RuntimeError: matrix or a vector expected - python

class NTXentLoss(nn.Module):
def __init__(self, temp=0.5):
super(NTXentLoss, self).__init__()
self.temp = temp
def forward(self, zi, zj):
batch_size = zi.shape[0]
z_proj = torch.cat((zi, zj), dim=0)
cos_sim = torch.nn.CosineSimilarity(dim=-1)
sim_mat = cos_sim(z_proj.unsqueeze(1), z_proj.unsqueeze(0))
sim_mat_scaled = torch.exp(sim_mat/self.temp)
r_diag = torch.diag(sim_mat_scaled, batch_size)
l_diag = torch.diag(sim_mat_scaled, -batch_size)
pos = torch.cat([r_diag, l_diag])
diag_mat = torch.exp(torch.ones(batch_size * 2)/self.temp).cuda()
logit = -torch.log(pos/(sim_mat_scaled.sum(1) - diag_mat))
loss = logit.mean()
return loss
contrative_loss = NT(self.D(fake_images1),self.D(fake_images2))
Hi, I tried to use
contrative_loss =
NT(self.D(fake_images1).view(-1,1),self.D(fake_images2).view(-1,1))
it works but too slow. ANY IDEADS for me? I guess it may relate to shape of tensor. bUt I am a beginner

Related

Keras - ValueError: Could not interpret loss function identifier

I am trying to build the autoencoder structure detailed in this IEEE article. The autoencoder uses a separable loss function where it is required that I create a custom loss function for the "cluster loss" term of the separable loss function as a function of the average output of the encoder. I create my own layer called RffConnected that calculates the cluster loss and utilizes the add_loss method. Otherwise, this RffConnected layer should act as just a normal deep layer.
Here are my relevant code snippets:
import matplotlib.pyplot as plot
from mpl_toolkits.axes_grid1 import ImageGrid
import numpy as np
import math
from matplotlib.figure import Figure
import tensorflow as tf
import keras
from keras import layers
import random
import time
from os import listdir
#loads data from a text file
def loadData(basePath, samplesPerFile, sampleRate):
real = []
imag = []
fileOrder = []
for file in listdir(basePath):
if((file != "READ_ME") and ((file != "READ_ME.txt"))):
fid = open(basePath + "\\" + file, "r")
fileOrder.append(file)
t = 0
sampleEvery = samplesPerFile / sampleRate
temp1 = []
temp2 = []
times = []
for line in fid.readlines():
times.append(t)
samples = line.split("\t")
temp1.append(float(samples[0]))
temp2.append(float(samples[1]))
t = t + sampleEvery
real.append(temp1)
imag.append(temp2)
fid.close()
real = np.array(real)
imag = np.array(imag)
return real, imag, times, fileOrder
#####################################################################################################
#Breaks up and randomizes data
def breakUpData(real, imag, times, numPartitions, basePath):
if(len(real) % numPartitions != 0):
raise ValueError("Error: The length of the dataset must be divisible by the number of partitions.")
newReal = []
newImag = []
newTimes = []
fileOrder = listdir(basePath)
dataFiles = []
interval = int(len(real[0]) / numPartitions)
for i in range(0, interval):
newTimes.append(times[i])
for i in range(0, len(real)):
tempI = []
tempQ = []
for j in range(0, len(real[0])):
tempI.append(real[i, j])
tempQ.append(imag[i, j])
if((j + 1) % interval == 0):
newReal.append(tempI)
newImag.append(tempQ)
#fileName = fileOrder[i][0: fileOrder[i].find("_") + 3]
dataFiles.append(fileOrder[i])
tempI = []
tempQ = []
#randomizes the broken up dataset and the file list
for i in range(0, len(newReal)):
r = random.randint(0, len(newReal) - 1)
tempReal = newReal[i]
tempImag = newImag[i]
newReal[i] = newReal[r]
newImag[i] = newImag[r]
newReal[r] = tempReal
newImag[r] = tempImag
tempFile = dataFiles[i]
dataFiles[i] = dataFiles[r]
dataFiles[r] = tempFile
#return np.array(newReal), np.array(newImag), newTimes, dataFiles
return newReal, newImag, newTimes, dataFiles
#####################################################################################################
#custom loss layer for the RffAe-S that calculates the clustering loss term
class RffConnected(layers.Layer):
def __init__(self, output_dim, batchSize, beta, alpha):
super(RffConnected, self).__init__()
# self.total = tf.Variable(initial_value=tf.zeros((input_dim,)), trainable=False)
#array = np.zeros(output_dim)
self.iters = 0.0
self.beta = beta
self.alpha = alpha
self.batchSize = batchSize
self.output_dim = output_dim
self.sum = tf.zeros(output_dim, tf.float64)
self.moving_average = tf.zeros(output_dim, tf.float64)
self.clusterloss = tf.zeros(output_dim, tf.float64)
self.sum = tf.cast(self.sum, tf.float32)
self.moving_average = tf.cast(self.moving_average, tf.float32)
self.clusterloss = tf.cast(self.clusterloss, tf.float32)
# self.sum = keras.Input(shape=(self.output_dim,))
# self.moving_average = keras.Input(shape=(self.output_dim,))
# self.clusterloss = keras.Input(shape=(self.output_dim,))
def build(self, input_shape):
self.kernel = self.add_weight(name = 'kernel', \
shape = (int(input_shape[-1]), self.output_dim), \
initializer = 'normal', trainable = True)
#self.kernel = tf.cast(self.kernel, tf.float64)
super(RffConnected, self).build(int(input_shape[-1]))
def call(self, inputs):
#keeps track of training epochs
self.iters = self.iters + 1
#inputs = tf.cast(inputs, tf.float64)
#where this custom layer acts as a normal layer- the loss then uses this
#calc = keras.backend.dot(inputs, self.kernel)
calc = tf.matmul(inputs, self.kernel)
#cumulative sum of deep encoded features
#self.sum = state_ops.assign(self.sum, tf.reshape(tf.math.add(self.sum, calc), tf.shape(self.sum)))
#self.sum = tf.ops.state_ops.assign(self.sum, tf.math.add(self.sum, calc))
#self.sum.assign_add(calc)
self.sum = tf.math.add(self.sum, calc)
#calculate the moving average and loss if we have already trained one batch
if(self.iters >= self.batchSize):
self.moving_average = tf.math.divide(self.sum, self.iters)
self.clusterloss = tf.math.exp(\
tf.math.multiply(-1 * self.beta, tf.math.reduce_sum(tf.math.square(tf.math.subtract(inputs, self.moving_average)))))
#self.add_loss(tf.math.multiply(self.clusterloss, self.alpha))
self.add_loss(self.clusterloss.numpy() * self.alpha)
return calc
#####################################################################################################
def customloss(y_true, y_pred):
loss = tf.square(y_true - y_pred)
print(loss)
return loss
#####################################################################################################
realTraining = np.array(real[0:2200])
realTesting = np.array(real[2200:-1])
imagTraining = np.array(imag[0:2200])
imagTesting = np.array(imag[2200:-1])
numInputs = len(realTraining[0])
i_sig = keras.Input(shape=(numInputs,))
q_sig = keras.Input(shape=(numInputs,))
iRff = tf.keras.layers.experimental.RandomFourierFeatures(numInputs, \
kernel_initializer='gaussian', scale=9.0)(i_sig)
rff1 = keras.Model(inputs=i_sig, outputs=iRff)
qRff = tf.keras.layers.experimental.RandomFourierFeatures(numInputs, \
kernel_initializer='gaussian', scale=9.0)(q_sig)
rff2 = keras.Model(inputs=q_sig, outputs=qRff)
combined = layers.Concatenate()([iRff, qRff])
combineRff = tf.keras.layers.experimental.RandomFourierFeatures(4 * numInputs, \
kernel_initializer='gaussian', scale=10.0)(combined)
preprocess = keras.Model(inputs=[iRff, qRff], outputs=combineRff)
#print(realTraining[0:5])
preprocessedTraining = preprocess.predict([realTraining, imagTraining])
preprocessedTesting = preprocess.predict([realTesting, imagTesting])
################## Entering Encoder ######################
encoderIn = keras.Input(shape=(4*numInputs,))
#connected1 = layers.Dense(100, activation="sigmoid")(encoderIn)
clusterLossLayer = RffConnected(100, 30, 1.00, 100.00)(encoderIn)
#clusterLossLayer = myRffConnected(256)(connected1)
encoder = keras.Model(inputs=encoderIn, outputs=clusterLossLayer)
################## Entering Decoder ######################
connected2 = layers.Dense(125, activation="sigmoid")(clusterLossLayer)
relu1 = layers.ReLU()(connected2)
dropout = layers.Dropout(0.2)(relu1)
reshape1 = layers.Reshape((25, 5, 1))(dropout)
bn1 = layers.BatchNormalization()(reshape1)
trans1 = layers.Conv2DTranspose(1, (4, 2))(bn1)
ups1 = layers.UpSampling2D(size=(2, 1))(trans1)
relu2 = layers.ReLU()(ups1)
bn2 = layers.BatchNormalization()(relu2)
trans2 = layers.Conv2DTranspose(1, (4, 2))(bn2)
ups2 = layers.UpSampling2D(size=(2, 1))(trans2)
relu3 = layers.ReLU()(ups2)
bn3 = layers.BatchNormalization()(relu3)
trans3 = layers.Conv2DTranspose(1, (5, 2))(bn3)
ups3 = layers.UpSampling2D(size=(2, 1))(trans3)
relu4 = layers.ReLU()(ups3)
bn4 = layers.BatchNormalization()(relu4)
trans4 = layers.Conv2DTranspose(1, (7, 1))(bn4)
reshape2 = layers.Reshape((4*numInputs, 1, 1))(trans4)
autoencoder = keras.Model(inputs=encoderIn, outputs=reshape2)
encoded_input = keras.Input(shape=(None, 100))
decoder_layer = autoencoder.layers[-1]
#autoencoder.summary()
autoencoder.compile(optimizer='adam', loss=[autoencoder.losses[-1], customloss], metrics=['accuracy', 'accuracy'])
autoencoder.fit(preprocessedTraining, preprocessedTraining, epochs=100, batch_size=20, shuffle=True, validation_data=(preprocessedTesting, preprocessedTesting))
It seems like it runs for two training epochs then it gives me an error. I end up getting this error when I run it:
ValueError: Could not interpret loss function identifier: Tensor("rff_connected_137/Const:0", shape=(100,), dtype=float32)
I've already spent a considerable amount of time debugging this thing, although if you spot any more errors I would appreciate a heads-up. Thank you in advance.
According to the documentation of the keras Keras Model Training-Loss, the 'loss' attribute can take the value of float tensor (except for the sparse loss functions returning integer arrays) with a specific shape.
If it is necessary to combine two loss functions, it would be better to perform mathematical calculations within your custom loss function to return an output of float tensor. This reference might be a help Keras CustomLoss definition.

Is there a way to fix param.grad = none in pytorch model?

I am working on the Point Cloud Registration Network(PCRNET) and I have a issue with the training process. For that I wrote a pytorch model that consists of 5 convolutional layers and 5 fully connected layers. My custom loss output changes with each new initialization of the network but then for each epoch I obtain the same values for each batch. Therefore no training is happening. I narrowed the error down to the fact that no gradients are being computed.
Here is my network and forward pass
class pcrnetwork(nn.Module):
def __init__(self,):
# This is the network that gets initialized with every new instance
super().__init__()
self.conv1 = nn.Conv1d(3,64,1, padding="valid")
self.conv2 = nn.Conv1d(64,64,1,padding="valid")
self.conv3 = nn.Conv1d(64,64,1,padding="valid")
self.conv4 = nn.Conv1d(64,128,1,padding="valid")
self.conv5 = nn.Conv1d(128,1024,1,padding="valid")
self.fc1 = nn.Linear(2048,1024)
self.fc2 = nn.Linear(1024,512)
self.fc3 = nn.Linear(512,512)
self.fc4 = nn.Linear(512,256)
self.fc5 = nn.Linear(256,6)
self.bn1 = nn.BatchNorm1d(64)
self.bn2 = nn.BatchNorm1d(64)
self.bn3 = nn.BatchNorm1d(64)
self.bn4 = nn.BatchNorm1d(128)
self.bn6 = nn.BatchNorm1d(1024)
self.bn7 = nn.BatchNorm1d(512)
self.bn8 = nn.BatchNorm1d(512)
self.bn9 = nn.BatchNorm1d(256)
def forward1(self,input,input1,points):
point_cloud = torch.cat((input,input1),dim=2)
net = Func.relu(self.bn1(self.conv1(point_cloud)))
net = Func.relu(self.bn2(self.conv2(net)))
net = Func.relu(self.bn3(self.conv3(net)))
net = Func.relu(self.bn4(self.conv4(net)))
net = Func.relu(self.conv5(net))
net_s = net[:,:,0:points]
net_t = net[:,:,points:points*2]
pool = nn.MaxPool1d(net_s.size(-1))(net_s)
pool2 = nn.MaxPool1d(net_t.size(-1))(net_t)
global_feature = torch.cat((pool,pool2),1)
#global_feature = torch.squeeze(global_feature,dim=2)
global_feature = torch.flatten(global_feature,start_dim=1)
# fully connected part
net = Func.relu(self.bn6(self.fc1(global_feature)))
net = Func.relu(self.bn7(self.fc2(net)))
net = Func.relu(self.bn8(self.fc3(net)))
net = Func.relu(self.bn9(self.fc4(net)))
net = Func.relu(self.fc5(net))
pose = net
output = appply_transformation(torch.transpose(input,1,2),pose)
return output
my training loop looks like this:
def train1():
losss = []
for epoch in range(1):
model.train()
total_loss = 0.0
#poses = []
for idx, data in enumerate(train_loader,0):
x = data["source"] # shape= [32,2048,3]
y = data["target"]
x = torch.transpose(x,1,2)
x = x.to(device)
y = torch.transpose(y,1,2)
y = y.to(device)
optimizer.zero_grad()
output = model.forward1(x,y,2048)
y = torch.transpose(y,1,2)
loss = og_chamfer1(y,output)
loss.backward()
optimizer.step()
print(loss.item())
And finally here is the code for my loss function. The idea here is to let the network calculate 6 parameters(3 rotational, 3 translational) that get fed into my apply transformation function. Then my actual loss(=Chamfer Distance) is being calculated on the transformed source point cloud and the target point cloud.
def dist_vec(source, targ):
#AB = torch.matmul(targ,torch.transpose(source,1,2))
AB = torch.matmul(targ,torch.transpose(source,0,1))
#print("ab hat die shape",AB.shape)
AA = torch.sum(torch.square(targ),1)
#AA = AA[:,:,None]
#print("AA hat die shape", AA.shape)
BB = torch.sum(torch.square(source),1)
#BB = BB[:,:,None]
dist_matrix = torch.transpose((BB - 2 * AB), 0,1) + AA
return dist_matrix
def og_chamfer1(sourc,targ): # source =[32,2048,3]
batch_loss1 = torch.zeros(size=(len(sourc),))
batch_loss = []
#print(len(source))
for i in range(len(sourc)):
dist = dist_vec(sourc[i],targ[i])
#print("dist hat die shape", dist.shape)
min_x_val, min_x_idx = torch.min(dist, axis=0)
#print("this is minx", min_x_val)
#min_x = torch.tensor(min_x[0])
min_y_val, min_y_idx = torch.min(dist,axis=1)
#print("this is min y", min_y_val)
mean = torch.mean(min_x_val) + torch.mean(min_y_val)
batch_loss1[i] = mean
#batch_loss.append(mean)
#print(batch_loss)
#print(len(batch_loss))
#batch_loss_total = sum(batch_loss)/len(sourc)
#print(mean.shape)
batch_loss1 = torch.mean(batch_loss1)
return batch_loss1
all of these functions should work, I just post them for reference. I think the problem for para.grad=None lays somewhere in my apply transformation function:
def rotate_cloud_by_angle_z(input, rotation_angle):
# the input here should have shape=(num.of points x 3)
# dtype for the rotation matrix needs to be set to float64
cosval = torch.cos(rotation_angle) # DONT USE TF.MATH.COS BECAUSE U GET A TENSOR NOT A NUMBER
sinval = torch.sin(rotation_angle)
#print("sinval hat shape:",sinval.shape)
#cosval = torch.from_numpy(cosval)
#sinval = torch.from_numpy(sinval)
rotation_matrix =torch.tensor([[cosval.item(),-sinval.item(),0],[sinval.item(),cosval.item(),0],[0,0,1]],dtype=torch.float32, requires_grad=False)
rotation_matrix = rotation_matrix.to(device)
product = torch.matmul(input, rotation_matrix)
return product
def appply_transformation(datas,poses):
transformed_data = datas
#print("poses hat die shape", poses.shape)
for i in range(datas.shape[0]):
#print("poses[i,5] hat shape:", poses[i,5])
#print("poses hat shape:", poses.shape)
transformed_data[i,:,:] = rotate_cloud_by_angle_z(transformed_data[i,:,:].clone(),poses[i,5])
#print(poses.shape)
#print("poses[i,5] hat shape:", poses[i,5])
transformed_data[i,:,:] = rotate_cloud_by_angle_y(transformed_data[i,:,:].clone(),poses[i,4])
transformed_data[i,:,:] = rotate_cloud_by_angle_x(transformed_data[i,:,:].clone(),poses[i,3])
transformed_data[i,:,:] = translation(transformed_data[i,:,:].clone(),torch.tensor([poses[i,0],poses[i,1],poses[i,2]],requires_grad=False).to(device))
return transformed_data
on https://discuss.pytorch.org/t/model-param-grad-is-none-how-to-debug/52634/3 I could find out that one shouldn't use .item() or rewrapping of tensors like x = torch.tensor(x) but essentially I don't know how to change my apply transformation function in such that the gradient calculation works.
If anyone has any tips on that I would be super grateful!

Logistic Regression, error for divide by zero

It works well but not learning anything.The loss goes never down.Besides, it occurs a Runtime Warning: Divide by zero encountered in power.
phi = np.array([0, 0.00724873038246, 0.0126062332691, 0.0179158239032, 0.0237780447692, 0.0301819694947, 0.037412389363, 0.0453824653196, 0.0541722382861, 0.0638498928693, 0.0748241181818, 0.0870018575601, 0.100969984201, 0.116901498992, 0.135225153396, 0.155865741879, 0.179184255267, 0.205004290279, 0.233612351761, 0.265481420095, 0.307980863])
kf = np.array([188.0535454, 200.042702173, 212.031762644, 224.020823148, 236.009883356, 247.998943263, 259.988002683, 271.977061559, 283.96611989, 295.955177493, 307.944233912, 319.933288966, 331.922341978, 343.911392444, 355.900439242, 367.889482121, 379.878519645, 391.867551768, 403.856577188, 415.845593859, 427.834570885])
PHI_train = torch.FloatTensor(phi)
KF_train = torch.FloatTensor(kf)
def ludwig_func(x, a, b, c):
return a+b*(x**c)
class Reg(torch.nn.Module):
def __init__(self,n_feature,n_hidden,n_output):
super(Reg, self).__init__()
self.layer1 = torch.nn.Linear(1,16)
self.layer2 = torch.nn.Linear(16,8)
#self.layer4 = torch.nn.Linear(32,16)
self.predict = torch.nn.Linear(8,3)
def forward(self,x):
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
x = self.predict(x)
return x
reg = Reg(n_feature = 1, n_hidden = 16, n_output = 3)
optimizer = torch.optim.SGD(reg.parameters(),lr=0.01)
loss_func = torch.nn.MSELoss()
for epoch in range(200):
PRM = reg(PHI_train) #Tensor
prm = PRM.detach().numpy() #Array
for i in range(len(ludwig_prm)): #length of prm = 21
a = prm[i,0]
b = prm[i,1]
c = prm[i,2]
#d = prm[i,3]
preds = ludwig_func(phi,a,b,c)#Array
np.set_printoptions(precision=10)
preds = np.nan_to_num(preds)
#print(preds)
Preds = torch.FloatTensor(preds)#Tensor
Preds[Preds == float('inf')] = -0.2e+10
#print(Preds)
loss = loss_func(Preds,KF_train) #Tensor
loss[loss == float('inf')] = 0.1e+29
loss = Variable(loss,requires_grad = True)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch:',epoch+1,'MESloss:',loss.item())
I have struggled this for a long time and don't know why. On the Internet i have also nothing found. It will be so nice, that someone could help.
Hi your problem is in the definition of the input arrays, if you try to change it in as example:
phi = Variable(torch.Tensor([[10.0], [9.0], [3.0], [2.0]]))
kf = Variable(torch.Tensor([[90.0], [80.0], [50.0], [30.0]]))
the procedure will work
In my opinion you have to reshape your inputs

Adding layers and bidirectionality to custom LSTM cell in pytorch

I use a very custom LSTM-cell inspired by http://mlexplained.com/2019/02/15/building-an-lstm-from-scratch-in-pytorch-lstms-in-depth-part-1/.
I use it to look at intermediate gating values. My question is, how would I expand this class to have an option for adding more layers and for adding bidirectionality? Should it be wrapped in a new class or added in the present one?
class Dim(IntEnum):
batch = 0
seq = 1
class simpleLSTM(nn.Module):
def __init__(self, input_sz: int, hidden_sz: int):
super().__init__()
self.input_size = input_sz
self.hidden_size = hidden_sz
# input gate
self.W_ii = Parameter(torch.Tensor(input_sz, hidden_sz))
self.W_hi = Parameter(torch.Tensor(hidden_sz, hidden_sz))
self.b_i = Parameter(torch.Tensor(hidden_sz))
# forget gate
self.W_if = Parameter(torch.Tensor(input_sz, hidden_sz))
self.W_hf = Parameter(torch.Tensor(hidden_sz, hidden_sz))
self.b_f = Parameter(torch.Tensor(hidden_sz))
# ???
self.W_ig = Parameter(torch.Tensor(input_sz, hidden_sz))
self.W_hg = Parameter(torch.Tensor(hidden_sz, hidden_sz))
self.b_g = Parameter(torch.Tensor(hidden_sz))
# output gate
self.W_io = Parameter(torch.Tensor(input_sz, hidden_sz))
self.W_ho = Parameter(torch.Tensor(hidden_sz, hidden_sz))
self.b_o = Parameter(torch.Tensor(hidden_sz))
self.init_weights()
self.out = nn.Linear(hidden_sz, len(TRG.vocab))
def init_weights(self):
for p in self.parameters():
if p.data.ndimension() >= 2:
nn.init.xavier_uniform_(p.data)
else:
nn.init.zeros_(p.data)
def forward(self, x, init_states=None ):
"""Assumes x is of shape (batch, sequence, feature)"""
seq_sz, bs, = x.size()
hidden_seq = []
prediction = []
if init_states is None:
h_t, c_t = torch.zeros(self.hidden_size).to(x.device), torch.zeros(self.hidden_size).to(x.device)
else:
h_t, c_t = init_states
for t in range(seq_sz): # iterate over the time steps
x_t = x[t, :].float()
#LOOK HERE!!!
i_t = torch.sigmoid(x_t # self.W_ii + h_t # self.W_hi + self.b_i)
f_t = torch.sigmoid(x_t # self.W_if + h_t # self.W_hf + self.b_f)
g_t = torch.tanh(x_t # self.W_ig + h_t # self.W_hg + self.b_g)
o_t = torch.sigmoid(x_t # self.W_io + h_t # self.W_ho + self.b_o)
c_t = f_t * c_t + i_t * g_t
h_t = o_t * torch.tanh(c_t)
hidden_seq.append(h_t.unsqueeze(Dim.batch))
pred_t = self.out(h_t.unsqueeze(Dim.batch))
#pred_t = F.softmax(pred_t)
prediction.append(pred_t)
hidden_seq = torch.cat(hidden_seq, dim=Dim.batch)
prediction = torch.cat(prediction, dim=Dim.batch)
# reshape from shape (sequence, batch, feature) to (batch, sequence, feature)
hidden_seq = hidden_seq.transpose(Dim.batch, Dim.seq).contiguous()
prediction = prediction.transpose(Dim.batch, Dim.seq).contiguous()
return prediction, hidden_seq, (h_t, c_t)
I call it and train using the following as an example.
lstm = simpleLSTM(1, 100)
hidden_size = lstm.hidden_size
optimizer = optim.Adam(lstm.parameters())
h_0, c_0 = (torch.zeros(hidden_size, requires_grad=True),
torch.zeros(hidden_size, requires_grad=True))
grads = []
h_t, c_t = h_0, c_0
N_EPOCHS = 10
for epoch in range(N_EPOCHS):
epoch_loss = 0
for i, batch in enumerate(train):
optimizer.zero_grad()
src, src_len = batch.src
trg = batch.trg
trg = trg.view(-1)
predict, output, hidden_states = lstm(src)
predict = predict.t().unsqueeze(1)
predict= predict.view(-1, predict.shape[-1])
loss = criterion(predict,trg)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
print(epoch_loss)
The easiest would be to create another module (say Bidirectional) and pass any cell you want to it.
Implementation itself is quite easy to do. Notice that I'm using concat operation for joining bi-directional output, you may want to specify other modes like summation etc.
Please read the comments in the code below, you may have to change it appropriately.
import torch
class Bidirectional(torch.nn.Module):
def __init__(self, cell):
super().__init__()
self.cell = cell
def __call__(self, x, init_states=None):
prediction, hidden_seq, (h_t, c_t) = self.cell(x, init_states)
backward_prediction, backward_hidden_seq, (
backward_h_t,
backward_c_t,
# Assuming sequence is first dimension, otherwise change 0 appropriately
# Reverses sequences so the LSTM cell acts on the reversed sequence
) = self.cell(torch.flip(x, (0,)), init_states)
return (
# Assuming you transpose so it has (batch, seq, features) dimensionality
torch.cat((prediction, backward_prediction), 2),
torch.cat((hidden_seq, backward_hidden_seq), 2),
# Assuming it has (batch, features) dimensionality
torch.cat((h_t, backward_ht), 1),
torch.cat((c_t, backward_ct), 1),
)
When it comes to multiple layers you could do something similiar in principle:
import torch
class Multilayer(torch.nn.Module):
def __init__(self, *cells):
super().__init__()
self.cells = torch.nn.ModuleList(cells)
def __call__(self, x, init_states=None):
inputs = x
for cell in self.cells:
prediction, hidden_seq, (h_t, c_t) = cell(inputs, init_states)
inputs = hidden_seq
return prediction, hidden_seq, (h_t, c_t)
Please note you have to pass created cell objects into Multilayer e.g.:
# For three layers of LSTM, each needs features to be set up correctly
multilayer_LSTM = Multilayer(LSTM(), LSTM(), LSTM())
You may also pass classes instead of instances into constructor and create those inside Multilayer (so hidden_size matches automatically), but those ideas should get you started.

Tensorflow evaluate: Aborted (core dumped)

tl;dr: I input a word to my model, and am supposed to get a list of similar words and their associated measures of similarity back. I get an error: Aborted (core dumped).
My goal is to determine which words are similar to an input word, based on their feature vectors. I have model already trained. I load it and call two functions:
def main(argv=None):
model = NVDM(args)
sess_saver = tf.train.Saver()
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
loaded = load_for_similar(sess, sess_saver) #my function
wm = word_match(sess, loaded[0], loaded[1], "bottle", loaded[2], loaded[3], topN=5)
My problem is that I can't print out the words which are similar and the associated similarity measure. I tried (in main):
sess.run(wm)
wm[0].eval(session=sess)
print(wm)
All of which gave me the error:
F tensorflow/core/kernels/strided_slice_op.cc:316] Check failed: tmp.CopyFrom(input.Slice(begin[0], end[0]), final_shape)
Aborted (core dumped)
This tells me I'm not running the session properly. What am I doing wrong?
Details on the functions, just in case:
The function 'load_for_similar' restores the weights and bias of the decoder in my model (a variational autoencoder), and normalizes them. It also reverses the order of the keys and values in my vocabulary dictionary for later use:
def load_for_similar(sess, saver_obj):
saver_obj.restore(sess, "./CA_checkpoints/saved_model.ckpt")
vocab_file = '/path/to/vocab.pkl'
t1 = loader_object(vocab_file)
v1 = t1.get_vocab()
v1_rev = {k:v for v, k in v1.iteritems()}
decoder_mat = tf.get_collection(tf.GraphKeys.VARIABLES, scope='decoder')[0]
decoder_bias = tf.get_collection(tf.GraphKeys.VARIABLES, scope='decoder')[1]
return (find_norm(decoder_mat), find_norm(decoder_bias), v1, v1_rev)
To find similar words, I pass the normalized weight matrix and bias in to an new function, along with the feature vector of my word (vec):
def find_similar(sess, Weights, vec, bias):
dists = tf.add(tf.reduce_sum(tf.mul(Weights, vec)), bias)
best = argsort(sess, dists, reverse=True)
dist_sort = tf.nn.top_k(dists, k=dists.get_shape().as_list()[0], sorted=True).values
return dist_sort, best
Finally, I want to match the words that are closest to my supplied word, "bottle":
def word_match(sess, norm_mat , norm_bias, word_ , vocab, vocab_inverse , topN = 10):
idx = vocab[word_]
similarity_meas , indexes = find_similar(sess, norm_mat , norm_mat[idx], norm_bias)
words = tf.gather(vocab_inverse.keys(), indexes[:topN])
return (words, similarity_meas[:topN])
EDIT: in response to mrry's comment, here is the model (I hope this is what you wanted?). This code depends on utils.py, a separate utilities file. I will include that as well. Please note that this code is heavily based on Yishu Miao's and Sarath Nair's.
class NVDM(object):
""" Neural Variational Document Model -- BOW VAE.
"""
def __init__(self,
vocab_size=15000, #was 2000
n_hidden=500,
n_topic=50,
n_sample=1,
learning_rate=1e-5,
batch_size=100, #was 64
non_linearity=tf.nn.tanh):
self.vocab_size = vocab_size
self.n_hidden = n_hidden
self.n_topic = n_topic
self.n_sample = n_sample
self.non_linearity = non_linearity
self.learning_rate = learning_rate/batch_size #CA
self.batch_size = batch_size
self.x = tf.placeholder(tf.float32, [None, vocab_size], name='input')
self.mask = tf.placeholder(tf.float32, [None], name='mask') # mask paddings
# encoder
with tf.variable_scope('encoder'):
self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden])
self.mean = utils.linear(self.enc_vec, self.n_topic, scope='mean')
self.logsigm = utils.linear(self.enc_vec,
self.n_topic,
bias_start_zero=True,
matrix_start_zero=False,
scope='logsigm')
self.kld = -0.5 * tf.reduce_sum(1 - tf.square(self.mean) + 2 * self.logsigm - tf.exp(2 * self.logsigm), 1)
self.kld = self.mask*self.kld # mask paddings
with tf.variable_scope('decoder'):
if self.n_sample ==1: # single sample
p1 = tf.cast(tf.reduce_sum(self.mask), tf.int32) #needed for random normal generation
eps = tf.random_normal((p1, self.n_topic), 0, 1)
doc_vec = tf.mul(tf.exp(self.logsigm), eps) + self.mean
logits = tf.nn.log_softmax(utils.linear(doc_vec, self.vocab_size, scope='projection'))
self.recons_loss = -tf.reduce_sum(tf.mul(logits, self.x), 1)
# multiple samples
else:
eps = tf.random_normal((self.n_sample*batch_size, self.n_topic), 0, 1)
eps_list = tf.split(0, self.n_sample, eps)
recons_loss_list = []
for i in xrange(self.n_sample):
if i > 0: tf.get_variable_scope().reuse_variables()
curr_eps = eps_list[i]
doc_vec = tf.mul(tf.exp(self.logsigm), curr_eps) + self.mean
logits = tf.nn.log_softmax(utils.linear(doc_vec, self.vocab_size, scope='projection'))
recons_loss_list.append(-tf.reduce_sum(tf.mul(logits, self.x), 1))
self.recons_loss = tf.add_n(recons_loss_list) / self.n_sample
self.objective = self.recons_loss + self.kld
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
fullvars = tf.trainable_variables()
enc_vars = utils.variable_parser(fullvars, 'encoder')
dec_vars = utils.variable_parser(fullvars, 'decoder')
enc_grads = tf.gradients(self.objective, enc_vars)
dec_grads = tf.gradients(self.objective, dec_vars)
self.optim_enc = optimizer.apply_gradients(zip(enc_grads, enc_vars))
self.optim_dec = optimizer.apply_gradients(zip(dec_grads, dec_vars))
def minibatch_bow(it1, Instance1, n_samples, batch_size, used_ints = set()):
available = set(np.arange(n_samples)) - used_ints #
if len(available) < batch_size:
indices = np.array(list(available))
else:
indices = np.random.choice(tuple(available), batch_size, replace=False)
used = used_ints
mb = itemgetter(*indices)(it1)
batch_xs = Instance1._bag_of_words(mb, vocab_size=15000)
batch_flattened = np.ravel(batch_xs)
index_positions = np.where(batch_flattened > 0)[0]
return (batch_xs, index_positions, set(indices)) #batch_xs[0] is the bag of words; batch_xs[1] is the 0/1 word used/not;
def train(sess, model, train_file, vocab_file, saver_obj, training_epochs, alternate_epochs, batch_size):
Instance1 = testchunk_Nov23.testLoader(train_file, vocab_file)
data_set = Instance1.get_batch(batch_size) #get all minibatches of size 100
n_samples = Instance1.num_reviews()
train_batches = list(data_set) #this is an itertools.chain object
it1_train = list(itertools.chain(*train_batches)) #length is 732,356. This is all the reviews.atch_size
if len(it1_train) % batch_size != 0:
total_batch = int(len(it1_train)/batch_size) + 1
else:
total_batch = int(len(it1_train)/batch_size)
trainfilesave = "train_ELBO_and_perplexity_Dec1.txt"
#Training
train_time = time.time()
for epoch in range(training_epochs):
for switch in xrange(0, 2):
if switch == 0:
optim = model.optim_dec
print_mode = 'updating decoder'
else:
optim = model.optim_enc
print_mode = 'updating encoder'
with open(trainfilesave, 'w') as f:
for i in xrange(alternate_epochs):
loss_sum = 0.0
kld_sum = 0.0
word_count = 0
used_indices = set()
for idx_batch in range(total_batch): #train_batches:
mb = minibatch_bow(it1_train, Instance1, n_samples, batch_size, used_ints=used_indices)
print('minibatch', idx_batch)
used_indices.update(mb[2])
num_mb = np.ones(mb[0][0].shape[0])
input_feed = {model.x.name: mb[0][0], model.mask: num_mb}
_, (loss, kld) = sess.run((optim,[model.objective, model.kld]) , input_feed)
loss_sum += np.sum(loss)
And the utils.py file:
def linear(inputs,
output_size,
no_bias=False,
bias_start_zero=False,
matrix_start_zero=False,
scope=None):
"""Define a linear connection."""
with tf.variable_scope(scope or 'Linear'):
if matrix_start_zero:
matrix_initializer = tf.constant_initializer(0)
else:
matrix_initializer = None
if bias_start_zero:
bias_initializer = tf.constant_initializer(0)
else:
bias_initializer = None
input_size = inputs.get_shape()[1].value
matrix = tf.get_variable('Matrix', [input_size, output_size],
initializer=matrix_initializer)
bias_term = tf.get_variable('Bias', [output_size],
initializer=bias_initializer)
output = tf.matmul(inputs, matrix)
if not no_bias:
output = output + bias_term
return output
def mlp(inputs,
mlp_hidden=[],
mlp_nonlinearity=tf.nn.tanh,
scope=None):
"""Define an MLP."""
with tf.variable_scope(scope or 'Linear'):
mlp_layer = len(mlp_hidden)
res = inputs
for l in xrange(mlp_layer):
res = mlp_nonlinearity(linear(res, mlp_hidden[l], scope='l'+str(l)))
return res

Categories