Good afternoon everyone. I started studying recursive neural networks not long ago, so I will be glad for any advice.
Today I tried to use bidirectional LSTM layers and ran into the problem of poor text generation.
Used my 400kBt dataset for testing.
<pre>
BUFFER_SIZE = 10000
BATCH_SIZE = 64
dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)
vocab_size = len(vocab)
embedding_dim = 512 #256
rnn_units = 512
def build_model( vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size, embedding_dim,
batch_input_shape=[batch_size, None]),
tf.keras.layers.LSTM(rnn_units,
return_sequences=True, stateful=True,
recurrent_initializer='glorot_uniform'),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(rnn_units, return_sequences=True, input_shape=expanded_input.shape)),
tf.keras.layers.Dense(vocab_size)
])
return model
model = build_model(
vocab_size = len(vocab),
embedding_dim=embedding_dim,
rnn_units=rnn_units,
batch_size=BATCH_SIZE)
model.summary()
</pre>
to define expanded_input.shape i used this code
<pre>
input_data = tf.random.normal((BATCH_SIZE, 32))
repeated_input = tf.reshape(tf.repeat(input = input_data, repeats = 5, axis=1), shape=(BATCH_SIZE, 5, 32))
expanded_input = tf.expand_dims(input=input_data, axis=1)
</pre>
for the text generation function, this part of the code was used
<pre>
def generate_text(model, num_generate, temperature, start_string):
input_eval = [char2idx[s] for s in start_string] # string to numbers (vectorizing)
input_eval = tf.expand_dims(input_eval, 0) # dimension expansion
text_generated = [] # Empty string to store our results
model.reset_states() # Clears the hidden states in the RNN
for i in range(num_generate): #Run a loop for number of characters to generate
predictions = model(input_eval) # prediction for single character
predictions = tf.squeeze(predictions, 0) # remove the batch dimension
predictions = predictions / temperature
predicted_id = tf.random.categorical(predictions, num_samples=1)[-1,0].numpy()
input_eval = tf.expand_dims([predicted_id], 0)
text_generated.append(idx2char[predicted_id])
return (start_string + ''.join(text_generated))
</pre>
As a result, the output is mostly similar to this
чЦОMm🙌"f
😩✌👐jБУ🔥р'!🏻i{⬇dё6😂👆nU52г
👉И🏻T➕И7😁y👐рг😬л🏻Хж<tCП⃣“Уи🔻п😕н—В👆И2⏩💪RТ😬Ют🙂Ё♂5jЩpКГлш-nu5Цf⏩
NёФЁУЁ"🔥n⬇4🙃r😬uy⏩😂ч⏩CALfЛФcЁё»йx😤М
Related
New to tf/python and have created a model that classifies text with a toxicity level (obscene, toxic, threat, etc). This is what I have so far and it does produce the summary, so I know it is loading correctly. How do I pass text to the model to return a prediction? Any help would be much appreciated.
import os
import numpy as np
import tensorflow as tf
from tensorflow import keras
checkpoint_path = "tf_model/the_model/saved_model.pb"
checkpoint_dir = os.path.dirname(checkpoint_path)
new_model = tf.keras.models.load_model(checkpoint_dir)
# Check its architecture
new_model.summary()
inputs = [
"tenserflow seems like it fits the bill but there are zero tutorials that outline how to reuse a model in a production environment "
]
predictions = new_model.predict(inputs)
print(predictions)
I get many error messages, some of the long winded ones are as follows:
WARNING:tensorflow:Model was constructed with shape (None, 150) for input KerasTensor(type_spec=TensorSpec(shape=(None, 150), dtype=tf.float32, name='input_1'), name='input_1', description="created by layer 'input_1'"), but it was called on an input with incompatible shape (None, 1).
ValueError: Negative dimension size caused by subtracting 3 from 1 for '{{node model/conv1d/conv1d}} = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], explicit_paddings=[], padding="VALID", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true](model/conv1d/conv1d/ExpandDims, model/conv1d/conv1d/ExpandDims_1)' with input shapes: [?,1,1,256], [1,3,256,64].
This is the py code used to create and test it/prediction which works perfectly:
import tensorflow as tf
import numpy as np
import pandas as pd
import os
TRAIN_DATA = "datasets/train.csv"
GLOVE_EMBEDDING = "embedding/glove.6B.100d.txt"
train = pd.read_csv(TRAIN_DATA)
train["comment_text"].fillna("fillna")
x_train = train["comment_text"].str.lower()
y_train = train[["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]].values
max_words = 100000
max_len = 150
embed_size = 100
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=max_words, lower=True)
tokenizer.fit_on_texts(x_train)
x_train = tokenizer.texts_to_sequences(x_train)
x_train = tf.keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_len)
embeddings_index = {}
with open(GLOVE_EMBEDDING, encoding='utf8') as f:
for line in f:
values = line.rstrip().rsplit(' ')
word = values[0]
embed = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = embed
word_index = tokenizer.word_index
num_words = min(max_words, len(word_index) + 1)
embedding_matrix = np.zeros((num_words, embed_size), dtype='float32')
for word, i in word_index.items():
if i >= max_words:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
input = tf.keras.layers.Input(shape=(max_len,))
x = tf.keras.layers.Embedding(max_words, embed_size, weights=[embedding_matrix], trainable=False)(input)
x = tf.keras.layers.Bidirectional(tf.keras.layers.GRU(128, return_sequences=True, dropout=0.1,
recurrent_dropout=0.1))(x)
x = tf.keras.layers.Conv1D(64, kernel_size=3, padding="valid", kernel_initializer="glorot_uniform")(x)
avg_pool = tf.keras.layers.GlobalAveragePooling1D()(x)
max_pool = tf.keras.layers.GlobalMaxPooling1D()(x)
x = tf.keras.layers.concatenate([avg_pool, max_pool])
preds = tf.keras.layers.Dense(6, activation="sigmoid")(x)
model = tf.keras.Model(input, preds)
model.summary()
model.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=1e-3), metrics=['accuracy'])
batch_size = 128
checkpoint_path = "tf_model/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path,
save_weights_only=True,
verbose=1)
callbacks = [
tf.keras.callbacks.EarlyStopping(patience=5, monitor='val_loss'),
tf.keras.callbacks.TensorBoard(log_dir='logs'),
cp_callback
]
model.fit(x_train, y_train, validation_split=0.2, batch_size=batch_size,
epochs=1, callbacks=callbacks, verbose=1)
latest = tf.train.latest_checkpoint(checkpoint_dir)
model.load_weights(latest)
# Save the entire model as a SavedModel.
model.save('tf_model/the_model')
predictions = model.predict(np.expand_dims(x_train[42], 0))
print(tokenizer.sequences_to_texts([x_train[42]]))
print(y_train[42])
print(predictions)
Final solution:
import os
import numpy as np
import tensorflow as tf
from tensorflow import keras
checkpoint_path = "tf_model/the_model/saved_model.pb"
checkpoint_dir = os.path.dirname(checkpoint_path)
new_model = tf.keras.models.load_model(checkpoint_dir)
max_words = 100000
max_len = 150
# Check its architecture
# new_model.summary()
inputs = ["tenserflow seems like it fits the bill but there are zero tutorials that outline how to reuse a model in a production environment."]
# use same tokenizer used to build model
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=max_words, lower=True)
tokenizer.fit_on_texts(inputs)
# pass string to tokenizer and that 'array' is passed to predict
sequence = tokenizer.texts_to_sequences(inputs) # same tokenizer which is used on train data.
sequence = tf.keras.preprocessing.sequence.pad_sequences(sequence, maxlen = max_len)
predictions = new_model.predict(sequence)
print(predictions)
# [[0.0365479 0.01275077 0.02102855 0.00647011 0.02302513 0.00406089]]
It needs to be processed in the same way. This can be done with:
inputs = [
"tenserflow seems like it fits the bill but there are zero tutorials that outline
how to reuse a model in a production environment"]
sequence = tokenizer.texts_to_sequences(inputs) # same tokenizer which is used on train data.
sequence = pad_sequences(sequence, maxlen = max_len)
predictions = new_model.predict(sequence)
In official Keras seq2seq example (I'll include it at the bottom) they train the model with the fit function, but they don't even use that model anywhere in the decoding process to test the model on new data.
I am trying to train a seq2seq model just like this, and I have successfully trained it on Google Colab and downloaded the .h5 file and I load the model with the load_model function, but it doesn't seem to be working.
Why does the script need to train the model if it doesn't use the model variable anywhere after training? Extending from this, what's the process of using the script on new data? I'm currently just using the same script but leaving out the compile and fit functions and replacing them with load_model.
from __future__ import print_function
from keras.models import Model
from keras.layers import Input, LSTM, Dense
import numpy as np
batch_size = 64 # Batch size for training.
epochs = 100 # Number of epochs to train for.
latent_dim = 256 # Latent dimensionality of the encoding space.
num_samples = 10000 # Number of samples to train on.
# Path to the data txt file on disk.
data_path = 'fra-eng/fra.txt'
# Vectorize the data.
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()
with open(data_path, 'r', encoding='utf-8') as f:
lines = f.read().split('\n')
for line in lines[: min(num_samples, len(lines) - 1)]:
input_text, target_text = line.split('\t')
# We use "tab" as the "start sequence" character
# for the targets, and "\n" as "end sequence" character.
target_text = '\t' + target_text + '\n'
input_texts.append(input_text)
target_texts.append(target_text)
for char in input_text:
if char not in input_characters:
input_characters.add(char)
for char in target_text:
if char not in target_characters:
target_characters.add(char)
input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])
print('Number of samples:', len(input_texts))
print('Number of unique input tokens:', num_encoder_tokens)
print('Number of unique output tokens:', num_decoder_tokens)
print('Max sequence length for inputs:', max_encoder_seq_length)
print('Max sequence length for outputs:', max_decoder_seq_length)
input_token_index = dict(
[(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict(
[(char, i) for i, char in enumerate(target_characters)])
encoder_input_data = np.zeros(
(len(input_texts), max_encoder_seq_length, num_encoder_tokens),
dtype='float32')
decoder_input_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype='float32')
decoder_target_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype='float32')
for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
for t, char in enumerate(input_text):
encoder_input_data[i, t, input_token_index[char]] = 1.
for t, char in enumerate(target_text):
# decoder_target_data is ahead of decoder_input_data by one timestep
decoder_input_data[i, t, target_token_index[char]] = 1.
if t > 0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
decoder_target_data[i, t - 1, target_token_index[char]] = 1.
# Define an input sequence and process it.
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, num_decoder_tokens))
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
# Run training
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
batch_size=batch_size,
epochs=epochs,
validation_split=0.2)
# Save model
model.save('s2s.h5')
# Next: inference mode (sampling).
# Here's the drill:
# 1) encode input and retrieve initial decoder state
# 2) run one step of decoder with this initial state
# and a "start of sequence" token as target.
# Output will be the next target token
# 3) Repeat with the current target token and current states
# Define sampling models
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
[decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states)
# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict(
(i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
(i, char) for char, i in target_token_index.items())
def decode_sequence(input_seq):
# Encode the input as state vectors.
states_value = encoder_model.predict(input_seq)
# Generate empty target sequence of length 1.
target_seq = np.zeros((1, 1, num_decoder_tokens))
# Populate the first character of target sequence with the start character.
target_seq[0, 0, target_token_index['\t']] = 1.
# Sampling loop for a batch of sequences
# (to simplify, here we assume a batch of size 1).
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens, h, c = decoder_model.predict(
[target_seq] + states_value)
# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_char = reverse_target_char_index[sampled_token_index]
decoded_sentence += sampled_char
# Exit condition: either hit max length
# or find stop character.
if (sampled_char == '\n' or
len(decoded_sentence) > max_decoder_seq_length):
stop_condition = True
# Update the target sequence (of length 1).
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.
# Update states
states_value = [h, c]
return decoded_sentence
for seq_index in range(100):
# Take one sequence (part of the training set)
# for trying out decoding.
input_seq = encoder_input_data[seq_index: seq_index + 1]
decoded_sentence = decode_sequence(input_seq)
print('-')
print('Input sentence:', input_texts[seq_index])
print('Decoded sentence:', decoded_sentence)
Of course it is using that model in inference time, however not all of it (i.e. model). Instead some of its layers are used in the inference model:
decoder_outputs, state_h, state_c = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs)
decoder_outputs = decoder_dense(decoder_outputs)
Both decoder_lstm and decoder_dense belong to the training model and their weights have been trained. Now we can reuse these trained layers in another model (i.e. inference_model) to perform inference.
Update: If you have already trained and saved the model and would like to perform inference, you can first load the trained model and then use model.layers to access the layers and create the inference model. Actually, there is an accompanying script in Keras examples repository that exactly does this.
so I am new with machine learning and I got a bonus course at my university where I have to train a lstm model to generate captions. I have read this so far: Blogpost_about_lstms
And used this as reference: some_random_code
So what I want to achieve:
I have an Dataset which is structured like this:
output from an CNN with a Vector on size 2048 that holds some "features" of an image. And 5 Captions describing that image.
Training:
input: CNN vector + Captions
output: Caption (guess)
Validation:
input: CNN vector
output: caption (guess)
So how can I use 2 Inputs (the CNN data and a Caption Sequence) to train to generate new captions only from an CNN input vector!
This is kinda tricky and I cannot grasp the theory in this. And Tensorflow is also quite a thing I have to say.
I have a normal Seq_2_Seq model in place that works. But now I am stuck :/
class Model(object):
def __init__(self, _input, is_training, hidden_size, vocab_size, num_layers,
dropout=config.trainer.dropout, init_scale=config.trainer.init_scale):
self.is_training = is_training
self.input_obj = _input
self.batch_size = _input.batch_size
self.num_steps = _input.num_steps
self.hidden_size = hidden_size
# create the word embeddings
with tf.device("/cpu:0"):
randomized = tf.random_uniform([vocab_size, hidden_size], -init_scale, init_scale)
print("randomized: ", randomized)
embedding = tf.Variable(randomized)
inputs = tf.nn.embedding_lookup(embedding, self.input_obj.input_data)
if is_training and dropout < 1:
inputs = tf.nn.dropout(inputs, dropout)
# set up the state storage / extraction
self.init_state = tf.placeholder(tf.float32, [num_layers, 2, self.batch_size, hidden_size])
state_per_layer_list = tf.unstack(self.init_state, axis=0)
rnn_tuple_state = tuple([tf.contrib.rnn.LSTMStateTuple(state_per_layer_list[idx][0], state_per_layer_list[idx][1])for idx in range(num_layers)])
# create an LSTM cell to be unrolled
print("Hidden size: ", hidden_size)
cell = tf.contrib.rnn.LSTMCell(hidden_size, forget_bias=config.trainer.forget_bias)
# add a dropout wrapper if training
if is_training and dropout < 1:
cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=dropout)
if num_layers > 1:
cell = tf.contrib.rnn.MultiRNNCell([cell for _ in range(num_layers)], state_is_tuple=True)
print("input: ", inputs)
output, self.state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32, initial_state=rnn_tuple_state)
# reshape to (batch_size * num_steps, hidden_size)
output = tf.reshape(output, [-1, hidden_size])
softmax_w = tf.Variable(tf.random_uniform([hidden_size, vocab_size], -init_scale, init_scale))
softmax_b = tf.Variable(tf.random_uniform([vocab_size], -init_scale, init_scale))
logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b)
# Reshape logits to be a 3-D tensor for sequence loss
logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size])
# Use the contrib sequence loss and average over the batches
loss = tf.contrib.seq2seq.sequence_loss(logits,
self.input_obj.targets,
tf.ones([self.batch_size, self.num_steps], dtype=tf.float32),
average_across_timesteps=False,
average_across_batch=True)
# Update the cost
self.cost = tf.reduce_sum(loss)
# get the prediction accuracy
self.softmax_out = tf.nn.softmax(tf.reshape(logits, [-1, vocab_size]))
self.predict = tf.cast(tf.argmax(self.softmax_out, axis=1), tf.int32)
correct_prediction = tf.equal(self.predict, tf.reshape(self.input_obj.targets, [-1]))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
if not is_training:
return
self.learning_rate = tf.Variable(0.01, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars), 5)
optimizer = tf.train.GradientDescentOptimizer(self.learning_rate)
self.train_op = optimizer.apply_gradients(zip(grads, tvars),
global_step=tf.contrib.framework.get_or_create_global_step())
self.new_lr = tf.placeholder(tf.float32, shape=[])
self.lr_update = tf.assign(self.learning_rate, self.new_lr)
def assign_lr(self, session, lr_value):
session.run(self.lr_update, feed_dict={self.new_lr: lr_value})
I don't need a solution but some explanation how to move forward would be awesome!!
I want to make a Seq2Seq model for reconstruction purpose. I want a model trained to reconstruct the normal time-series and it is assumed that such a model would do badly to reconstruct the anomalous time-series having not seen them during training.
I have some gaps in my code and also in the understanding. I took this as an orientation and did so far:
traindata: input_data.shape(1000,60,1) and target_data.shape(1000,50,1) with target data being the same training data only in reversed order as sugested in the paper here.
for inference: I want to predict another time series data with the trained model having the shape (3000,60,1). T Now 2 points are open: how do I specify the input data for my training model and how do I build the inference part with the stop condition ?
Please correct any mistakes.
from keras.models import Model
from keras.layers import Input
from keras.layers import LSTM
from keras.layers import Dense
num_encoder_tokens = 1#number of features
num_decoder_tokens = 1#number of features
encoder_seq_length = None
decoder_seq_length = None
batch_size = 50
epochs = 40
# same data for training
input_seqs=()#shape (1000,60,1) with sliding windows
target_seqs=()#shape(1000,60,1) with sliding windows but reversed
x= #what has x to be ?
#data for inference
# how do I specify the input data for my other time series ?
# Define training model
encoder_inputs = Input(shape=(encoder_seq_length,
num_encoder_tokens))
encoder = LSTM(128, return_state=True, return_sequences=True)
encoder_outputs = encoder(encoder_inputs)
_, encoder_states = encoder_outputs[0], encoder_outputs[1:]
decoder_inputs = Input(shape=(decoder_seq_length,
num_decoder_tokens))
decoder = LSTM(128, return_sequences=True)
decoder_outputs = decoder(decoder_inputs, initial_state=encoder_states)
decoder_outputs = TimeDistributed(
Dense(num_decoder_tokens, activation='tanh'))(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
# Training
model.compile(optimizer='adam', loss='mse')
model.fit([input_seqs,x], target_seqs,
batch_size=batch_size, epochs=epochs)
# Define sampling models for inference
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(100,))
decoder_state_input_c = Input(shape=(100,))
decoder_states = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs = decoder(decoder_inputs,
initial_state=decoder_states)
decoder_model = Model([decoder_inputs] + decoder_states,
decoder_outputs)
# Sampling loop for a batch of sequences
states_values = encoder_model.predict(input_seqs)
stop_condition = False
while not stop_condition:
output_tokens = decoder_model.predict([target_seqs] + states_values)
#what else do I need to include here ?
break
def predict_sequence(infenc, infdec, source, n_steps, cardinality):
# encode
state = infenc.predict(source)
# start of sequence input
target_seq = array([0.0 for _ in range(cardinality)]).reshape(1, 1, cardinality)
# collect predictions
output = list()
for t in range(n_steps):
# predict next char
yhat, h, c = infdec.predict([target_seq] + state)
# store prediction
output.append(yhat[0,0,:])
# update state
state = [h, c]
# update target sequence
target_seq = yhat
return array(output)
You can see that the output from every timestep is fed back to the LSTM cell externally.
You can refer the blog and find how it is done during inference.
https://machinelearningmastery.com/develop-encoder-decoder-model-sequence-sequence-prediction-keras/
During training, we give the data in a one shot manner. I think you understand that part.
But during the inference time, we can't do like that. We have to give the data at every time step and then return the cell states, hidden states and the loop should continue till the last word is generated
I'm trying to build a class to quickly initialize and train an autoencoder for rapid prototyping. One thing I'd like to be able to do is quickly adjust the number of epochs I train for. However, it seems like no matter what I do, the model trains each layer for 100 epochs! I'm using the tensorflow backend.
Here is the code from the two offending methods.
def pretrain(self, X_train, nb_epoch = 10):
data = X_train
for ae in self.pretrains:
ae.fit(data, data, nb_epoch = nb_epoch)
ae.layers[0].output_reconstruction = False
ae.compile(optimizer='sgd', loss='mse')
data = ae.predict(data)
.........
def fine_train(self, X_train, nb_epoch):
weights = [ae.layers[0].get_weights() for ae in self.pretrains]
dims = self.dims
encoder = containers.Sequential()
decoder = containers.Sequential()
## add special input encoder
encoder.add(Dense(output_dim = dims[1], input_dim = dims[0],
weights = weights[0][0:2], activation = 'linear'))
## add the rest of the encoders
for i in range(1, len(dims) - 1):
encoder.add(Dense(output_dim = dims[i+1],
weights = weights[i][0:2], activation = self.act))
## add the decoders from the end
decoder.add(Dense(output_dim = dims[len(dims) - 2], input_dim = dims[len(dims) - 1],
weights = weights[len(dims) - 2][2:4], activation = self.act))
for i in range(len(dims) - 2, 1, -1):
decoder.add(Dense(output_dim = dims[i - 1],
weights = weights[i-1][2:4], activation = self.act))
## add the output layer decoder
decoder.add(Dense(output_dim = dims[0],
weights = weights[0][2:4], activation = 'linear'))
masterAE = AutoEncoder(encoder = encoder, decoder = decoder)
masterModel = models.Sequential()
masterModel.add(masterAE)
masterModel.compile(optimizer = 'sgd', loss = 'mse')
masterModel.fit(X_train, X_train, nb_epoch = nb_epoch)
self.model = masterModel
Any suggestions on how to fix the problem would be appreciated. My original suspicion was that it was something to do with tensorflow, so I tried running with the theano backend but encountered the same problem.
Here is a link to the full program.
Following the Keras doc, the fit method uses a default of 100 training epochs (nb_epoch=100):
fit(X, y, batch_size=128, nb_epoch=100, verbose=1, callbacks=[], validation_split=0.0, validation_data=None, shuffle=True, show_accuracy=False, class_weight=None, sample_weight=None)
I'm sure how you are running these methods, but following the "Typical usage" from the original code, you should be able to run something like (adjusting the variable num_epoch as required):
#Typical usage:
num_epoch = 10
ae = JPAutoEncoder(dims)
ae.pretrain(X_train, nb_epoch = num_epoch)
ae.train(X_train, nb_epoch = num_epoch)
ae.predict(X_val)