation is needed when we hold an verb in our program that represent bits. sometimes we need to add bits (like above) and sometimes we need to remove bits (if the verb contains then)
111 #decimal 7
-
100 #decimal 4
--------------
011 #decimal 3
with python:
7 & ~4 = 3 (remove from 7 the bits that represent 4)
001 #decimal 1
-
100 #decimal 4
--------------
001 #decimal 1
with python:
1 & ~4 = 1 (remove from 1 the bits that represent 4 - in this case 1 is not 'contains' 4)..
Whilst manipulating bits of an integer is useful, often for network protocols, which may be specified down to the bit, one can require manipulation of longer byte sequences (which aren't easily converted into one integer). In this case it is useful to employ the bitstring library which allows for bitwise operations on data - e.g. one can import the string 'ABCDEFGHIJKLMNOPQ' as a string or as hex and bit shift it (or perform other bitwise operations):
>>> import bitstring
>>> bitstring.BitArray(bytes='ABCDEFGHIJKLMNOPQ') << 4
BitArray('0x142434445464748494a4b4c4d4e4f50510')
>>> bitstring.BitArray(hex='0x4142434445464748494a4b4c4d4e4f5051') << 4
BitArray('0x142434445464748494a4b4c4d4e4f50510')
the following bitwise operators: &, |, ^, and ~ return values (based on their input) in the same way logic gates affect signals. You could use them to emulate circuits.
To flip bits (i.e. 1's complement/invert) you can do the following:
Since value ExORed with all 1s results into inversion,
for a given bit width you can use ExOR to invert them.
In Binary
a=1010 --> this is 0xA or decimal 10
then
c = 1111 ^ a = 0101 --> this is 0xF or decimal 15
-----------------
In Python
a=10
b=15
c = a ^ b --> 0101
print(bin(c)) # gives '0b101'
You can use bit masking to convert binary to decimal;
int a = 1 << 7;
int c = 55;
for(int i = 0; i < 8; i++){
System.out.print((a & c) >> 7);
c = c << 1;
}
this is for 8 digits you can also do for further more.

why ~9 returns -10 in Python [duplicate]

This question already has answers here:
what does the '~' mean in python? [duplicate]
(4 answers)
Closed 7 years ago.
I am trying the following code and here are the outputs, anyone have ideas why -10 and -11 are returned?
print ~9
print ~10
-10
-11
BTW, I am using Python 2.7.8.
From:
Python Doc
The unary ~ (invert) operator yields the bitwise inversion of its plain or long integer argument. The bitwise inversion of x is defined as -(x+1). It only applies to integral numbers.
From:
Python Doc
Two's Complement binary for Negative Integers:
Negative numbers are written with a leading one instead of a leading zero. So if you are using only 8 bits for your twos-complement numbers, then you treat patterns from "00000000" to "01111111" as the whole numbers from 0 to 127, and reserve "1xxxxxxx" for writing negative numbers. A negative number, -x, is written using the bit pattern for (x-1) with all of the bits complemented (switched from 1 to 0 or 0 to 1). So -1 is complement(1 - 1) = complement(0) = "11111111", and -10 is complement(10 - 1) = complement(9) = complement("00001001") = "11110110". This means that negative numbers go all the way down to -128 ("10000000").
~x Returns the complement of x - the number you get by switching each 1 for a 0 and each 0 for a 1. This is the same as -x - 1.

Best way to overwrite some bits in a particular range

Given a series of bits, what's the best way to overwrite a particular range of them.
For example, given:
0100 1010
Say I want to overwrite the middle 2 bits with 10 to make the result:
0101 0010
What would be the best way of doing this?
At first, I thought I would just shift the overwriting bits I want to the correct position (10000), and then use a bitwise OR. But I realized that while it preserves the other bits, there's no way of specifying which bits I want to actually overwrite.
I was looking into Python's bitarray module, but I just want to double-check that I'm not looking over an extremely simple bitwise operation to do this for me.
Thanks.
This is done by first masking the bits you want to erase (forcing them to zero while preserving the other bits) before applying the bitwise OR.
Use a bitwise AND with the pattern (in this case) 11100111.
If you already have a "positive" version of the pattern (here this would be 00011000), which is easier to generate, you can obtain the "negative" version 11100111 using what is called 1's complement, available as ~ in Python and most languages with a C-like syntax.
a = 0b01001010
a &= 0b11100111
a |= 0b00010000
The and first zeroes the target bits:
01001010
& 11100111
--------
01000010
then the or fills them with the desired data:
01000010
| 00010000
--------
01010010
I see you got excellent answers in the "bit manipulation" vein. If you have to do a lot of this, though, I would still recommend reading the discussion here and links therefrom, and, as that wiki suggests, a few of the packages found this way (BitVector, BitPacket, bitarray) -- readability is important, and experience shows that removing non-obvious inline code from your application-level flow in favor of calls to well-named APIs enhances it.
If you do decide to go with manipulation, automatic generation of the bit-ranges masks given bit-indices is clearly crucial. I would recommend starting with an "atomic bitmask" with just one 1 bit, built by shifting:
>>> bin(1 << 7)
'0b10000000'
as you see, 1 << 7 has a one followed by 7 zeros -- and therefore:
>>> bin((1 << 7) - 1)
'0b1111111'
(1 << 7) - 1 has exactly 7 ones (you need the parentheses because the priority of the shifting operator << is lower than that of the subtraction operator -) as the least significant bits aka LSB (and of course all zeros left of that).
Given an easy way to make "a bitmask with N ones" (as the LSB), making ones with bits N included to M excluded set and all other cleared is easy -- using named functions for extra readability:
>>> def n_lsb(x): return (1 << x) - 1
...
>>> def n_to_m(n, m): return n_lsb(n) & ~ n_lsb(m)
...
>>> bin(n_to_m(7, 3))
'0b1111000'
So, now, to set bits N included to M excluded to a certain pattern, as other answers have shown:
>>> def set_bits(i, n, m, pat): return (i & ~n_to_m(n, m))|(pat<<m)
...
>>> bin(set_bits(511, 7, 3, 0b0101))
'0b110101111'
While this answer does not, per se, allow you to do anything more than the others, I do hope it can help "teach you to fish" (vs. just giving you a fish;-) and thereby help you (and other readers) in the future.
BTW, I would recommend reducing to a minimum the mix of bitwise and arithmetic operations -- in this A the only arithmetic operation I use is that - 1 in n_lsb, a hopefully very clear case; in more general cases, two's complement arithmetic (what ordinary integer arithmetic looks like when looked at from a bitwise point of view) could be tricky.
You can do it in 2 steps:
Create a number with all the 0's you
want to write in that looks like
1111 0111 and use an AND
Create a number with all the 1's
that looks like 0001 0000 and use
an OR
BTW: The first number can easily be created by subtracting a 1 shifted into the position of your zeros from 255. So for example, do 255 - (0000 1000).
a = 255 - (1 << x)
b = 1 << y
result = (source & a) | b
where x and y are the positions of your respective bits.
>>> bin(0b01001010 & 0b11110111 | 0b00010000)
'0b1010010'
This is a small basic set of bitwise functions I made from a couple of answers( Thanks to #Alex Martelli for the great answer).
Just open a new python file call it BITManipulation.py copy this code to it import it from your code and you can access all the functions without any need for working with bits.
Anyway I always suggest to understand how it work deeply.
"""
BitManipulation.py
This file is used to define some basic bit manipulations functions
"""
##func: get_bit
##params: value,n
##return: the N-th bit from value
def get_bit(value, n):
return ((value >> n & 1) != 0)
##func: set_bit
##params: value,n
##return: value with the N-th bit Set to 1
def set_bit(value, n):
return value | (1 << n)
##func: clear_bit
##params: value,n
##return: value with the N-th bit Set to 0
def clear_bit(value, n):
return value & ~(1 << n)
##func: n_lsb
##params: x ( Example 7)
##return: a number with exactly x bits of 1 ( Example 0b1111111 )
def n_lsb(x):
return (1 << x) - 1
##func: n_to_m
##params: n,m (n > m)( Example 5,3 )
##return: a number with bits n -> m set to 1 ( Example 0b00011000 )
def n_to_m(n, m):
return n_lsb(n) & ~ n_lsb(m)
##func: set_bits
##params: x,n,m,pat (n > m)( Example 511,5,3,0b0101 )
##return: sets bits n -> m in x to pat ( Example 0b110101111 )
def set_bits(x, n, m, pat):
return (x & ~n_to_m(n, m))|(pat<<m)

Categories