How to integrate backspace functionality in a program? - python

I have created a program that prints a character whenever that character is pressed but when i press "backspace" button to remove the last entered character then that character does not get removed
How to integrate backspace functionality in a program so while typing when i press backspace then the last character should get removed?
from dataclasses import field
from pynput import keyboard
import os
import sys
def on_press(key):
try:
#print('Alphanumeric key pressed: {0} '.format(
# key.char))
file.write('{0}'.format(key.char))
except AttributeError:
#print('special key pressed: {0}'.format(
# key))
#file.write('\nSpecial key pressed: {0}'.format(key))
if(key == keyboard.Key.enter):
file.write("\n")
elif(key == keyboard.Key.space):
file.write(" ")
elif(key == keyboard.Key.esc):
file.write("\nLogging Ended")
elif(key == keyboard.Key.backspace):
#Backspace code
def on_release(key):
#print('Key released: {0}'.format(
# key))
if key == keyboard.Key.esc:
# Stop listener
file.close()
return False
# Collect events until released
with keyboard.Listener(
on_press=on_press,
on_release=on_release) as listener:
save_path = os.path.join(os.path.join(os.environ['USERPROFILE']), 'Desktop')
file_name = "A Text.txt"
completeName = os.path.join(save_path, file_name)
try:
file = open(completeName,'x')
except:
file = open(completeName, "a")
file.write("\n\n")
listener.join()

What you want to do is possible, but kind of ugly, because arbitrary relative seeking within a text file is not allowed (since the encoding could easily be variable length, so a .seek(-1, io.SEEK_END), to jump back one character, would involve potentially jumping back 1-4 bytes, and Python won't try to do that).
If you want to make it work, you'll need to do two things:
Don't use 'a' mode for your file (it's fine to have it function as opening for append, but you have to simulate it by opening for write and seeking to the end, so you're allowed to seek within the file)
Before each write to the file, store a cookie for the current position in the file. When you hit backspace, use that cookie to seek to before the write in question and truncate.
This code does all those things and seems to work for me. Comments inline on changes (I deleted unused imports and your own commented out code to keep it succinct).
from pynput import keyboard
import os
from io import SEEK_END # You could just pass 2 as whence, but name is self-documenting
cookies = [] # List of file offset cookies from .tell() calls
def on_press(key):
cookies.append(file.tell())
try:
file.write(f'{key.char}') # Use f-string for shorter/faster code
except AttributeError:
# Deleted unnecessary parens around conditions; Python doesn't need 'em, don't use 'em
if key == keyboard.Key.enter:
file.write("\n")
elif key == keyboard.Key.space:
file.write(" ")
elif key == keyboard.Key.esc:
file.write("\nLogging Ended")
else:
# Any character that doesn't lead to a write should delete the associated
# cookie we just stored
del cookies[-1]
# backspace is a special case of non-writing key
if key == keyboard.Key.backspace:
try:
file.seek(cookies.pop()) # Prior cookie marks position before most
# recent write; seek to before it
file.truncate() # Remove data after that point
except IndexError:
pass # When nothing added yet, backspace does nothing, that's okay
def on_release(key):
if key == keyboard.Key.esc:
# Stop listener
file.close()
return False
# Collect events until released
with keyboard.Listener(
on_press=on_press,
on_release=on_release) as listener:
save_path = os.path.join(os.path.join(os.environ['USERPROFILE']), 'Desktop')
file_name = "A Text.txt"
completeName = os.path.join(save_path, file_name)
try:
file = open(completeName, 'x')
except FileExistsError: # Never use bare except; handle only exceptions you expect
file = open(completeName, 'r+') # Can't use 'a' as it auto-seeks to end of file
# causing problem for manual seeking; don't want 'w'
# because it erases data
file.seek(0, SEEK_END) # 'w' + seeking to end manually fine for our purposes
file.write("\n\n")
listener.join()
For efficiency, it might make sense to only do cookies.append(file.tell()) when you know you're going to write, but frankly, if you're accepting input from a user typing, the I/O involved in potentially overdoing .tell() calls and repeatedly adding/removing an element from cookies is meaningless next to slow human typing.
Note that this design:
Does not allow you to backspace into data from prior runs of the program (the first cookie would correspond to just after the two newlines you insert at the beginning). If you really needed to do so, you could build cookies from any existing file by replacing:
file = open(completeName, 'r+')
file.seek(0, SEEK_END)
with:
file = open(completeName, 'r+')
cookies.append(0)
while c := f.read(1):
cookies.append(f.tell())
file.seek(0, SEEK_END) # Probably not strictly necessary, but nice to be clear all offsets should be at end now
to prepopulate cookies for the existing data.
Treats an output as an atomic unit; right now, the only output that isn't a single character is Esc (which ends the program, so backspaces won't typically follow it, though there is the possibility of holding down Esc then typing backspace I guess), so this won't come up, but if you write multiple characters per keypress, this will delete a whole keypress's worth of output, not just one character. That might be what you want, but if it's not, you'd need to get ugly and do a loop of writing and appending to cookies similar to the one for building cookies from an existing file above.

Your problem most likely lays in that you open your file in 'a' mode (append mode) and therefore you will not be able to change the contents before the previous ending of the file.
If you open the file, read the contents and then again open the file with the 'w' operator (write) you are able to change the contents in which every way you prefer.
# This now stores the full content in a string which can be manipulated.
file_contents = = open(completeName, 'r').read() # must first read content before opening with w to ensure no loss of content
file = open(completeName, 'w')
Then the backspace implementation becomes very easy:
def on_press(key):
try:
#print('Alphanumeric key pressed: {0} '.format(
# key.char))
file_content += f"{key.char}"
except AttributeError:
#print('special key pressed: {0}'.format(
# key))
#file.write('\nSpecial key pressed: {0}'.format(key))
if(key == keyboard.Key.enter):
file_content += "\n"
elif(key == keyboard.Key.space):
file_content += " "
elif(key == keyboard.Key.esc):
file_content += "\nLogging Ended"
elif(key == keyboard.Key.backspace):
file_content = file_content[:-1]
And in the closing argument you instead write the contents to the file and then close it.
def on_release(key):
#print('Key released: {0}'.format(
# key))
if key == keyboard.Key.esc:
# Stop listener
file.write(file_content)
return False

Working Method:
from dataclasses import field
from pynput import keyboard
import os
import sys
output = []
def on_press(key):
try:
output.append(key.char)
except AttributeError:
if(key == keyboard.Key.enter):
output.append('\n')
elif(key == keyboard.Key.space):
output.append(' ')
elif(key == keyboard.Key.backspace):
output.pop()
def on_release(key):
if key == keyboard.Key.esc:
output.append("\nLogging Ended")
return False
# Collect events until released
with keyboard.Listener(on_press=on_press, on_release=on_release) as listener:
# save_path = os.path.join(os.path.join('~/'), 'Desktop')
file_name = "A Text.txt"
completeName = os.path.join(file_name)
with open(completeName, 'w') as file:
file.write("\n\n")
listener.join()
file.writelines(output)

Related

detect if pressed escape key during write input (keyboard) Python [duplicate]

I am making a stopwatch type program in Python and I would like to know how to detect if a key is pressed (such as p for pause and s for stop), and I would not like it to be something like raw_input, which waits for the user's input before continuing execution.
Anyone know how to do this in a while loop?
I would like to make this cross-platform but, if that is not possible, then my main development target is Linux.
Python has a keyboard module with many features. Install it, perhaps with this command:
pip3 install keyboard
Then use it in code like:
import keyboard # using module keyboard
while True: # making a loop
try: # used try so that if user pressed other than the given key error will not be shown
if keyboard.is_pressed('q'): # if key 'q' is pressed
print('You Pressed A Key!')
break # finishing the loop
except:
break # if user pressed a key other than the given key the loop will break
For those who are on windows and were struggling to find an working answer here's mine: pynput
from pynput.keyboard import Key, Listener
def on_press(key):
print('{0} pressed'.format(
key))
def on_release(key):
print('{0} release'.format(
key))
if key == Key.esc:
# Stop listener
return False
# Collect events until released
with Listener(
on_press=on_press,
on_release=on_release) as listener:
listener.join()
The function above will print whichever key you are pressing plus start an action as you release the 'esc' key. The keyboard documentation is here for a more variated usage.
Markus von Broady highlighted a potential issue that is: This answer doesn't require you being in the current window to this script be activated, a solution to windows would be:
from win32gui import GetWindowText, GetForegroundWindow
current_window = (GetWindowText(GetForegroundWindow()))
desired_window_name = "Stopwatch" #Whatever the name of your window should be
#Infinite loops are dangerous.
while True: #Don't rely on this line of code too much and make sure to adapt this to your project.
if current_window == desired_window_name:
with Listener(
on_press=on_press,
on_release=on_release) as listener:
listener.join()
More things can be done with keyboard module.
You can install this module using pip install keyboard
Here are some of the methods:
Method #1:
Using the function read_key():
import keyboard
while True:
if keyboard.read_key() == "p":
print("You pressed p")
break
This is gonna break the loop as the key p is pressed.
Method #2:
Using function wait:
import keyboard
keyboard.wait("p")
print("You pressed p")
It will wait for you to press p and continue the code as it is pressed.
Method #3:
Using the function on_press_key:
import keyboard
keyboard.on_press_key("p", lambda _:print("You pressed p"))
It needs a callback function. I used _ because the keyboard function returns the keyboard event to that function.
Once executed, it will run the function when the key is pressed. You can stop all hooks by running this line:
keyboard.unhook_all()
Method #4:
This method is sort of already answered by user8167727 but I disagree with the code they made. It will be using the function is_pressed but in an other way:
import keyboard
while True:
if keyboard.is_pressed("p"):
print("You pressed p")
break
It will break the loop as p is pressed.
Method #5:
You can use keyboard.record as well. It records all keys pressed and released until you press the escape key or the one you've defined in until arg and returns a list of keyboard.KeyboardEvent elements.
import keyboard
keyboard.record(until="p")
print("You pressed p")
Notes:
keyboard will read keypresses from the whole OS.
keyboard requires root on linux
As OP mention about raw_input - that means he want cli solution.
Linux: curses is what you want (windows PDCurses). Curses, is an graphical API for cli software, you can achieve more than just detect key events.
This code will detect keys until new line is pressed.
import curses
import os
def main(win):
win.nodelay(True)
key=""
win.clear()
win.addstr("Detected key:")
while 1:
try:
key = win.getkey()
win.clear()
win.addstr("Detected key:")
win.addstr(str(key))
if key == os.linesep:
break
except Exception as e:
# No input
pass
curses.wrapper(main)
For Windows you could use msvcrt like this:
import msvcrt
while True:
if msvcrt.kbhit():
key = msvcrt.getch()
print(key) # just to show the result
Use this code for find the which key pressed
from pynput import keyboard
def on_press(key):
try:
print('alphanumeric key {0} pressed'.format(
key.char))
except AttributeError:
print('special key {0} pressed'.format(
key))
def on_release(key):
print('{0} released'.format(
key))
if key == keyboard.Key.esc:
# Stop listener
return False
# Collect events until released
with keyboard.Listener(
on_press=on_press,
on_release=on_release) as listener:
listener.join()
Use PyGame to have a window and then you can get the key events.
For the letter p:
import pygame, sys
import pygame.locals
pygame.init()
BLACK = (0,0,0)
WIDTH = 1280
HEIGHT = 1024
windowSurface = pygame.display.set_mode((WIDTH, HEIGHT), 0, 32)
windowSurface.fill(BLACK)
while True:
for event in pygame.event.get():
if event.key == pygame.K_p: # replace the 'p' to whatever key you wanted to be pressed
pass #Do what you want to here
if event.type == pygame.locals.QUIT:
pygame.quit()
sys.exit()
neoDev's comment at the question itself might be easy to miss, but it links to a solution not mentioned in any answer here.
There is no need to import keyboard with this solution.
Solution copied from this other question, all credits to #neoDev.
This worked for me on macOS Sierra and Python 2.7.10 and 3.6.3
import sys,tty,os,termios
def getkey():
old_settings = termios.tcgetattr(sys.stdin)
tty.setcbreak(sys.stdin.fileno())
try:
while True:
b = os.read(sys.stdin.fileno(), 3).decode()
if len(b) == 3:
k = ord(b[2])
else:
k = ord(b)
key_mapping = {
127: 'backspace',
10: 'return',
32: 'space',
9: 'tab',
27: 'esc',
65: 'up',
66: 'down',
67: 'right',
68: 'left'
}
return key_mapping.get(k, chr(k))
finally:
termios.tcsetattr(sys.stdin, termios.TCSADRAIN, old_settings)
try:
while True:
k = getkey()
if k == 'esc':
quit()
else:
print(k)
except (KeyboardInterrupt, SystemExit):
os.system('stty sane')
print('stopping.')
Non-root version that works even through ssh: sshkeyboard. Install with pip install sshkeyboard,
then write script such as:
from sshkeyboard import listen_keyboard
def press(key):
print(f"'{key}' pressed")
def release(key):
print(f"'{key}' released")
listen_keyboard(
on_press=press,
on_release=release,
)
And it will print:
'a' pressed
'a' released
When A key is pressed. ESC key ends the listening by default.
It requires less coding than for example curses, tkinter and getch. And it does not require root access like keyboard module.
You don't mention if this is a GUI program or not, but most GUI packages include a way to capture and handle keyboard input. For example, with tkinter (in Py3), you can bind to a certain event and then handle it in a function. For example:
import tkinter as tk
def key_handler(event=None):
if event and event.keysym in ('s', 'p'):
'do something'
r = tk.Tk()
t = tk.Text()
t.pack()
r.bind('<Key>', key_handler)
r.mainloop()
With the above, when you type into the Text widget, the key_handler routine gets called for each (or almost each) key you press.
I made this kind of game based on this post (using msvcr library and Python 3.7).
The following is the main function of the game, that is detecting the keys pressed:
import msvcrt
def _secret_key(self):
# Get the key pressed by the user and check if he/she wins.
bk = chr(10) + "-"*25 + chr(10)
while True:
print(bk + "Press any key(s)" + bk)
#asks the user to type any key(s)
kp = str(msvcrt.getch()).replace("b'", "").replace("'", "")
# Store key's value.
if r'\xe0' in kp:
kp += str(msvcrt.getch()).replace("b'", "").replace("'", "")
# Refactor the variable in case of multi press.
if kp == r'\xe0\x8a':
# If user pressed the secret key, the game ends.
# \x8a is CTRL+F12, that's the secret key.
print(bk + "CONGRATULATIONS YOU PRESSED THE SECRET KEYS!\a" + bk)
print("Press any key to exit the game")
msvcrt.getch()
break
else:
print(" You pressed:'", kp + "', that's not the secret key(s)\n")
if self.select_continue() == "n":
if self.secondary_options():
self._main_menu()
break
If you want the full source code of the program you can see it or download it from GitHub
The secret keypress is:
Ctrl+F12
Using the keyboard package, especially on linux is not an apt solution because that package requires root privileges to run. We can easily implement this with the getkey package. This is analogous to the C language function getchar.
Install it:
pip install getkey
And use it:
from getkey import getkey
while True: #Breaks when key is pressed
key = getkey()
print(key) #Optionally prints out the key.
break
We can add this in a function to return the pressed key.
def Ginput(str):
"""
Now, this function is like the native input() function. It can accept a prompt string, print it out, and when one key is pressed, it will return the key to the caller.
"""
print(str, end='')
while True:
key = getkey()
print(key)
return key
Use like this:
inp = Ginput("\n Press any key to continue: ")
print("You pressed " + inp)
import cv2
key = cv2.waitKey(1)
This is from the openCV package. The delay arg is the number of milliseconds it will wait for a keypress. In this case, 1ms. Per the docs, pollKey() can be used without waiting.
The curses module does that job.
You can test it running this example from the terminal:
import curses
screen = curses.initscr()
curses.noecho()
curses.cbreak()
screen.keypad(True)
try:
while True:
char = screen.getch()
if char == ord('q'):
break
elif char == curses.KEY_UP:
print('up')
elif char == curses.KEY_DOWN:
print('down')
elif char == curses.KEY_RIGHT:
print('right')
elif char == curses.KEY_LEFT:
print('left')
elif char == ord('s'):
print('stop')
finally:
curses.nocbreak(); screen.keypad(0); curses.echo()
curses.endwin()
Here is a cross-platform solution, both blocking and non-blocking, not requiring any external libraries:
import contextlib as _contextlib
try:
import msvcrt as _msvcrt
# Length 0 sequences, length 1 sequences...
_ESCAPE_SEQUENCES = [frozenset(("\x00", "\xe0"))]
_next_input = _msvcrt.getwch
_set_terminal_raw = _contextlib.nullcontext
_input_ready = _msvcrt.kbhit
except ImportError: # Unix
import sys as _sys, tty as _tty, termios as _termios, \
select as _select, functools as _functools
# Length 0 sequences, length 1 sequences...
_ESCAPE_SEQUENCES = [
frozenset(("\x1b",)),
frozenset(("\x1b\x5b", "\x1b\x4f"))]
#_contextlib.contextmanager
def _set_terminal_raw():
fd = _sys.stdin.fileno()
old_settings = _termios.tcgetattr(fd)
try:
_tty.setraw(_sys.stdin.fileno())
yield
finally:
_termios.tcsetattr(fd, _termios.TCSADRAIN, old_settings)
_next_input = _functools.partial(_sys.stdin.read, 1)
def _input_ready():
return _select.select([_sys.stdin], [], [], 0) == ([_sys.stdin], [], [])
_MAX_ESCAPE_SEQUENCE_LENGTH = len(_ESCAPE_SEQUENCES)
def _get_keystroke():
key = _next_input()
while (len(key) <= _MAX_ESCAPE_SEQUENCE_LENGTH and
key in _ESCAPE_SEQUENCES[len(key)-1]):
key += _next_input()
return key
def _flush():
while _input_ready():
_next_input()
def key_pressed(key: str = None, *, flush: bool = True) -> bool:
"""Return True if the specified key has been pressed
Args:
key: The key to check for. If None, any key will do.
flush: If True (default), flush the input buffer after the key was found.
Return:
boolean stating whether a key was pressed.
"""
with _set_terminal_raw():
if key is None:
if not _input_ready():
return False
if flush:
_flush()
return True
while _input_ready():
keystroke = _get_keystroke()
if keystroke == key:
if flush:
_flush()
return True
return False
def print_key() -> None:
"""Print the key that was pressed
Useful for debugging and figuring out keys.
"""
with _set_terminal_raw():
_flush()
print("\\x" + "\\x".join(map("{:02x}".format, map(ord, _get_keystroke()))))
def wait_key(key=None, *, pre_flush=False, post_flush=True) -> str:
"""Wait for a specific key to be pressed.
Args:
key: The key to check for. If None, any key will do.
pre_flush: If True, flush the input buffer before waiting for input.
Useful in case you wish to ignore previously pressed keys.
post_flush: If True (default), flush the input buffer after the key was
found. Useful for ignoring multiple key-presses.
Returns:
The key that was pressed.
"""
with _set_terminal_raw():
if pre_flush:
_flush()
if key is None:
key = _get_keystroke()
if post_flush:
_flush()
return key
while _get_keystroke() != key:
pass
if post_flush:
_flush()
return key
You can use key_pressed() inside a while loop:
while True:
time.sleep(5)
if key_pressed():
break
You can also check for a specific key:
while True:
time.sleep(5)
if key_pressed("\x00\x48"): # Up arrow key on Windows.
break
Find out special keys using print_key():
>>> print_key()
# Press up key
\x00\x48
Or wait until a certain key is pressed:
>>> wait_key("a") # Stop and ignore all inputs until "a" is pressed.
You can use pygame's get_pressed():
import pygame
while True:
keys = pygame.key.get_pressed()
if (keys[pygame.K_LEFT]):
pos_x -= 5
elif (keys[pygame.K_RIGHT]):
pos_x += 5
elif (keys[pygame.K_UP]):
pos_y -= 5
elif (keys[pygame.K_DOWN]):
pos_y += 5
I was finding how to detect different key presses subsequently until e.g. Ctrl + C break the program from listening and responding to different key presses accordingly.
Using following code,
while True:
if keyboard.is_pressed("down"):
print("Reach the bottom!")
if keyboard.is_pressed("up"):
print("Reach the top!")
if keyboard.is_pressed("ctrl+c"):
break
It will cause the program to keep spamming the response text, if I pressed arrow down or arrow up. I believed because it's in a while-loop, and eventhough you only press once, but it will get triggered multiple times (as written in doc, I am awared of this after I read.)
At that moment, I still haven't went to read the doc, I try adding in time.sleep()
while True:
if keyboard.is_pressed("down"):
print("Reach the bottom!")
time.sleep(0.5)
if keyboard.is_pressed("up"):
print("Reach the top!")
time.sleep(0.5)
if keyboard.is_pressed("ctrl+c"):
break
This solves the spamming issue.
But this is not a very good way as of subsequent very fast taps on the arrow key, will only trigger once instead of as many times as I pressed, because the program will sleep for 0.5 second right, meant the "keyboard event" happened at that 0.5 second will not be counted.
So, I proceed to read the doc and get the idea to do this at this part.
while True:
# Wait for the next event.
event = keyboard.read_event()
if event.event_type == keyboard.KEY_DOWN and event.name == 'down':
# do whatever function you wanna here
if event.event_type == keyboard.KEY_DOWN and event.name == 'up':
# do whatever function you wanna here
if keyboard.is_pressed("ctrl+c"):
break
Now, it's working fine and great!
TBH, I am not deep dive into the doc, used to, but I have really forgetten the content, if you know or find any better way to do the similar function, please enlighten me!
Thank you, wish you have a great day ahead!

How do I run two tasks at the same time in Python? [duplicate]

I am making a stopwatch type program in Python and I would like to know how to detect if a key is pressed (such as p for pause and s for stop), and I would not like it to be something like raw_input, which waits for the user's input before continuing execution.
Anyone know how to do this in a while loop?
I would like to make this cross-platform but, if that is not possible, then my main development target is Linux.
Python has a keyboard module with many features. Install it, perhaps with this command:
pip3 install keyboard
Then use it in code like:
import keyboard # using module keyboard
while True: # making a loop
try: # used try so that if user pressed other than the given key error will not be shown
if keyboard.is_pressed('q'): # if key 'q' is pressed
print('You Pressed A Key!')
break # finishing the loop
except:
break # if user pressed a key other than the given key the loop will break
For those who are on windows and were struggling to find an working answer here's mine: pynput
from pynput.keyboard import Key, Listener
def on_press(key):
print('{0} pressed'.format(
key))
def on_release(key):
print('{0} release'.format(
key))
if key == Key.esc:
# Stop listener
return False
# Collect events until released
with Listener(
on_press=on_press,
on_release=on_release) as listener:
listener.join()
The function above will print whichever key you are pressing plus start an action as you release the 'esc' key. The keyboard documentation is here for a more variated usage.
Markus von Broady highlighted a potential issue that is: This answer doesn't require you being in the current window to this script be activated, a solution to windows would be:
from win32gui import GetWindowText, GetForegroundWindow
current_window = (GetWindowText(GetForegroundWindow()))
desired_window_name = "Stopwatch" #Whatever the name of your window should be
#Infinite loops are dangerous.
while True: #Don't rely on this line of code too much and make sure to adapt this to your project.
if current_window == desired_window_name:
with Listener(
on_press=on_press,
on_release=on_release) as listener:
listener.join()
More things can be done with keyboard module.
You can install this module using pip install keyboard
Here are some of the methods:
Method #1:
Using the function read_key():
import keyboard
while True:
if keyboard.read_key() == "p":
print("You pressed p")
break
This is gonna break the loop as the key p is pressed.
Method #2:
Using function wait:
import keyboard
keyboard.wait("p")
print("You pressed p")
It will wait for you to press p and continue the code as it is pressed.
Method #3:
Using the function on_press_key:
import keyboard
keyboard.on_press_key("p", lambda _:print("You pressed p"))
It needs a callback function. I used _ because the keyboard function returns the keyboard event to that function.
Once executed, it will run the function when the key is pressed. You can stop all hooks by running this line:
keyboard.unhook_all()
Method #4:
This method is sort of already answered by user8167727 but I disagree with the code they made. It will be using the function is_pressed but in an other way:
import keyboard
while True:
if keyboard.is_pressed("p"):
print("You pressed p")
break
It will break the loop as p is pressed.
Method #5:
You can use keyboard.record as well. It records all keys pressed and released until you press the escape key or the one you've defined in until arg and returns a list of keyboard.KeyboardEvent elements.
import keyboard
keyboard.record(until="p")
print("You pressed p")
Notes:
keyboard will read keypresses from the whole OS.
keyboard requires root on linux
As OP mention about raw_input - that means he want cli solution.
Linux: curses is what you want (windows PDCurses). Curses, is an graphical API for cli software, you can achieve more than just detect key events.
This code will detect keys until new line is pressed.
import curses
import os
def main(win):
win.nodelay(True)
key=""
win.clear()
win.addstr("Detected key:")
while 1:
try:
key = win.getkey()
win.clear()
win.addstr("Detected key:")
win.addstr(str(key))
if key == os.linesep:
break
except Exception as e:
# No input
pass
curses.wrapper(main)
For Windows you could use msvcrt like this:
import msvcrt
while True:
if msvcrt.kbhit():
key = msvcrt.getch()
print(key) # just to show the result
Use this code for find the which key pressed
from pynput import keyboard
def on_press(key):
try:
print('alphanumeric key {0} pressed'.format(
key.char))
except AttributeError:
print('special key {0} pressed'.format(
key))
def on_release(key):
print('{0} released'.format(
key))
if key == keyboard.Key.esc:
# Stop listener
return False
# Collect events until released
with keyboard.Listener(
on_press=on_press,
on_release=on_release) as listener:
listener.join()
Use PyGame to have a window and then you can get the key events.
For the letter p:
import pygame, sys
import pygame.locals
pygame.init()
BLACK = (0,0,0)
WIDTH = 1280
HEIGHT = 1024
windowSurface = pygame.display.set_mode((WIDTH, HEIGHT), 0, 32)
windowSurface.fill(BLACK)
while True:
for event in pygame.event.get():
if event.key == pygame.K_p: # replace the 'p' to whatever key you wanted to be pressed
pass #Do what you want to here
if event.type == pygame.locals.QUIT:
pygame.quit()
sys.exit()
neoDev's comment at the question itself might be easy to miss, but it links to a solution not mentioned in any answer here.
There is no need to import keyboard with this solution.
Solution copied from this other question, all credits to #neoDev.
This worked for me on macOS Sierra and Python 2.7.10 and 3.6.3
import sys,tty,os,termios
def getkey():
old_settings = termios.tcgetattr(sys.stdin)
tty.setcbreak(sys.stdin.fileno())
try:
while True:
b = os.read(sys.stdin.fileno(), 3).decode()
if len(b) == 3:
k = ord(b[2])
else:
k = ord(b)
key_mapping = {
127: 'backspace',
10: 'return',
32: 'space',
9: 'tab',
27: 'esc',
65: 'up',
66: 'down',
67: 'right',
68: 'left'
}
return key_mapping.get(k, chr(k))
finally:
termios.tcsetattr(sys.stdin, termios.TCSADRAIN, old_settings)
try:
while True:
k = getkey()
if k == 'esc':
quit()
else:
print(k)
except (KeyboardInterrupt, SystemExit):
os.system('stty sane')
print('stopping.')
Non-root version that works even through ssh: sshkeyboard. Install with pip install sshkeyboard,
then write script such as:
from sshkeyboard import listen_keyboard
def press(key):
print(f"'{key}' pressed")
def release(key):
print(f"'{key}' released")
listen_keyboard(
on_press=press,
on_release=release,
)
And it will print:
'a' pressed
'a' released
When A key is pressed. ESC key ends the listening by default.
It requires less coding than for example curses, tkinter and getch. And it does not require root access like keyboard module.
You don't mention if this is a GUI program or not, but most GUI packages include a way to capture and handle keyboard input. For example, with tkinter (in Py3), you can bind to a certain event and then handle it in a function. For example:
import tkinter as tk
def key_handler(event=None):
if event and event.keysym in ('s', 'p'):
'do something'
r = tk.Tk()
t = tk.Text()
t.pack()
r.bind('<Key>', key_handler)
r.mainloop()
With the above, when you type into the Text widget, the key_handler routine gets called for each (or almost each) key you press.
I made this kind of game based on this post (using msvcr library and Python 3.7).
The following is the main function of the game, that is detecting the keys pressed:
import msvcrt
def _secret_key(self):
# Get the key pressed by the user and check if he/she wins.
bk = chr(10) + "-"*25 + chr(10)
while True:
print(bk + "Press any key(s)" + bk)
#asks the user to type any key(s)
kp = str(msvcrt.getch()).replace("b'", "").replace("'", "")
# Store key's value.
if r'\xe0' in kp:
kp += str(msvcrt.getch()).replace("b'", "").replace("'", "")
# Refactor the variable in case of multi press.
if kp == r'\xe0\x8a':
# If user pressed the secret key, the game ends.
# \x8a is CTRL+F12, that's the secret key.
print(bk + "CONGRATULATIONS YOU PRESSED THE SECRET KEYS!\a" + bk)
print("Press any key to exit the game")
msvcrt.getch()
break
else:
print(" You pressed:'", kp + "', that's not the secret key(s)\n")
if self.select_continue() == "n":
if self.secondary_options():
self._main_menu()
break
If you want the full source code of the program you can see it or download it from GitHub
The secret keypress is:
Ctrl+F12
Using the keyboard package, especially on linux is not an apt solution because that package requires root privileges to run. We can easily implement this with the getkey package. This is analogous to the C language function getchar.
Install it:
pip install getkey
And use it:
from getkey import getkey
while True: #Breaks when key is pressed
key = getkey()
print(key) #Optionally prints out the key.
break
We can add this in a function to return the pressed key.
def Ginput(str):
"""
Now, this function is like the native input() function. It can accept a prompt string, print it out, and when one key is pressed, it will return the key to the caller.
"""
print(str, end='')
while True:
key = getkey()
print(key)
return key
Use like this:
inp = Ginput("\n Press any key to continue: ")
print("You pressed " + inp)
import cv2
key = cv2.waitKey(1)
This is from the openCV package. The delay arg is the number of milliseconds it will wait for a keypress. In this case, 1ms. Per the docs, pollKey() can be used without waiting.
The curses module does that job.
You can test it running this example from the terminal:
import curses
screen = curses.initscr()
curses.noecho()
curses.cbreak()
screen.keypad(True)
try:
while True:
char = screen.getch()
if char == ord('q'):
break
elif char == curses.KEY_UP:
print('up')
elif char == curses.KEY_DOWN:
print('down')
elif char == curses.KEY_RIGHT:
print('right')
elif char == curses.KEY_LEFT:
print('left')
elif char == ord('s'):
print('stop')
finally:
curses.nocbreak(); screen.keypad(0); curses.echo()
curses.endwin()
Here is a cross-platform solution, both blocking and non-blocking, not requiring any external libraries:
import contextlib as _contextlib
try:
import msvcrt as _msvcrt
# Length 0 sequences, length 1 sequences...
_ESCAPE_SEQUENCES = [frozenset(("\x00", "\xe0"))]
_next_input = _msvcrt.getwch
_set_terminal_raw = _contextlib.nullcontext
_input_ready = _msvcrt.kbhit
except ImportError: # Unix
import sys as _sys, tty as _tty, termios as _termios, \
select as _select, functools as _functools
# Length 0 sequences, length 1 sequences...
_ESCAPE_SEQUENCES = [
frozenset(("\x1b",)),
frozenset(("\x1b\x5b", "\x1b\x4f"))]
#_contextlib.contextmanager
def _set_terminal_raw():
fd = _sys.stdin.fileno()
old_settings = _termios.tcgetattr(fd)
try:
_tty.setraw(_sys.stdin.fileno())
yield
finally:
_termios.tcsetattr(fd, _termios.TCSADRAIN, old_settings)
_next_input = _functools.partial(_sys.stdin.read, 1)
def _input_ready():
return _select.select([_sys.stdin], [], [], 0) == ([_sys.stdin], [], [])
_MAX_ESCAPE_SEQUENCE_LENGTH = len(_ESCAPE_SEQUENCES)
def _get_keystroke():
key = _next_input()
while (len(key) <= _MAX_ESCAPE_SEQUENCE_LENGTH and
key in _ESCAPE_SEQUENCES[len(key)-1]):
key += _next_input()
return key
def _flush():
while _input_ready():
_next_input()
def key_pressed(key: str = None, *, flush: bool = True) -> bool:
"""Return True if the specified key has been pressed
Args:
key: The key to check for. If None, any key will do.
flush: If True (default), flush the input buffer after the key was found.
Return:
boolean stating whether a key was pressed.
"""
with _set_terminal_raw():
if key is None:
if not _input_ready():
return False
if flush:
_flush()
return True
while _input_ready():
keystroke = _get_keystroke()
if keystroke == key:
if flush:
_flush()
return True
return False
def print_key() -> None:
"""Print the key that was pressed
Useful for debugging and figuring out keys.
"""
with _set_terminal_raw():
_flush()
print("\\x" + "\\x".join(map("{:02x}".format, map(ord, _get_keystroke()))))
def wait_key(key=None, *, pre_flush=False, post_flush=True) -> str:
"""Wait for a specific key to be pressed.
Args:
key: The key to check for. If None, any key will do.
pre_flush: If True, flush the input buffer before waiting for input.
Useful in case you wish to ignore previously pressed keys.
post_flush: If True (default), flush the input buffer after the key was
found. Useful for ignoring multiple key-presses.
Returns:
The key that was pressed.
"""
with _set_terminal_raw():
if pre_flush:
_flush()
if key is None:
key = _get_keystroke()
if post_flush:
_flush()
return key
while _get_keystroke() != key:
pass
if post_flush:
_flush()
return key
You can use key_pressed() inside a while loop:
while True:
time.sleep(5)
if key_pressed():
break
You can also check for a specific key:
while True:
time.sleep(5)
if key_pressed("\x00\x48"): # Up arrow key on Windows.
break
Find out special keys using print_key():
>>> print_key()
# Press up key
\x00\x48
Or wait until a certain key is pressed:
>>> wait_key("a") # Stop and ignore all inputs until "a" is pressed.
You can use pygame's get_pressed():
import pygame
while True:
keys = pygame.key.get_pressed()
if (keys[pygame.K_LEFT]):
pos_x -= 5
elif (keys[pygame.K_RIGHT]):
pos_x += 5
elif (keys[pygame.K_UP]):
pos_y -= 5
elif (keys[pygame.K_DOWN]):
pos_y += 5
I was finding how to detect different key presses subsequently until e.g. Ctrl + C break the program from listening and responding to different key presses accordingly.
Using following code,
while True:
if keyboard.is_pressed("down"):
print("Reach the bottom!")
if keyboard.is_pressed("up"):
print("Reach the top!")
if keyboard.is_pressed("ctrl+c"):
break
It will cause the program to keep spamming the response text, if I pressed arrow down or arrow up. I believed because it's in a while-loop, and eventhough you only press once, but it will get triggered multiple times (as written in doc, I am awared of this after I read.)
At that moment, I still haven't went to read the doc, I try adding in time.sleep()
while True:
if keyboard.is_pressed("down"):
print("Reach the bottom!")
time.sleep(0.5)
if keyboard.is_pressed("up"):
print("Reach the top!")
time.sleep(0.5)
if keyboard.is_pressed("ctrl+c"):
break
This solves the spamming issue.
But this is not a very good way as of subsequent very fast taps on the arrow key, will only trigger once instead of as many times as I pressed, because the program will sleep for 0.5 second right, meant the "keyboard event" happened at that 0.5 second will not be counted.
So, I proceed to read the doc and get the idea to do this at this part.
while True:
# Wait for the next event.
event = keyboard.read_event()
if event.event_type == keyboard.KEY_DOWN and event.name == 'down':
# do whatever function you wanna here
if event.event_type == keyboard.KEY_DOWN and event.name == 'up':
# do whatever function you wanna here
if keyboard.is_pressed("ctrl+c"):
break
Now, it's working fine and great!
TBH, I am not deep dive into the doc, used to, but I have really forgetten the content, if you know or find any better way to do the similar function, please enlighten me!
Thank you, wish you have a great day ahead!

Backspace and Delete not registering in blessed terminal

I am messing around with the blessed library, and I found this basic text editor program. When I run it in my terminal, all of the keys register except for backspace and delete. Inside the program is a function that checks the key inputs:
def readline(term, width=20):
"""A rudimentary readline implementation."""
text = u''
while True:
inp = term.inkey()
if inp.code == term.KEY_ENTER:
break
elif inp.code == term.KEY_ESCAPE or inp == chr(3):
text = None
break
elif not inp.is_sequence and len(text) < width:
text += inp
echo(inp)
elif inp.code in (term.KEY_BACKSPACE, term.KEY_DELETE):
text = text[:-1]
# https://utcc.utoronto.ca/~cks/space/blog/unix/HowUnixBackspaces
#
# "When you hit backspace, the kernel tty line discipline rubs out
# your previous character by printing (in the simple case)
# Ctrl-H, a space, and then another Ctrl-H."
echo(u'\b \b')
return text
Which includes KEY_BACKSPACE and KEY_DELETE. I checked the documentation and ran a program to check the keys myself, and those are the correct names on my device. I am just unsure why all the other keys work except for those? I am on Windows 10 using the default CMD and Python 3.10 if that changes anything.
Thanks!
The code you've pasted in your question is for saving to a file. If you try using backspace when entering the file name, you'll see that it works.
You can find this in the main loop under the logic for Ctrl + S. Notice also that there is no logic here for BACKSPACE or DELETE.
def main():
...
while True:
...
inp = term.inkey()
if inp == chr(3):
# ^c exits
break
elif inp == chr(19):
# ^s saves
...
save(screen, readline(term))
...
continue
...
else:
...
...

Python create new line on space button press

I am running Python 3.8 (Also tested on 2.7). Attached below is code to a keylogger that I created with reference to a video tutorial as I'm fairly new to Python and trying to learn. I am trying to make it where when the space key is pressed, it writes a new line to the file so it tabs down and looks nicer. I've tried a few different things online that I've found however nothing has fixed it. If someone could help me and explain why this doesn't work it would be much appreciated. Thanks and have a great week
# Define imports
import pynput
from pynput.keyboard import Key, Listener
# Define variables for keylogger
count = 0
keys = []
# Function to detect key presses
def on_press(key):
global count, keys
keys.append(key)
count += 1
print(str(key))
if count >= 1:
write_file(str(keys))
keys = []
count = 0
# Function to write the letters to a file
def write_file(keys):
with open("log_test.txt", "a") as f:
for key in keys:
k = str(key).replace("'", "").replace("u", "").replace("]", "").replace(",", "").replace("[", "")
if k.find("space") >= 0: # This is the code to check for space bar press
f.write('\n')
else:
k.find("Key") == -1
f.write(k)
# Detect when a key is released
def on_release(key):
if key == Key.esc:
return False
with Listener(on_press=on_press, on_release=on_release) as listener:
listener.join()
That's because your "k" is not "space", but "s", "p", "a", "c", "e".
Not the most elegant method, but try this:
def on_press(key):
global count, keys
keys.append(key)
count += 1
if count >= 1:
write_file(keys) # don't convert to string here
keys = []
count = 0
def write_file(key):
with open("log_test.txt", "a") as f:
if str(key).find("space") >= 0: # transform to string to find what you want
f.write('\n')
elif str(key).find("Key") == -1: # transform to string to find what you want
# key will come as a list, like this: ['char']
# take the first (and only) element, and it will be like this: 'char'
# then remove the "'" and you'll have your character
key = str(key[0]).replace("'", '') # take only the character, then save it
f.write(key)
When you are checking for space, do this:
if k.find(" ") >= 0: # use plain space " " and not "space"
f.write('\n')

How can I constantly check if a specific key is pressed [duplicate]

I am making a stopwatch type program in Python and I would like to know how to detect if a key is pressed (such as p for pause and s for stop), and I would not like it to be something like raw_input, which waits for the user's input before continuing execution.
Anyone know how to do this in a while loop?
I would like to make this cross-platform but, if that is not possible, then my main development target is Linux.
Python has a keyboard module with many features. Install it, perhaps with this command:
pip3 install keyboard
Then use it in code like:
import keyboard # using module keyboard
while True: # making a loop
try: # used try so that if user pressed other than the given key error will not be shown
if keyboard.is_pressed('q'): # if key 'q' is pressed
print('You Pressed A Key!')
break # finishing the loop
except:
break # if user pressed a key other than the given key the loop will break
For those who are on windows and were struggling to find an working answer here's mine: pynput
from pynput.keyboard import Key, Listener
def on_press(key):
print('{0} pressed'.format(
key))
def on_release(key):
print('{0} release'.format(
key))
if key == Key.esc:
# Stop listener
return False
# Collect events until released
with Listener(
on_press=on_press,
on_release=on_release) as listener:
listener.join()
The function above will print whichever key you are pressing plus start an action as you release the 'esc' key. The keyboard documentation is here for a more variated usage.
Markus von Broady highlighted a potential issue that is: This answer doesn't require you being in the current window to this script be activated, a solution to windows would be:
from win32gui import GetWindowText, GetForegroundWindow
current_window = (GetWindowText(GetForegroundWindow()))
desired_window_name = "Stopwatch" #Whatever the name of your window should be
#Infinite loops are dangerous.
while True: #Don't rely on this line of code too much and make sure to adapt this to your project.
if current_window == desired_window_name:
with Listener(
on_press=on_press,
on_release=on_release) as listener:
listener.join()
More things can be done with keyboard module.
You can install this module using pip install keyboard
Here are some of the methods:
Method #1:
Using the function read_key():
import keyboard
while True:
if keyboard.read_key() == "p":
print("You pressed p")
break
This is gonna break the loop as the key p is pressed.
Method #2:
Using function wait:
import keyboard
keyboard.wait("p")
print("You pressed p")
It will wait for you to press p and continue the code as it is pressed.
Method #3:
Using the function on_press_key:
import keyboard
keyboard.on_press_key("p", lambda _:print("You pressed p"))
It needs a callback function. I used _ because the keyboard function returns the keyboard event to that function.
Once executed, it will run the function when the key is pressed. You can stop all hooks by running this line:
keyboard.unhook_all()
Method #4:
This method is sort of already answered by user8167727 but I disagree with the code they made. It will be using the function is_pressed but in an other way:
import keyboard
while True:
if keyboard.is_pressed("p"):
print("You pressed p")
break
It will break the loop as p is pressed.
Method #5:
You can use keyboard.record as well. It records all keys pressed and released until you press the escape key or the one you've defined in until arg and returns a list of keyboard.KeyboardEvent elements.
import keyboard
keyboard.record(until="p")
print("You pressed p")
Notes:
keyboard will read keypresses from the whole OS.
keyboard requires root on linux
As OP mention about raw_input - that means he want cli solution.
Linux: curses is what you want (windows PDCurses). Curses, is an graphical API for cli software, you can achieve more than just detect key events.
This code will detect keys until new line is pressed.
import curses
import os
def main(win):
win.nodelay(True)
key=""
win.clear()
win.addstr("Detected key:")
while 1:
try:
key = win.getkey()
win.clear()
win.addstr("Detected key:")
win.addstr(str(key))
if key == os.linesep:
break
except Exception as e:
# No input
pass
curses.wrapper(main)
For Windows you could use msvcrt like this:
import msvcrt
while True:
if msvcrt.kbhit():
key = msvcrt.getch()
print(key) # just to show the result
Use this code for find the which key pressed
from pynput import keyboard
def on_press(key):
try:
print('alphanumeric key {0} pressed'.format(
key.char))
except AttributeError:
print('special key {0} pressed'.format(
key))
def on_release(key):
print('{0} released'.format(
key))
if key == keyboard.Key.esc:
# Stop listener
return False
# Collect events until released
with keyboard.Listener(
on_press=on_press,
on_release=on_release) as listener:
listener.join()
Use PyGame to have a window and then you can get the key events.
For the letter p:
import pygame, sys
import pygame.locals
pygame.init()
BLACK = (0,0,0)
WIDTH = 1280
HEIGHT = 1024
windowSurface = pygame.display.set_mode((WIDTH, HEIGHT), 0, 32)
windowSurface.fill(BLACK)
while True:
for event in pygame.event.get():
if event.key == pygame.K_p: # replace the 'p' to whatever key you wanted to be pressed
pass #Do what you want to here
if event.type == pygame.locals.QUIT:
pygame.quit()
sys.exit()
neoDev's comment at the question itself might be easy to miss, but it links to a solution not mentioned in any answer here.
There is no need to import keyboard with this solution.
Solution copied from this other question, all credits to #neoDev.
This worked for me on macOS Sierra and Python 2.7.10 and 3.6.3
import sys,tty,os,termios
def getkey():
old_settings = termios.tcgetattr(sys.stdin)
tty.setcbreak(sys.stdin.fileno())
try:
while True:
b = os.read(sys.stdin.fileno(), 3).decode()
if len(b) == 3:
k = ord(b[2])
else:
k = ord(b)
key_mapping = {
127: 'backspace',
10: 'return',
32: 'space',
9: 'tab',
27: 'esc',
65: 'up',
66: 'down',
67: 'right',
68: 'left'
}
return key_mapping.get(k, chr(k))
finally:
termios.tcsetattr(sys.stdin, termios.TCSADRAIN, old_settings)
try:
while True:
k = getkey()
if k == 'esc':
quit()
else:
print(k)
except (KeyboardInterrupt, SystemExit):
os.system('stty sane')
print('stopping.')
Non-root version that works even through ssh: sshkeyboard. Install with pip install sshkeyboard,
then write script such as:
from sshkeyboard import listen_keyboard
def press(key):
print(f"'{key}' pressed")
def release(key):
print(f"'{key}' released")
listen_keyboard(
on_press=press,
on_release=release,
)
And it will print:
'a' pressed
'a' released
When A key is pressed. ESC key ends the listening by default.
It requires less coding than for example curses, tkinter and getch. And it does not require root access like keyboard module.
You don't mention if this is a GUI program or not, but most GUI packages include a way to capture and handle keyboard input. For example, with tkinter (in Py3), you can bind to a certain event and then handle it in a function. For example:
import tkinter as tk
def key_handler(event=None):
if event and event.keysym in ('s', 'p'):
'do something'
r = tk.Tk()
t = tk.Text()
t.pack()
r.bind('<Key>', key_handler)
r.mainloop()
With the above, when you type into the Text widget, the key_handler routine gets called for each (or almost each) key you press.
I made this kind of game based on this post (using msvcr library and Python 3.7).
The following is the main function of the game, that is detecting the keys pressed:
import msvcrt
def _secret_key(self):
# Get the key pressed by the user and check if he/she wins.
bk = chr(10) + "-"*25 + chr(10)
while True:
print(bk + "Press any key(s)" + bk)
#asks the user to type any key(s)
kp = str(msvcrt.getch()).replace("b'", "").replace("'", "")
# Store key's value.
if r'\xe0' in kp:
kp += str(msvcrt.getch()).replace("b'", "").replace("'", "")
# Refactor the variable in case of multi press.
if kp == r'\xe0\x8a':
# If user pressed the secret key, the game ends.
# \x8a is CTRL+F12, that's the secret key.
print(bk + "CONGRATULATIONS YOU PRESSED THE SECRET KEYS!\a" + bk)
print("Press any key to exit the game")
msvcrt.getch()
break
else:
print(" You pressed:'", kp + "', that's not the secret key(s)\n")
if self.select_continue() == "n":
if self.secondary_options():
self._main_menu()
break
If you want the full source code of the program you can see it or download it from GitHub
The secret keypress is:
Ctrl+F12
Using the keyboard package, especially on linux is not an apt solution because that package requires root privileges to run. We can easily implement this with the getkey package. This is analogous to the C language function getchar.
Install it:
pip install getkey
And use it:
from getkey import getkey
while True: #Breaks when key is pressed
key = getkey()
print(key) #Optionally prints out the key.
break
We can add this in a function to return the pressed key.
def Ginput(str):
"""
Now, this function is like the native input() function. It can accept a prompt string, print it out, and when one key is pressed, it will return the key to the caller.
"""
print(str, end='')
while True:
key = getkey()
print(key)
return key
Use like this:
inp = Ginput("\n Press any key to continue: ")
print("You pressed " + inp)
import cv2
key = cv2.waitKey(1)
This is from the openCV package. The delay arg is the number of milliseconds it will wait for a keypress. In this case, 1ms. Per the docs, pollKey() can be used without waiting.
The curses module does that job.
You can test it running this example from the terminal:
import curses
screen = curses.initscr()
curses.noecho()
curses.cbreak()
screen.keypad(True)
try:
while True:
char = screen.getch()
if char == ord('q'):
break
elif char == curses.KEY_UP:
print('up')
elif char == curses.KEY_DOWN:
print('down')
elif char == curses.KEY_RIGHT:
print('right')
elif char == curses.KEY_LEFT:
print('left')
elif char == ord('s'):
print('stop')
finally:
curses.nocbreak(); screen.keypad(0); curses.echo()
curses.endwin()
Here is a cross-platform solution, both blocking and non-blocking, not requiring any external libraries:
import contextlib as _contextlib
try:
import msvcrt as _msvcrt
# Length 0 sequences, length 1 sequences...
_ESCAPE_SEQUENCES = [frozenset(("\x00", "\xe0"))]
_next_input = _msvcrt.getwch
_set_terminal_raw = _contextlib.nullcontext
_input_ready = _msvcrt.kbhit
except ImportError: # Unix
import sys as _sys, tty as _tty, termios as _termios, \
select as _select, functools as _functools
# Length 0 sequences, length 1 sequences...
_ESCAPE_SEQUENCES = [
frozenset(("\x1b",)),
frozenset(("\x1b\x5b", "\x1b\x4f"))]
#_contextlib.contextmanager
def _set_terminal_raw():
fd = _sys.stdin.fileno()
old_settings = _termios.tcgetattr(fd)
try:
_tty.setraw(_sys.stdin.fileno())
yield
finally:
_termios.tcsetattr(fd, _termios.TCSADRAIN, old_settings)
_next_input = _functools.partial(_sys.stdin.read, 1)
def _input_ready():
return _select.select([_sys.stdin], [], [], 0) == ([_sys.stdin], [], [])
_MAX_ESCAPE_SEQUENCE_LENGTH = len(_ESCAPE_SEQUENCES)
def _get_keystroke():
key = _next_input()
while (len(key) <= _MAX_ESCAPE_SEQUENCE_LENGTH and
key in _ESCAPE_SEQUENCES[len(key)-1]):
key += _next_input()
return key
def _flush():
while _input_ready():
_next_input()
def key_pressed(key: str = None, *, flush: bool = True) -> bool:
"""Return True if the specified key has been pressed
Args:
key: The key to check for. If None, any key will do.
flush: If True (default), flush the input buffer after the key was found.
Return:
boolean stating whether a key was pressed.
"""
with _set_terminal_raw():
if key is None:
if not _input_ready():
return False
if flush:
_flush()
return True
while _input_ready():
keystroke = _get_keystroke()
if keystroke == key:
if flush:
_flush()
return True
return False
def print_key() -> None:
"""Print the key that was pressed
Useful for debugging and figuring out keys.
"""
with _set_terminal_raw():
_flush()
print("\\x" + "\\x".join(map("{:02x}".format, map(ord, _get_keystroke()))))
def wait_key(key=None, *, pre_flush=False, post_flush=True) -> str:
"""Wait for a specific key to be pressed.
Args:
key: The key to check for. If None, any key will do.
pre_flush: If True, flush the input buffer before waiting for input.
Useful in case you wish to ignore previously pressed keys.
post_flush: If True (default), flush the input buffer after the key was
found. Useful for ignoring multiple key-presses.
Returns:
The key that was pressed.
"""
with _set_terminal_raw():
if pre_flush:
_flush()
if key is None:
key = _get_keystroke()
if post_flush:
_flush()
return key
while _get_keystroke() != key:
pass
if post_flush:
_flush()
return key
You can use key_pressed() inside a while loop:
while True:
time.sleep(5)
if key_pressed():
break
You can also check for a specific key:
while True:
time.sleep(5)
if key_pressed("\x00\x48"): # Up arrow key on Windows.
break
Find out special keys using print_key():
>>> print_key()
# Press up key
\x00\x48
Or wait until a certain key is pressed:
>>> wait_key("a") # Stop and ignore all inputs until "a" is pressed.
You can use pygame's get_pressed():
import pygame
while True:
keys = pygame.key.get_pressed()
if (keys[pygame.K_LEFT]):
pos_x -= 5
elif (keys[pygame.K_RIGHT]):
pos_x += 5
elif (keys[pygame.K_UP]):
pos_y -= 5
elif (keys[pygame.K_DOWN]):
pos_y += 5
I was finding how to detect different key presses subsequently until e.g. Ctrl + C break the program from listening and responding to different key presses accordingly.
Using following code,
while True:
if keyboard.is_pressed("down"):
print("Reach the bottom!")
if keyboard.is_pressed("up"):
print("Reach the top!")
if keyboard.is_pressed("ctrl+c"):
break
It will cause the program to keep spamming the response text, if I pressed arrow down or arrow up. I believed because it's in a while-loop, and eventhough you only press once, but it will get triggered multiple times (as written in doc, I am awared of this after I read.)
At that moment, I still haven't went to read the doc, I try adding in time.sleep()
while True:
if keyboard.is_pressed("down"):
print("Reach the bottom!")
time.sleep(0.5)
if keyboard.is_pressed("up"):
print("Reach the top!")
time.sleep(0.5)
if keyboard.is_pressed("ctrl+c"):
break
This solves the spamming issue.
But this is not a very good way as of subsequent very fast taps on the arrow key, will only trigger once instead of as many times as I pressed, because the program will sleep for 0.5 second right, meant the "keyboard event" happened at that 0.5 second will not be counted.
So, I proceed to read the doc and get the idea to do this at this part.
while True:
# Wait for the next event.
event = keyboard.read_event()
if event.event_type == keyboard.KEY_DOWN and event.name == 'down':
# do whatever function you wanna here
if event.event_type == keyboard.KEY_DOWN and event.name == 'up':
# do whatever function you wanna here
if keyboard.is_pressed("ctrl+c"):
break
Now, it's working fine and great!
TBH, I am not deep dive into the doc, used to, but I have really forgetten the content, if you know or find any better way to do the similar function, please enlighten me!
Thank you, wish you have a great day ahead!

Categories