I have a while loop which executes two methods. I want the functionB() to execute only EVERY 2 seconds.
I know there are solutions which can use the thread to use a timer to execute it every two seconds, but that is something that I DO NOT want to use. I want both methods to run on the MAIN thread.
def functionA():
# Code goes here
def functionB():
# Code goes here
while True:
# Execute function A
functionA()
# Periodically execute functionB every 2 seconds
functionB()
I am not sure on how to calculate the difference between the last time it executed and the current time. I search online for a few examples but they seem to confuse me more.
Any help would be appreciated.
get the timestamp in seconds and check if 2 or more seconds have passed since the last execution.
import time
def functionA():
# Code goes here
def functionB():
# Code goes here
lastExec = 0
while True:
# Execute function A
functionA()
now = time.time()
if now - lastExec >= 2:
# Periodically execute functionB every 2 seconds
functionB()
lastExec = now
I'm trying to run a method every minute.
The method does some operations on the internet so it might take anywhere from 1 second to 30 seconds.
What I want to do is calculate the time spent by this method and then sleep for the remaining time, to make sure that the method itself runs every minute.
Currently my code looks like this:
def do_operation():
access_db()
sleep(60)
As you can see this does not take into account the delay whatsoever, and although it works, it will at some point fail and skip a minute completely, which should never happen.
import time
def do_operation():
start = time.time()
access_db()
time.sleep(60-time.time()+start)
This code will allow you to run a callable in defined intervals:
import time
import random
def recurring(interval, callable):
i = 0
start = time.time()
while True:
i += 1
callable()
remaining_delay = max(start + (i * interval) - time.time(), 0)
time.sleep(remaining_delay)
def tick_delay():
print('tick start')
time.sleep(random.randrange(1, 4))
print('tick end')
recurring(5, tick_delay)
Notes
The function tick_delay sleeps for some seconds to simulate a function which can take an undefined amount of time.
If the callable takes longer than the defined loop interval, the next iteration will be scheduled immediately after the last ended. To have the callable run in parallel you need to use threading or asyncio
I am trying to create a scheduled task in Python using Win32com. I am able to create a daily trigger. However, I cannot find a way to create a trigger every 5 seconds or every minute for that matter. Does anybody have any pointers on how to do that?
As said in a comment, if you want to do stuff with this frequency you are better off just having your program run forever and do its own scheduling.
In a similar fashion to #Barmak Shemirani's answer, but without spawning threads:
import time
def screenshot():
# do your screenshot...
interval = 5.
target_time = time.monotonic() + interval
while True:
screenshot()
delay = target_time - time.monotonic()
if delay > 0.:
time.sleep(delay)
target_time += interval
or, if your screenshot is fast enough and you don't really care about precise timing:
while True:
screenshot()
time.sleep(interval)
If you want this to run from the system startup, you'll have to make it a service, and change the exit condition accordingly.
pywin32 is not required to create schedule or timer. Use the following:
import threading
def screenshot():
#pywin32 code here
print ("Test")
def starttimer():
threading.Timer(1.0, starttimer).start()
screenshot()
starttimer()
Use pywin32 for taking screenshot etc.
I'm scraping (extracting) data from a certain website. The data contains two values that I need, namely (grid) frequency value and time.
The data on the website is being updated every second. I'd like to continuously save these values (append them) into a list or a tuple using python. To do that I tried using schedule library. The following job schedule commands run the data scraping function (socket_freq) every second.
import schedule
schedule.every(1).seconds.do(socket_freq)
while True:
schedule.run_pending()
I'm facing two problems:
I don't know how to restrict the schedule to run during a chosen time interval. For example, i'd like to run it for 5 or 10 minutes. how do I define that? I mean how to I tell the schedule to stop after a certain time.
if I run this code and stop it after few seconds (using break), then I often get multiple entries, for example here is one result, where the first list[ ] in the tuple refers to the time value and the second list[ ] is the values of frequency:
out:
(['19:27:02','19:27:02','19:27:02','19:27:03','19:27:03','19:27:03','19:27:03','19:27:03','19:27:03','19:27:03','19:27:04','19:27:04','19:27:04', ...],
['50.020','50.020','50.020','50.018','50.018','50.018','50.018','50.018','50.018','50.018','50.017','50.017','50.017'...])
As you can see, the time variable is entered (appended) multiple times, although I used a schedule that runs every 1 second. What i'd actually would expect to retrieve is:
out:
(['19:27:02','19:27:03','19:27:04'],['50.020','50.018','50.017'])
Does anybody know how to solve these problems?
Thanks!
(I'm using python 2.7.9)
Ok, so here's how I would tackle these problems:
Try to obtain a timestamp at the start of your program and then simply check if it has been working long enough each time you execute piece of code you are scheduling.
Use time.sleep() to put your program to sleep for a period of time.
Check my example below:
import schedule
import datetime
import time
# Obtain current time
start = datetime.datetime.now()
# Simple callable for example
class DummyClock:
def __call__(self):
print datetime.datetime.now()
schedule.every(1).seconds.do(DummyClock())
while True:
schedule.run_pending()
# 5 minutes == 300 seconds
if (datetime.datetime.now() - start).seconds >= 300:
break
# And here we halt execution for a second
time.sleep(1)
All refactoring is welcome
This question already has answers here:
How do I get my program to sleep for 50 milliseconds?
(6 answers)
Closed 3 years ago.
How do I put a time delay in a Python script?
This delays for 2.5 seconds:
import time
time.sleep(2.5)
Here is another example where something is run approximately once a minute:
import time
while True:
print("This prints once a minute.")
time.sleep(60) # Delay for 1 minute (60 seconds).
Use sleep() from the time module. It can take a float argument for sub-second resolution.
from time import sleep
sleep(0.1) # Time in seconds
How can I make a time delay in Python?
In a single thread I suggest the sleep function:
>>> from time import sleep
>>> sleep(4)
This function actually suspends the processing of the thread in which it is called by the operating system, allowing other threads and processes to execute while it sleeps.
Use it for that purpose, or simply to delay a function from executing. For example:
>>> def party_time():
... print('hooray!')
...
>>> sleep(3); party_time()
hooray!
"hooray!" is printed 3 seconds after I hit Enter.
Example using sleep with multiple threads and processes
Again, sleep suspends your thread - it uses next to zero processing power.
To demonstrate, create a script like this (I first attempted this in an interactive Python 3.5 shell, but sub-processes can't find the party_later function for some reason):
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
from time import sleep, time
def party_later(kind='', n=''):
sleep(3)
return kind + n + ' party time!: ' + __name__
def main():
with ProcessPoolExecutor() as proc_executor:
with ThreadPoolExecutor() as thread_executor:
start_time = time()
proc_future1 = proc_executor.submit(party_later, kind='proc', n='1')
proc_future2 = proc_executor.submit(party_later, kind='proc', n='2')
thread_future1 = thread_executor.submit(party_later, kind='thread', n='1')
thread_future2 = thread_executor.submit(party_later, kind='thread', n='2')
for f in as_completed([
proc_future1, proc_future2, thread_future1, thread_future2,]):
print(f.result())
end_time = time()
print('total time to execute four 3-sec functions:', end_time - start_time)
if __name__ == '__main__':
main()
Example output from this script:
thread1 party time!: __main__
thread2 party time!: __main__
proc1 party time!: __mp_main__
proc2 party time!: __mp_main__
total time to execute four 3-sec functions: 3.4519670009613037
Multithreading
You can trigger a function to be called at a later time in a separate thread with the Timer threading object:
>>> from threading import Timer
>>> t = Timer(3, party_time, args=None, kwargs=None)
>>> t.start()
>>>
>>> hooray!
>>>
The blank line illustrates that the function printed to my standard output, and I had to hit Enter to ensure I was on a prompt.
The upside of this method is that while the Timer thread was waiting, I was able to do other things, in this case, hitting Enter one time - before the function executed (see the first empty prompt).
There isn't a respective object in the multiprocessing library. You can create one, but it probably doesn't exist for a reason. A sub-thread makes a lot more sense for a simple timer than a whole new subprocess.
Delays can be also implemented by using the following methods.
The first method:
import time
time.sleep(5) # Delay for 5 seconds.
The second method to delay would be using the implicit wait method:
driver.implicitly_wait(5)
The third method is more useful when you have to wait until a particular action is completed or until an element is found:
self.wait.until(EC.presence_of_element_located((By.ID, 'UserName'))
There are five methods which I know: time.sleep(), pygame.time.wait(), matplotlib's pyplot.pause(), .after(), and asyncio.sleep().
time.sleep() example (do not use if using tkinter):
import time
print('Hello')
time.sleep(5) # Number of seconds
print('Bye')
pygame.time.wait() example (not recommended if you are not using the pygame window, but you could exit the window instantly):
import pygame
# If you are going to use the time module
# don't do "from pygame import *"
pygame.init()
print('Hello')
pygame.time.wait(5000) # Milliseconds
print('Bye')
matplotlib's function pyplot.pause() example (not recommended if you are not using the graph, but you could exit the graph instantly):
import matplotlib
print('Hello')
matplotlib.pyplot.pause(5) # Seconds
print('Bye')
The .after() method (best with Tkinter):
import tkinter as tk # Tkinter for Python 2
root = tk.Tk()
print('Hello')
def ohhi():
print('Oh, hi!')
root.after(5000, ohhi) # Milliseconds and then a function
print('Bye')
Finally, the asyncio.sleep() method (has to be in an async loop):
await asyncio.sleep(5)
A bit of fun with a sleepy generator.
The question is about time delay. It can be fixed time, but in some cases we might need a delay measured since last time. Here is one possible solution:
Delay measured since last time (waking up regularly)
The situation can be, we want to do something as regularly as possible and we do not want to bother with all the last_time, next_time stuff all around our code.
Buzzer generator
The following code (sleepy.py) defines a buzzergen generator:
import time
from itertools import count
def buzzergen(period):
nexttime = time.time() + period
for i in count():
now = time.time()
tosleep = nexttime - now
if tosleep > 0:
time.sleep(tosleep)
nexttime += period
else:
nexttime = now + period
yield i, nexttime
Invoking regular buzzergen
from sleepy import buzzergen
import time
buzzer = buzzergen(3) # Planning to wake up each 3 seconds
print time.time()
buzzer.next()
print time.time()
time.sleep(2)
buzzer.next()
print time.time()
time.sleep(5) # Sleeping a bit longer than usually
buzzer.next()
print time.time()
buzzer.next()
print time.time()
And running it we see:
1400102636.46
1400102639.46
1400102642.46
1400102647.47
1400102650.47
We can also use it directly in a loop:
import random
for ring in buzzergen(3):
print "now", time.time()
print "ring", ring
time.sleep(random.choice([0, 2, 4, 6]))
And running it we might see:
now 1400102751.46
ring (0, 1400102754.461676)
now 1400102754.46
ring (1, 1400102757.461676)
now 1400102757.46
ring (2, 1400102760.461676)
now 1400102760.46
ring (3, 1400102763.461676)
now 1400102766.47
ring (4, 1400102769.47115)
now 1400102769.47
ring (5, 1400102772.47115)
now 1400102772.47
ring (6, 1400102775.47115)
now 1400102775.47
ring (7, 1400102778.47115)
As we see, this buzzer is not too rigid and allow us to catch up with regular sleepy intervals even if we oversleep and get out of regular schedule.
The Tkinter library in the Python standard library is an interactive tool which you can import. Basically, you can create buttons and boxes and popups and stuff that appear as windows which you manipulate with code.
If you use Tkinter, do not use time.sleep(), because it will muck up your program. This happened to me. Instead, use root.after() and replace the values for however many seconds, with a milliseconds. For example, time.sleep(1) is equivalent to root.after(1000) in Tkinter.
Otherwise, time.sleep(), which many answers have pointed out, which is the way to go.
Delays are done with the time library, specifically the time.sleep() function.
To just make it wait for a second:
from time import sleep
sleep(1)
This works because by doing:
from time import sleep
You extract the sleep function only from the time library, which means you can just call it with:
sleep(seconds)
Rather than having to type out
time.sleep()
Which is awkwardly long to type.
With this method, you wouldn't get access to the other features of the time library and you can't have a variable called sleep. But you could create a variable called time.
Doing from [library] import [function] (, [function2]) is great if you just want certain parts of a module.
You could equally do it as:
import time
time.sleep(1)
and you would have access to the other features of the time library like time.clock() as long as you type time.[function](), but you couldn't create the variable time because it would overwrite the import. A solution to this to do
import time as t
which would allow you to reference the time library as t, allowing you to do:
t.sleep()
This works on any library.
If you would like to put a time delay in a Python script:
Use time.sleep or Event().wait like this:
from threading import Event
from time import sleep
delay_in_sec = 2
# Use time.sleep like this
sleep(delay_in_sec) # Returns None
print(f'slept for {delay_in_sec} seconds')
# Or use Event().wait like this
Event().wait(delay_in_sec) # Returns False
print(f'waited for {delay_in_sec} seconds')
However, if you want to delay the execution of a function do this:
Use threading.Timer like this:
from threading import Timer
delay_in_sec = 2
def hello(delay_in_sec):
print(f'function called after {delay_in_sec} seconds')
t = Timer(delay_in_sec, hello, [delay_in_sec]) # Hello function will be called 2 seconds later with [delay_in_sec] as the *args parameter
t.start() # Returns None
print("Started")
Outputs:
Started
function called after 2 seconds
Why use the later approach?
It does not stop execution of the whole script (except for the function you pass it).
After starting the timer you can also stop it by doing timer_obj.cancel().
asyncio.sleep
Notice in recent Python versions (Python 3.4 or higher) you can use asyncio.sleep. It's related to asynchronous programming and asyncio. Check out next example:
import asyncio
from datetime import datetime
#asyncio.coroutine
def countdown(iteration_name, countdown_sec):
"""
Just count for some countdown_sec seconds and do nothing else
"""
while countdown_sec > 0:
print(f'{iteration_name} iterates: {countdown_sec} seconds')
yield from asyncio.sleep(1)
countdown_sec -= 1
loop = asyncio.get_event_loop()
tasks = [asyncio.ensure_future(countdown('First Count', 2)),
asyncio.ensure_future(countdown('Second Count', 3))]
start_time = datetime.utcnow()
# Run both methods. How much time will both run...?
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
print(f'total running time: {datetime.utcnow() - start_time}')
We may think it will "sleep" for 2 seconds for first method and then 3 seconds in the second method, a total of 5 seconds running time of this code. But it will print:
total_running_time: 0:00:03.01286
It is recommended to read asyncio official documentation for more details.
While everyone else has suggested the de facto time module, I thought I'd share a different method using matplotlib's pyplot function, pause.
An example
from matplotlib import pyplot as plt
plt.pause(5) # Pauses the program for 5 seconds
Typically this is used to prevent the plot from disappearing as soon as it is plotted or to make crude animations.
This would save you an import if you already have matplotlib imported.
This is an easy example of a time delay:
import time
def delay(period='5'):
# If the user enters nothing, it'll wait 5 seconds
try:
# If the user not enters a int, I'll just return ''
time.sleep(period)
except:
return ''
Another, in Tkinter:
import tkinter
def tick():
pass
root = Tk()
delay = 100 # Time in milliseconds
root.after(delay, tick)
root.mainloop()
You also can try this:
import time
# The time now
start = time.time()
while time.time() - start < 10: # Run 1- seconds
pass
# Do the job
Now the shell will not crash or not react.