Convert heavily nested json file into R/Python dataframe - python

I have found a numerous number of similar questions on stackoverflow, however, one issue remains unsolved to me. I have a heavily nested “.json” file I need to import and convert into R or Python data.frame to work with. Json file contains lists inside (usually empty but sometime contains data). Example of json's structure:
I use R's library jsonlite and Python's pandas.
# R
jsonlite::fromJSON(json_file, flatten = TRUE)
# or
jsonlite::read_json(json_file, simplifyVector = T)
# Python
with open(json_file.json, encoding = "utf-8") as f:
data = json.load(f)
pd.json_normalize(data)
Generally, in both cases it work. The output looks like a normal data.frame, however, the problem is that some columns of a new data.frame contain an embedded lists (I am not sure about "embedded lists" whether it's correct and clear). Seems that both Pandas and jsonlite combined each list into single column, which is clearly seen in the screens below.
R
Python
As you might see some columns, such as wymagania.wymaganiaKonieczne.wyksztalcenia is nothing but a vector contains a combined/embedded list, i.e. content of a list has been combined into single column.
As a desired output I want to split each element of such lists as a single column of a data.frame. In other words, I want to obtain normal “in tidy sense” data.frame without any nested either data.frames and lists. Both R and Python codes are appreciated.
Minimum reproducible example:
[
{
"warunkiPracyIPlacy":{"miejscePracy":"abc","rodzajObowiazkow":"abc","zakresObowiazkow":"abc","rodzajZatrudnienia":"abc","kodRodzajuZatrudnienia":"abc","zmianowosc":"abc"},
"wymagania":{
"wymaganiaKonieczne":{
"zawody":[],
"wyksztalcenia":["abc"],
"wyksztalceniaSzczegoly":[{"kodPoziomuWyksztalcenia":"RPs002|WY","kodTypuWyksztalcenia":"abc"}],
"jezyki":[],
"jezykiSzczegoly":[],
"uprawnienia":[]},
"wymaganiaPozadane":{
"zawody":[],
"zawodySzczegoly":[],
"staze":[]},
"wymaganiaDodatkowe":{"zawody":[],"zawodySzczegoly":[]},
"inneWymagania":"abc"
},
"danePracodawcy":{"pracodawca":"abc","nip":"abc","regon":"abc","branza":null},
"pozostaleDane":{"identyfikatorOferty":"abc","ofertaZgloszonaPrzez":"abc","ofertaZgloszonaPrzezKodJednostki":"abc"},
"typOferty":"abc",
"typOfertyNaglowek":"abc",
"rodzajOferty":["DLA_ZAREJESTROWANYCH"],"staz":false,"link":false}
]

This is an answer for Python. It is not very elegant, but I think it will do for your purpose.
I have called your example file nested_json.json
import json
import pandas as pd
json_file = "nested_json.json"
with open(json_file, encoding="utf-8") as f:
data = json.load(f)
df = pd.json_normalize(data)
df_exploded = df.apply(lambda x: x.explode()).reset_index(drop=True)
# check based on first row whether its of type dict
columns_dict = df_exploded.columns[df_exploded.apply(lambda x: isinstance(x[0], dict))]
# append the splitted dict to the dataframe
for col in columns_dict:
df_splitted_dict = df_exploded[col].apply(pd.Series)
df_exploded = pd.concat([df_exploded, df_splitted_dict], axis=1)
This leads to a rectangular dataframe
>>> df_exploded.T
0
typOferty abc
typOfertyNaglowek abc
rodzajOferty DLA_ZAREJESTROWANYCH
staz False
link False
warunkiPracyIPlacy.miejscePracy abc
warunkiPracyIPlacy.rodzajObowiazkow abc
warunkiPracyIPlacy.zakresObowiazkow abc
warunkiPracyIPlacy.rodzajZatrudnienia abc
warunkiPracyIPlacy.kodRodzajuZatrudnienia abc
warunkiPracyIPlacy.zmianowosc abc
wymagania.wymaganiaKonieczne.zawody NaN
wymagania.wymaganiaKonieczne.wyksztalcenia abc
wymagania.wymaganiaKonieczne.wyksztalceniaSzcze... {'kodPoziomuWyksztalcenia': 'RPs002|WY', 'kodT...
wymagania.wymaganiaKonieczne.jezyki NaN
wymagania.wymaganiaKonieczne.jezykiSzczegoly NaN
wymagania.wymaganiaKonieczne.uprawnienia NaN
wymagania.wymaganiaPozadane.zawody NaN
wymagania.wymaganiaPozadane.zawodySzczegoly NaN
wymagania.wymaganiaPozadane.staze NaN
wymagania.wymaganiaDodatkowe.zawody NaN
wymagania.wymaganiaDodatkowe.zawodySzczegoly NaN
wymagania.inneWymagania abc
danePracodawcy.pracodawca abc
danePracodawcy.nip abc
danePracodawcy.regon abc
danePracodawcy.branza None
pozostaleDane.identyfikatorOferty abc
pozostaleDane.ofertaZgloszonaPrzez abc
pozostaleDane.ofertaZgloszonaPrzezKodJednostki abc
kodPoziomuWyksztalcenia RPs002|WY
kodTypuWyksztalcenia abc

Related

Python - Write a row into an array into a text file

I have to work on a flat file (size > 500 Mo) and I need to create to split file on one criterion.
My original file as this structure (simplified):
JournalCode|JournalLib|EcritureNum|EcritureDate|CompteNum|
I need to create to file depending on the first digit from 'CompteNum'.
I have started my code as well
import sys
import pandas as pd
import numpy as np
import datetime
C_FILE_SEP = "|"
def main(fic):
pd.options.display.float_format = '{:,.2f}'.format
FileFec = pd.read_csv(fic, C_FILE_SEP, encoding= 'unicode_escape')
It seems ok, my concern is to create my 2 files based on criteria. I have tried with unsuccess.
TargetFec = 'Target_'+fic+datetime.datetime.now().strftime("%Y%m%d-%H%M%S")+'.txt'
target = open(TargetFec, 'w')
FileFec = FileFec.astype(convert_dict)
for row in FileFec.iterrows():
Fec_Cpt = str(FileFec['CompteNum'])
nb = len(Fec_Cpt)
if (nb > 7):
target.write(str(row))
target.close()
the result of my target file is not like I expected:
(0, JournalCode OUVERT
JournalLib JOURNAL D'OUVERTURE
EcritureNum XXXXXXXXXX
EcritureDate 20190101
CompteNum 101300
CompteLib CAPITAL SOUSCRIT
CompAuxNum
CompAuxLib
PieceRef XXXXXXXXXX
PieceDate 20190101
EcritureLib A NOUVEAU
Debit 000000000000,00
Credit 000038188458,00
EcritureLet NaN
DateLet NaN
ValidDate 20190101
Montantdevise
Idevise
CodeEtbt 100
Unnamed: 19 NaN
And I expected to obtain line into my target file when CompteNum(0:1) > 7
I have read many posts for 2 days, please some help will be perfect.
There is a sample of my data available here
Philippe
Suiting the rules and the desired format, you can use logic like:
# criteria:
verify = df['CompteNum'].apply(lambda number: str(number)[0] == '8' or str(number)[0] == '9')
# saving the dataframes:
df[verify].to_csv('c:/users/jack/desktop/meets-criterios.csv', sep = '|', index = False)
Original comment:
As I understand it, you want to filter the imported dataframe according to some criteria. You can work directly on the pandas you imported. Look:
# criteria:
verify = df['CompteNum'].apply(lambda number: len(str(number)) > 7)
# filtering the dataframe based on the given criteria:
df[verify] # meets the criteria
df[~verify] # does not meet the criteria
# saving the dataframes:
df[verify].to_csv('<your path>/meets-criterios.csv')
df[~verify].to_csv('<your path>/not-meets-criterios.csv')
Once you have the filtered dataframes, you can save them or convert them to other objects, such as dictionaries.

How to read space delimited data, two row types, no fixed width and plenty of missing values?

There's lots of good information out there on how to read space-delimited data with missing values if the data is fixed-width.
http://jonathansoma.com/lede/foundations-2017/pandas/opening-fixed-width-files/
Reading space delimited file in Python/Pandas with missing values
ASCII table with consecutive white-spaces as separators and missing data python pandas
I'm currently trying to read Japan's Meteorological Agency typhoon history data which is supposed to have this format, but doesn't actually:
# Header rows:
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
::::+::::|::::+::::|::::+::::|::::+::::|::::+::::|::::+::::|::::+::::|::::+::::|
AAAAA BBBB CCC DDDD EEEE F G HHHHHHHHHHHHHHHHHHHH IIIIIIII
# Data rows:
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
::::+::::|::::+::::|::::+::::|::::+::::|::::+::::|::::+::::|::::+::::|::::+::::|
AAAAAAAA BBB C DDD EEEE FFFF GGG HIIII JJJJ KLLLL MMMM P
It is very similar to NOAA's hurricane best track data, except that it comma delimited, and missing values were given -999 or NaN, which simplified reading the data. Additionally, Japan's data doesn't actually follow the advertised format. For example, column FFFF in the data rows don't always have width 4. Sometimes it has width 3.
I must say that I'm at a complete loss as how to process this data into a dataframe. I've investigated the pd.read_fwf method, and it initially looked promising until I discovered the malformed columns and the two different row types.
My question:
How can I approach cleaning this data and getting it into a dataframe? I'd just find a different dataset, but honestly I can't find any comprehensive typhoon data anywhere else.
I went a little deep for you here, because I'm assuming you're doing this in the name of science and if I can help someone trying to understand climate change then its a good cause.
After looking the data over I've noticed the issue is relating to the data being stored in a de-normalized structure. There are 2 ways you can approach this issue off the top of my head. Re-Writing the file to another file to load into pandas or dask is what I'll show, since thats probably the easiest way to think about it (but certainly not the most efficient for those that will inevitably roast me in the comments)
Think of this like its Two Separate Tables, with a 1-to-Many relationship. 1 table for Typhoons and another for the data belonging to a given typhoon.
A decent, but not really efficient way would be to rewrite it to a better nested structure, like JSON. Then load the data in using that. Note the 2 distinct types of columns.
Step 1: map the data out
There are really 2 tables in one table here. Each typhoon is going to show up as a row that appears like this:
66666 9119 150 0045 9119 0 6 MIRREILE 19920701
While the records for that typhoon are going to follow that row (think of this as a separate row:
20080100 002 3 178 1107 994 035 00000 0000 30600 0200
Load the File in, reading it as raw lines. By using the .readlines() method, we can read each individual line in as an item in a list.
# load the file as raw input
with open('./test.txt') as f:
lines = f.readlines()
Now that we have that read in, we're going to need to perform some logic to separate some lines from others. It appears the every time there is a Typhoon record, the line is preceded with a '66666', so lets key off that. So, given we look at each individual line in a horribly inefficient loop, we can write some if/else logic to have a look:
if row[:5] == '66666':
# do stuff
else:
# do other stuff
Thats going to be a pretty solid way to separate that logic for now, which will be useful to guide splitting that up. Now, we need to write a loop that will check that for each row:
# initialize list of dicts
collection = []
def write_typhoon(row: str, collection: Dict) -> Dict:
if row[:5] == '66666':
# do stuff
else:
# do other stuff
# read through lines list from the .readlines(), looping sequentially
for line in lines:
write_typhoon(line, collection)
Lastly, we're going to need to write some logic to now extract that data out in some manner within the if/then loop inside the write_typhoon() function. I didn't care to do a whole lot of thinking here, and opted for the simplest I could make it: defining the fwf metadata myself. because "yolo":
def write_typhoon(row: str, collection: Dict) -> Dict:
if row[:5] == '66666':
typhoon = {
"AA":row[:5],
"BB":row[6:11],
"CC":row[12:15],
"DD":row[16:20],
"EE":row[21:25],
"FF":row[26:27],
"GG":row[28:29],
"HH":row[30:50],
"II":row[51:],
"data":[]
}
# clean that whitespace
for key, value in typhoon.items():
if key != 'data':
typhoon[key] = value.strip()
collection.append(typhoon)
else:
sub_data = {
"A":row[:9],
"B":row[9:12],
"C":row[13:14],
"D":row[15:18],
"E":row[19:23],
"F":row[24:32],
"G":row[33:40],
"H":row[41:42],
"I":row[42:46],
"J":row[47:51],
"K":row[52:53],
"L":row[54:57],
"M":row[58:70],
"P":row[71:]
}
# clean that whitespace
for key, value in sub_data.items():
sub_data[key] = value.strip()
collection[-1]['data'].append(sub_data)
return collection
Okay that took me longer than I'm willing to admit. I wont lie. Gave me PTSD flashbacks from writing COBOL programs...
Anyway, now we have a nice, nested data structure in native python types. The fun can begin!
Step 2: Load this into a usable format
To analyze it, I'm assuming you'll want it in pandas (or maybe Dask if its too big). Here is what I was able to come up with along that front:
import pandas as pd
df = pd.json_normalize(
collection,
record_path='data',
meta=["AA","BB","CC","DD","EE","FF","GG","HH","II"]
)
A great reference for that can be found in the answers for this question (particularly the second one, not the selected one)
Put it all together now:
from typing import Dict
import pandas as pd
# load the file as raw input
with open('./test.txt') as f:
lines = f.readlines()
# initialize list of dicts
collection = []
def write_typhoon(row: str, collection: Dict) -> Dict:
if row[:5] == '66666':
typhoon = {
"AA":row[:5],
"BB":row[6:11],
"CC":row[12:15],
"DD":row[16:20],
"EE":row[21:25],
"FF":row[26:27],
"GG":row[28:29],
"HH":row[30:50],
"II":row[51:],
"data":[]
}
for key, value in typhoon.items():
if key != 'data':
typhoon[key] = value.strip()
collection.append(typhoon)
else:
sub_data = {
"A":row[:9],
"B":row[9:12],
"C":row[13:14],
"D":row[15:18],
"E":row[19:23],
"F":row[24:32],
"G":row[33:40],
"H":row[41:42],
"I":row[42:46],
"J":row[47:51],
"K":row[52:53],
"L":row[54:57],
"M":row[58:70],
"P":row[71:]
}
for key, value in sub_data.items():
sub_data[key] = value.strip()
collection[-1]['data'].append(sub_data)
return collection
# read through file sequentially
for line in lines:
write_typhoon(line, collection)
# load to pandas df using json_normalize
df = pd.json_normalize(
collection,
record_path='data',
meta=["AA","BB","CC","DD","EE","FF","GG","HH","II"]
)
print(df.head(20)) # lets see what we've got!
There's someone who might have had the same problem and created a library for it, you can check it out here:
https://github.com/miniufo/besttracks
It also includes a quickstart notebook with loading the same dataset.
Here is how I ended up doing it. The key was realizing there are two types of rows in the data, but within each type the columns are fixed width:
header_fmt = "AAAAA BBBB CCC DDDD EEEE F G HHHHHHHHHHHHHHHHHHHH IIIIIIII"
track_fmt = "AAAAAAAA BBB C DDD EEEE FFFF GGG HIIII JJJJ KLLLL MMMM P"
So, here's how it went. I wrote these two functions to help me reformat the text file int CSV format:
def get_idxs(string, char):
idxs = []
for i in range(len(string)):
if string[i - 1].isalpha() and string[i] == char:
idxs.append(i)
return idxs
def replace(string, idx, replacement):
string = list(string)
try:
for i in idx: string[i] = replacement
except TypeError:
string[idx] = replacement
return ''.join(string)
# test it out
header_fmt = "AAAAA BBBB CCC DDDD EEEE F G HHHHHHHHHHHHHHHHHHHH IIIIIIII"
track_fmt = "AAAAAAAA BBB C DDD EEEE FFFF GGG HIIII JJJJ KLLLL MMMM P"
header_idxs = get_idxs(header_fmt, ' ')
track_idxs = get_idxs(track_fmt, ' ')
print(replace(header_fmt, header_idxs, ','))
print(replace(track_fmt, track_idxs, ','))
Testing the function on the format strings, we see commas were put in the appropriate places:
AAAAA,BBBB, CCC,DDDD,EEEE,F,G,HHHHHHHHHHHHHHHHHHHH, IIIIIIII
AAAAAAAA,BBB,C,DDD,EEEE,FFFF, GGG, HIIII,JJJJ,KLLLL,MMMM, P
So next apply those functions to the .txt and create a .csv file with the output:
from contextlib import ExitStack
from tqdm.notebook import tqdm
with ExitStack() as stack:
read_file = stack.enter_context(open('data/bst_all.txt', 'r'))
write_file = stack.enter_context(open('data/bst_all_clean.txt', 'a'))
for line in tqdm(read_file.readlines()):
if ' ' in line[:8]: # line is header data
write_file.write(replace(line, header_idxs, ',') + '\n')
else: # line is track data
write_file.write(replace(line, track_idxs, ',') + '\n')
The next task is to add the header data to ALL rows, so that all rows have the same format:
header_cols = ['indicator', 'international_id', 'n_tracks', 'cyclone_id', 'international_id_dup',
'final_flag', 'delta_t_fin', 'name', 'last_revision']
track_cols = ['date', 'indicator', 'grade', 'latitude', 'longitude', 'pressure', 'max_wind_speed',
'dir_long50', 'long50', 'short50', 'dir_long30', 'long30', 'short30', 'jp_landfall']
data = pd.read_csv('data/bst_all_clean.txt', names=track_cols, skipinitialspace=True)
data.date = data.date.astype('string')
# Get headers. Header rows have variable 'indicator' which is 5 characters long.
headers = data[data.date.apply(len) <= 5]
data[['storm_id', 'records', 'name']] = headers.iloc[:, [1, 2, 7]]
# Rearrange columns; bring identifiers to the first three columns.
cols = list(data.columns[-3:]) + list(data.columns[:-3])
data = data[cols]
# front fill NaN's for header data
data[['storm_id', 'records', 'name']] = data[['storm_id', 'records', 'name']].fillna(method='pad')
# delete now extraneous header rows
data = data.drop(headers.index)
And that yields some nicely formatted data, like this:
storm_id records name date indicator grade latitude longitude
15 5102.0 37.0 GEORGIA 51031900 2 2 67.0 1614
16 5102.0 37.0 GEORGIA 51031906 2 2 70.0 1625
17 5102.0 37.0 GEORGIA 51031912 2 2 73.0 1635

How can I fill a dataframe from a recursive dictionary values?

I have created a script that allows me to read multiple pdf files and extract information recursively one by one. This script generates a dictionary with data by pdf.
Ex:
1º Iteration from 1º PDF file:
d = {"GGT":["transl","mut"], "ATT":["alt3"], "ATC":["alt5"], "AUC":["alteration"]}
2º In the Second Iteration from 2º PDF file:
d = {"GGT":["transl","mut"], "AUC":["alteration"]}
.
.
. Doing this until 200 pdf files.
Initially I have a dataframe created with all the genes that allow to detect that analysis.
df = pd.DataFrame(data=None, columns=["GGT","AUC","ATC","ATT","UUU","UUT"], dtype=None, copy=False)
Desire output:
What I would like to obtain is a dataframe where the information of the values is stored in a recursive way line by line.
For example:
Is there an easy way to implement this? or functions that can help me?
IIUC, you are trying to loop through the dictionaries and add them as rows in your dataframe? I'm not sure how this applies to recursion with "What I would like to obtain is a dataframe where the information of the values is stored in a recursive way line by line."
d1 = {"GGT":["transl","mut"], "ATT":["alt3"], "ATC":["alt5"], "AUC":["alteration"]}
d2 = {"GGT":["transl","mut"], "AUC":["alteration"]}
dicts = [d1, d2] #imagine this list contains the 200 dictionaries
df = pd.DataFrame(data=None, columns=["GGT","AUC","ATC","ATT","UUU","UUT"], dtype=None, copy=False)
for d in dicts: #since only 200 rows a simple loop with append
df = df.append(d, ignore_index=True)
df
Out[1]:
GGT AUC ATC ATT UUU UUT
0 [transl, mut] [alteration] [alt5] [alt3] NaN NaN
1 [transl, mut] [alteration] NaN NaN NaN NaN

Matching cells in CSV to return calculation

I am trying to create a program that will take the most recent 30 CSV files of data within a folder and calculate totals of certain columns. There are 4 columns of data, with the first column being the identifier and the rest being the data related to the identifier. Here's an example:
file1
Asset X Y Z
12345 250 100 150
23456 225 150 200
34567 300 175 225
file2
Asset X Y Z
12345 270 130 100
23456 235 190 270
34567 390 115 265
I want to be able to match the asset# in both CSVs to return each columns value and then perform calculations on each column. Once I have completed those calculations I intend on graphing various data as well. So far the only thing I have been able to complete is extracting ALL the data from the CSV file using the following code:
csvfile = glob.glob('C:\\Users\\tdjones\\Desktop\\Python Work Files\\FDR*.csv')
listData = []
for files in csvfile:
df = pd.read_csv(files, index_col=0)
listData.append(df)
concatenated_data = pd.concat(listData, sort=False)
group = concatenated_data.groupby('ASSET')['Slip Expense ($)', 'Net Win ($)'].sum()
group.to_csv("C:\\Users\\tdjones\\Desktop\\Python Work Files\\Test\\NewFDRConcat.csv", header=('Slip Expense', 'Net WIn'))
I am very new to Python so any and all direction is welcome. Thank you!
I'd probably also set the asset number as the index while you're reading the data, since this can help with sifting through data. So
rd = pd.read_csv(files, index_col=0)
Then you can do as Alex Yu suggested and just pick all the data from a specific asset number out when you're done using
asset_data = rd.loc[asset_number, column_name]
You'll generally need to format the data in the DataFrame before you append it to the list if you only want specific inputs. Exactly how to do that naturally depends specifically on what you want i.e. what kind of calculations you perform.
If you want a function that just returns all the data for one specific asset, you could do something along the lines of
def get_asset(asset_number):
csvfile = glob.glob('C:\\Users\\tdjones\\Desktop\\Python Work Files\\*.csv')
asset_data = []
for file in csvfile:
data = [line for line in open(file, 'r').read().splitlines()
if line.split(',')[0] == str(asset_num)]
for line in data:
asset_data.append(line.split(','))
return pd.DataFrame(asset_data, columns=['Asset', 'X', 'Y', 'Z'], dtype=float)
Although how well the above performs is going to depend on how large the dataset is your going through. Something like the above method needs to search through every line and perform several high level functions on each line, so it could potentially be problematic if you have millions of lines of data in each file.
Also, the above assumes that all data elements are strings of numbers (so can be cast to integers or floats). If thats not the case, leave the dtype argument out of the DataFrame definition, but keep in mind that everything returned is stored as a string then.
I suppose that you need to add for your code pandas.concat of your listData
So it will became:
csvfile = glob.glob('C:\\Users\\tdjones\\Desktop\\Python Work Files\\*.csv')
listData = []
for files in csvfile:
rd = pd.read_csv(files)
listData.append(rd)
concatenated_data = pd.concat(listData)
After that you can use aggregate functions with this concatenated_data DataFrame such as: concatenated_data['A'].max(), concatenated_data['A'].count(), 'groupby`s etc.

Python data wrangling issues

I'm currently stumped by some basic issues with a small data set. Here are the first three lines to illustrate the format of the data:
"Sport","Entry","Contest_Date_EST","Place","Points","Winnings_Non_Ticket","Winnings_Ticket","Contest_Entries","Entry_Fee","Prize_Pool","Places_Paid"
"NBA","NBA 3K Crossover #3 [3,000 Guaranteed] (Early Only) (1/15)","2015-03-01 13:00:00",35,283.25,"13.33","0.00",171,"20.00","3,000.00",35
"NBA","NBA 1,500 Layup #4 [1,500 Guaranteed] (Early Only) (1/25)","2015-03-01 13:00:00",148,283.25,"3.00","0.00",862,"2.00","1,500.00",200
The issues I am having after using read_csv to create a DataFrame:
The presence of commas in certain categorical values (such as Prize_Pool) results in python considering these entries as strings. I need to convert these to floats in order to make certain calculations. I've used python's replace() function to get rid of the commas, but that's as far as I've gotten.
The category Contest_Date_EST contains timestamps, but some are repeated. I'd like to subset the entire dataset into one that has only unique timestamps. It would be nice to have a choice in which repeated entry or entries are removed, but at the moment I'd just like to be able to filter the data with unique timestamps.
Use thousands=',' argument for numbers that contain a comma
In [1]: from pandas import read_csv
In [2]: d = read_csv('data.csv', thousands=',')
You can check Prize_Pool is numerical
In [3]: type(d.ix[0, 'Prize_Pool'])
Out[3]: numpy.float64
To drop rows - take first observed, you can also take last
In [7]: d.drop_duplicates('Contest_Date_EST', take_last=False)
Out[7]:
Sport Entry \
0 NBA NBA 3K Crossover #3 [3,000 Guaranteed] (Early ...
Contest_Date_EST Place Points Winnings_Non_Ticket Winnings_Ticket \
0 2015-03-01 13:00:00 35 283.25 13.33 0
Contest_Entries Entry_Fee Prize_Pool Places_Paid
0 171 20 3000 35
Edit: Just realized you're using pandas - should have looked at that.
I'll leave this here for now in case it's applicable but if it gets
downvoted I'll take it down by virtue of peer pressure :)
I'll try and update it to use pandas later tonight
Seems like itertools.groupby() is the tool for this job;
Something like this?
import csv
import itertools
class CsvImport():
def Run(self, filename):
# Get the formatted rows from CSV file
rows = self.readCsv(filename)
for key in rows.keys():
print "\nKey: " + key
i = 1
for value in rows[key]:
print "\nValue {index} : {value}".format(index = i, value = value)
i += 1
def readCsv(self, fileName):
with open(fileName, 'rU') as csvfile:
reader = csv.DictReader(csvfile)
# Keys may or may not be pulled in with extra space by DictReader()
# The next line simply creates a small dict of stripped keys to original padded keys
keys = { key.strip(): key for (key) in reader.fieldnames }
# Format each row into the final string
groupedRows = {}
for k, g in itertools.groupby(reader, lambda x : x["Contest_Date_EST"]):
groupedRows[k] = [self.normalizeRow(v.values()) for v in g]
return groupedRows;
def normalizeRow(self, row):
row[1] = float(row[1].replace(',','')) # "Prize_Pool"
# and so on
return row
if __name__ == "__main__":
CsvImport().Run("./Test1.csv")
Output:
More info:
https://docs.python.org/2/library/itertools.html
Hope this helps :)

Categories