Split a CSV in three parts and calculating the mean - python
I have a file containing:
Time 60Ni 61Ni 62Ni 63Cu 64Ni 65Cu 66Zn
0. 9.13242244720459 0.406570166349411 1.326429009437561 5.754200458526611 0.4233334958553314 2.68562912940979 4.148788005113602e-002
8.390999794006348 9.187464714050293 0.4089393615722656 1.334462523460388 5.790649890899658 0.425884485244751 2.702604055404663 4.17313240468502e-002
16.78300094604492 9.254316329956055 0.4119723737239838 1.344084143638611 5.832504749298096 0.428943395614624 2.722275018692017 4.203101620078087e-002
25.17399978637695 9.19857120513916 0.4094997346401215 1.336091756820679 5.791898727416992 0.4264563024044037 2.703336715698242 4.185733571648598e-002
33.56499862670898 9.194388389587402 0.4092871248722076 1.335391044616699 5.794968605041504 0.4264419078826904 2.704529047012329 4.192239791154862e-002
41.95600128173828 9.162041664123535 0.4078944325447083 1.330722570419312 5.766440868377686 0.425002932548523 2.691519498825073 4.182799160480499e-002
50.34700012207031 9.190646171569824 0.4091125726699829 1.334963202476502 5.786285877227783 0.426413893699646 2.700882434844971 4.196327552199364e-002
58.73799896240234 9.211565971374512 0.4100649058818817 1.337916374206543 5.8003830909729 0.4273969829082489 2.707314252853394 4.207673668861389e-002
67.12799835205078 9.240947723388672 0.4113766849040985 1.342136979103088 5.822870254516602 0.4287911653518677 2.717630624771118 4.222121462225914e-002
75.51899719238281 9.208130836486816 0.4099342525005341 1.337505698204041 5.802256584167481 0.4273860156536102 2.708084583282471 4.214133694767952e-002
83.91000366210938 9.196262359619141 0.4093911945819855 1.335786700248718 5.799176692962647 0.4268693923950195 2.706451416015625 4.215647280216217e-002
92.30100250244141 9.213265419006348 0.4101545214653015 1.338128447532654 5.807514190673828 0.4277283549308777 2.71068549156189 4.221603646874428e-002
100.6920013427734 9.163029670715332 0.407885879278183 1.330831050872803 5.775251865386963 0.4254410266876221 2.695534229278565 4.204751178622246e-002
109.0839996337891 9.144490242004395 0.4070722758769989 1.328153848648071 5.764679908752441 0.4246650040149689 2.690402746200562 4.198652133345604e-002
117.4749984741211 9.114171028137207 0.4057718515396118 1.32369875907898 5.745044231414795 0.4233448505401611 2.681406497955322 4.190905019640923e-002
125.8659973144531 9.149589538574219 0.407274603843689 1.328810453414917 5.766050815582275 0.4248199760913849 2.691139459609985 4.200970754027367e-002
134.2570037841797 9.168668746948242 0.4081465899944305 1.331702351570129 5.777794361114502 0.4256783723831177 2.696741819381714 4.206346347928047e-002
142.6479949951172 9.11380672454834 0.4057287871837616 1.323864817619324 5.740524291992188 0.4232001006603241 2.67945122718811 4.187140986323357e-002
151.0390014648438 9.100893974304199 0.4051263332366943 1.321851253509522 5.729655265808106 0.4226666390895844 2.674278259277344 4.182597994804382e-002
159.4299926757813 9.072731971740723 0.4039073586463928 1.317763328552246 5.713830471038818 0.4213792979717255 2.666974782943726 4.169051349163055e-002
167.8209991455078 9.186164855957031 0.4089057147502899 1.334116697311401 5.786634922027588 0.4264728426933289 2.700879812240601 4.211126267910004e-002
176.2129974365234 9.13982105255127 0.4068569839000702 1.327479124069214 5.76115083694458 0.4244593381881714 2.688895463943481 4.199059307575226e-002
184.60400390625 9.146007537841797 0.4071221053600311 1.328468441963196 5.762693881988525 0.4247534275054932 2.689634084701538 4.1985172778368e-002
192.9949951171875 9.18150806427002 0.4086942672729492 1.333438873291016 5.785679817199707 0.4262394905090332 2.700178623199463 4.207265004515648e-002
201.3860015869141 9.134004592895508 0.4066038727760315 1.326677560806274 5.753909587860107 0.424109697341919 2.685543775558472 4.191514849662781e-002
209.7769927978516 9.192599296569824 0.4091922044754028 1.335113883018494 5.792657852172852 0.4266164898872376 2.703598737716675 4.208896681666374e-002
218.1679992675781 9.166966438293457 0.4080702364444733 1.331447958946228 5.776984214782715 0.4254603683948517 2.696239709854126 4.19912114739418e-002
226.5590057373047 9.166423797607422 0.4080766439437866 1.331416010856628 5.771696090698242 0.4254250526428223 2.693812847137451 4.191195592284203e-002
234.9510040283203 9.122139930725098 0.4060815274715424 1.325031995773315 5.74381160736084 0.4234589040279388 2.680959224700928 4.174426198005676e-002
243.3419952392578 9.178729057312012 0.4085982143878937 1.333097338676453 5.783432006835938 0.4259471595287323 2.699411153793335 4.196531698107719e-002
251.7330017089844 9.196023941040039 0.4093179702758789 1.335668444633484 5.792133331298828 0.4266210496425629 2.703416347503662 4.196692258119583e-002
260.1239929199219 9.195613861083984 0.4093446731567383 1.33561098575592 5.790852546691895 0.4264806509017944 2.702755451202393 4.19374406337738e-002
268.5150146484375 9.124658584594727 0.4061901867389679 1.325218439102173 5.749895572662354 0.4233379364013672 2.683579206466675 4.166891798377037e-002
276.906005859375 9.071592330932617 0.4038631021976471 1.317633748054504 5.711780071258545 0.4209088683128357 2.666091680526733 4.146279022097588e-002
285.2969970703125 9.090703010559082 0.4047099351882935 1.320350289344788 5.724553108215332 0.4218063056468964 2.671880960464478 4.148663952946663e-002
293.68798828125 9.049410820007324 0.4028385281562805 1.314435601234436 5.699662208557129 0.4198987782001495 2.660340070724487 4.135752841830254e-002
302.0790100097656 9.158493995666504 0.4077092707157135 1.330130934715271 5.770212650299072 0.4247544705867767 2.693133354187012 4.172087088227272e-002
310.4700012207031 9.294267654418945 0.4137440025806427 1.350019454956055 5.85582971572876 0.4307662844657898 2.733232498168945 4.217509180307388e-002
318.8609924316406 9.266000747680664 0.4124558866024017 1.34581983089447 5.838682651519775 0.429353654384613 2.724989175796509 4.206011816859245e-002
327.2520141601563 9.227903366088867 0.4107420146465302 1.340180039405823 5.813295841217041 0.4277106523513794 2.713207006454468 4.191378504037857e-002
335.6430053710938 9.248990058898926 0.4117128551006317 1.343235015869141 5.836093425750732 0.4286618232727051 2.72357988357544 4.200825467705727e-002
344.0339965820313 9.200018882751465 0.4095089137554169 1.336208343505859 5.805673122406006 0.4264824092388153 2.709526300430298 4.185647144913673e-002
352.4259948730469 9.162602424621582 0.4079090356826782 1.330750703811646 5.780079364776611 0.4248281121253967 2.697546243667603 4.17003221809864e-002
360.8169860839844 9.165441513061523 0.4079831540584564 1.331099987030029 5.780121326446533 0.424967348575592 2.697607517242432 4.169800505042076e-002
369.2070007324219 9.242767333984375 0.4114582240581513 1.342459917068481 5.828019142150879 0.4283893704414368 2.719994068145752 4.194791615009308e-002
377.5989990234375 9.211434364318848 0.4100139439105988 1.337894320487976 5.801908493041992 0.4268820583820343 2.708046913146973 4.185103997588158e-002
385.989990234375 9.168110847473145 0.4081266224384308 1.33171010017395 5.772421360015869 0.4250668585300446 2.694308280944824 4.166359454393387e-002
394.3810119628906 9.162002563476563 0.4078731238842011 1.330778479576111 5.770648956298828 0.4247135519981384 2.693532466888428 4.165602847933769e-002
402.7720031738281 9.219051361083984 0.4104039072990418 1.339054584503174 5.805272579193115 0.4273586571216583 2.709418296813965 4.186749085783958e-002
411.1640014648438 9.225748062133789 0.4106448590755463 1.340008854866028 5.808595180511475 0.4276045560836792 2.711185216903687 4.189140349626541e-002
425.0020141601563 9.11283016204834 0.4056265950202942 1.323553919792175 5.742629528045654 0.4226277768611908 2.680011749267578 4.150775447487831e-002
433.3930053710938 9.15496826171875 0.4075464010238648 1.329663395881653 5.76693058013916 0.4244976043701172 2.691663980484009 4.165017232298851e-002
441.7839965820313 9.179342269897461 0.4086317718029022 1.333258748054504 5.783347606658936 0.4256252646446228 2.699387073516846 4.177364706993103e-002
450.1759948730469 9.202337265014648 0.4096647799015045 1.336641907691956 5.799064636230469 0.4267286956310272 2.706497669219971 4.189135506749153e-002
458.5669860839844 9.126877784729004 0.4062632024288178 1.325594425201416 5.7450852394104 0.4234336316585541 2.681554317474365 4.164514690637589e-002
466.9580078125 9.130221366882324 0.4063588082790375 1.326080322265625 5.750959873199463 0.4235436022281647 2.6843581199646 4.169851914048195e-002
475.3489990234375 9.142138481140137 0.4069503247737885 1.32788360118866 5.753814697265625 0.4240946471691132 2.685687065124512 4.17218841612339e-002
483.739990234375 9.144487380981445 0.4070816040039063 1.328163623809815 5.764283180236816 0.4243338704109192 2.69016432762146 4.180238768458366e-002
492.1310119628906 9.213832855224609 0.4101627767086029 1.338177442550659 5.806262969970703 0.4273685812950134 2.709989309310913 4.204079136252403e-002
500.5220031738281 9.151962280273438 0.4073929488658905 1.329235196113586 5.765473365783691 0.4247141480445862 2.691080808639526 4.187702387571335e-002
508.9129943847656 9.133262634277344 0.4065472185611725 1.326548576354981 5.755089282989502 0.4239353835582733 2.685916900634766 4.184074699878693e-002
517.3040161132813 9.194231033325195 0.4092318415641785 1.335361480712891 5.791540622711182 0.4266365468502045 2.703181505203247 4.204431921243668e-002
525.6950073242188 9.174141883850098 0.4084053635597229 1.332433700561523 5.780707836151123 0.4258663356304169 2.697983264923096 4.203671962022781e-002
534.0869750976563 9.127938270568848 0.4063973724842072 1.325674772262573 5.753820896148682 0.4238673448562622 2.685414791107178 4.189241677522659e-002
542.4769897460938 9.228574752807617 0.4108735322952271 1.340509295463562 5.816771030426025 0.4283493161201477 2.714869976043701 4.227539896965027e-002
550.8679809570313 9.247261047363281 0.4116438031196594 1.34306275844574 5.829936504364014 0.4292499721050263 2.720824480056763 4.234698414802551e-002
559.2589721679688 9.259587287902832 0.4121484756469727 1.344773530960083 5.840207099914551 0.4296930134296417 2.725474834442139 4.239725694060326e-002
567.6500244140625 9.236879348754883 0.4112152457237244 1.341552734375 5.824738502502441 0.4288162887096405 2.718418121337891 4.232741147279739e-002
576.041015625 9.265199661254883 0.4123806655406952 1.345624566078186 5.837865352630615 0.4300332069396973 2.724727630615234 4.243086278438568e-002
584.4310302734375 9.193467140197754 0.4092609882354736 1.335316061973572 5.791056632995606 0.4267773926258087 2.702801465988159 4.214197397232056e-002
592.822021484375 9.178906440734863 0.408621221780777 1.333141565322876 5.783803462982178 0.4262367188930512 2.699366569519043 4.21367958188057e-002
601.2139892578125 9.179999351501465 0.4086976051330566 1.333412766456604 5.781562805175781 0.4262183606624603 2.698424100875855 4.212524741888046e-002
609.60498046875 9.158502578735352 0.4077076315879822 1.330240249633789 5.771774768829346 0.4252981841564179 2.693920612335205 4.206201061606407e-002
617.9949951171875 9.168906211853027 0.4081432521343231 1.331776857376099 5.777164459228516 0.4257596433162689 2.696363210678101 4.212769865989685e-002
626.385986328125 9.148199081420898 0.4072228968143463 1.328739166259766 5.764687061309815 0.4248482882976532 2.690601110458374 4.204926639795303e-002
634.7769775390625 9.153997421264648 0.4075290560722351 1.329600691795349 5.76605749130249 0.4250805974006653 2.691195011138916 4.203818738460541e-002
643.1680297851563 9.142102241516113 0.4070025384426117 1.327812790870667 5.758194923400879 0.4244733154773712 2.687539577484131 4.197685047984123e-002
651.5599975585938 9.157526016235352 0.4076575040817261 1.33014190196991 5.771289825439453 0.4252424538135529 2.693483829498291 4.207025840878487e-002
659.9509887695313 9.142055511474609 0.4069408476352692 1.327834606170654 5.75890064239502 0.4245132505893707 2.687950849533081 4.196911677718163e-002
668.3410034179688 9.163941383361816 0.4079061448574066 1.331052899360657 5.773416519165039 0.425525963306427 2.694749593734741 4.208214208483696e-002
676.7329711914063 9.214210510253906 0.4101268947124481 1.338269472122192 5.804011821746826 0.4277287721633911 2.70874834060669 4.224084317684174e-002
685.1240234375 9.221725463867188 0.410546600818634 1.33942449092865 5.808478832244873 0.4280569553375244 2.710729837417603 4.224072396755219e-002
693.5139770507813 9.195225715637207 0.4093619287014008 1.335615515708923 5.792295932769775 0.4269255101680756 2.703481912612915 4.215554893016815e-002
701.905029296875 9.236662864685059 0.4111031889915466 1.341474533081055 5.820279121398926 0.4286713898181915 2.716408491134644 4.231745004653931e-002
710.2969970703125 9.219303131103516 0.4103749394416809 1.33903431892395 5.809108257293701 0.4279004633426666 2.711240530014038 4.220414161682129e-002
718.68798828125 9.196757316589356 0.4093507528305054 1.335767865180969 5.794125556945801 0.4269102811813355 2.704240798950195 4.217429086565971e-002
727.0789794921875 9.169294357299805 0.4081831276416779 1.331677913665772 5.778267860412598 0.4257012009620667 2.696781396865845 4.20493595302105e-002
735.468994140625 9.254044532775879 0.4119507372379303 1.344122529029846 5.83418083190918 0.4294586181640625 2.722884654998779 4.238997399806976e-002
743.8610229492188 9.224509239196777 0.4105926156044006 1.339867234230042 5.812450408935547 0.4280983507633209 2.712637424468994 4.227783530950546e-002
752.2520141601563 9.167038917541504 0.4080414175987244 1.331365466117859 5.778883457183838 0.4256396591663361 2.697120428085327 4.206839948892593e-002
760.6430053710938 9.156136512756348 0.407585471868515 1.329828977584839 5.771244049072266 0.4251766502857208 2.693709135055542 4.204395413398743e-002
769.0339965820313 9.206752777099609 0.4098866879940033 1.337259769439697 5.798995018005371 0.4273804128170013 2.706660270690918 4.218916967511177e-002
777.4249877929688 9.185664176940918 0.4088890254497528 1.33407187461853 5.787529468536377 0.426471084356308 2.701387643814087 4.21074777841568e-002
785.8159790039063 9.148477554321289 0.4072705209255219 1.328797459602356 5.764423847198486 0.4247606992721558 2.690322160720825 4.200183600187302e-002
794.2069702148438 9.139849662780762 0.4068310558795929 1.327486157417297 5.760977268218994 0.4244396984577179 2.688838005065918 4.198827594518662e-002
802.5980224609375 9.198716163635254 0.409488320350647 1.336077690124512 5.797767639160156 0.4270517528057098 2.705855131149292 4.215721413493156e-002
810.989013671875 9.175697326660156 0.4084174335002899 1.332631826400757 5.781099796295166 0.425992488861084 2.698201894760132 4.206936806440353e-002
819.3800048828125 9.106189727783203 0.4053537547588348 1.322664737701416 5.740387916564941 0.4229016602039337 2.679165840148926 4.18708510696888e-002
827.77099609375 9.11962890625 0.4059470593929291 1.324671149253845 5.745753765106201 0.4235488474369049 2.681836843490601 4.189123585820198e-002
836.1619873046875 9.221225738525391 0.4104022979736328 1.33923864364624 5.813970565795898 0.4279847741127014 2.713436365127564 4.224034398794174e-002
849.9970092773438 9.109155654907227 0.4055195748806 1.323018074035645 5.738785743713379 0.4229097962379456 2.678738832473755 4.17560487985611e-002
858.3880004882813 9.081585884094238 0.4043126106262207 1.319140315055847 5.720804691314697 0.4216950535774231 2.670202732086182 4.168836399912834e-002
866.7789916992188 9.1737060546875 0.4083895683288574 1.332486510276794 5.779799461364746 0.4258598983287811 2.697497129440308 4.201843962073326e-002
875.1699829101563 9.215715408325195 0.4102407991886139 1.33849024772644 5.806502342224121 0.4276199042797089 2.710031509399414 4.214433580636978e-002
883.5609741210938 9.29750919342041 0.4138506650924683 1.350215315818787 5.858696460723877 0.4313125610351563 2.734477758407593 4.240995645523071e-002
891.9520263671875 9.251111030578613 0.411830872297287 1.343641996383667 5.826048374176025 0.4292575418949127 2.719125270843506 4.226363822817802e-002
900.343017578125 9.236968994140625 0.411191999912262 1.341637492179871 5.816394329071045 0.4285323023796082 2.71470046043396 4.218020662665367e-002
908.7340087890625 9.18012809753418 0.4086549580097199 1.333361864089966 5.780932903289795 0.4260410964488983 2.698340177536011 4.198113456368446e-002
917.125 9.18910026550293 0.4090204238891602 1.334587931632996 5.791236877441406 0.426427572965622 2.702847242355347 4.205641150474548e-002
925.5159912109375 9.163248062133789 0.4078385829925537 1.330891489982605 5.775006771087647 0.4252764880657196 2.695378065109253 4.195348545908928e-002
933.906982421875 9.184928894042969 0.4089162349700928 1.334069848060608 5.789799213409424 0.42618727684021 2.702196598052979 4.199947416782379e-002
942.2979736328125 9.157343864440918 0.4076671004295349 1.330055475234985 5.770273208618164 0.4249707460403442 2.693178653717041 4.188660532236099e-002
950.6890258789063 9.162631988525391 0.4078827202320099 1.330793499946594 5.77417516708374 0.4251722097396851 2.695005416870117 4.190302640199661e-002
959.0800170898438 9.114273071289063 0.4057436585426331 1.323749780654907 5.743786811828613 0.4230408370494843 2.680756568908691 4.173881560564041e-002
967.4710083007813 9.244811058044434 0.4115355014801025 1.34266197681427 5.823981761932373 0.4288525879383087 2.718071460723877 4.214448481798172e-002
975.8619995117188 9.219685554504395 0.4104566872119904 1.339130640029907 5.808487892150879 0.4276332259178162 2.710957288742065 4.206658154726028e-002
984.2529907226563 9.184207916259766 0.4088565707206726 1.33392071723938 5.792478561401367 0.4260831475257874 2.703508853912354 4.195259138941765e-002
992.6439819335938 9.13871955871582 0.4068254828453064 1.327333569526672 5.761001586914063 0.4240987598896027 2.688708066940308 4.179005324840546e-002
1001.034973144531 9.151439666748047 0.4073895514011383 1.329284429550171 5.767615795135498 0.4246693849563599 2.691930532455444 4.182363301515579e-002
1009.424987792969 9.19940185546875 0.409492164850235 1.335996866226196 5.800271034240723 0.4267957508563995 2.70706057548523 4.198677837848663e-002
1017.815979003906 9.255974769592285 0.4120437800884247 1.344139099121094 5.840244770050049 0.4293366670608521 2.725528001785278 4.220050573348999e-002
1026.20703125 9.220073699951172 0.4104630351066589 1.339051723480225 5.81441593170166 0.4276903867721558 2.713610172271729 4.208677262067795e-002
1034.598022460938 9.158895492553711 0.4077011644840241 1.330096125602722 5.776969432830811 0.4249850511550903 2.696006536483765 4.186514392495155e-002
1042.989013671875 9.135567665100098 0.4066715240478516 1.326890826225281 5.756415843963623 0.423865556716919 2.686625719070435 4.174899682402611e-002
1051.380981445313 9.150594711303711 0.4073532521724701 1.329049825668335 5.765689849853516 0.4245824813842773 2.691075325012207 4.179978370666504e-002
1059.77197265625 9.146571159362793 0.4071609079837799 1.32847785949707 5.760791778564453 0.4242803156375885 2.688825607299805 4.17768582701683e-002
1068.162963867188 9.131063461303711 0.4064978063106537 1.326229453086853 5.752644538879395 0.4236991405487061 2.684972286224365 4.172741994261742e-002
1076.553955078125 9.098221778869629 0.4049918949604034 1.321496725082398 5.731342792510986 0.4222320318222046 2.675036668777466 4.162869602441788e-002
1084.944946289063 9.169441223144531 0.4081719219684601 1.331780910491943 5.776838779449463 0.4254011511802673 2.696260452270508 4.184866324067116e-002
1093.337036132813 9.187003135681152 0.4089777171611786 1.334323048591614 5.790809154510498 0.4261792898178101 2.702747344970703 4.196572676301003e-002
1101.72802734375 9.179986953735352 0.4086208045482636 1.333386778831482 5.783829689025879 0.4258585274219513 2.699674844741821 4.191147163510323e-002
1110.119018554688 9.200528144836426 0.4095506370067596 1.336296439170837 5.797418117523193 0.4267379641532898 2.7057945728302 4.19546514749527e-002
1118.509033203125 9.158334732055664 0.4076752066612244 1.330214262008667 5.770383834838867 0.4248470067977905 2.693165063858032 4.180992022156715e-002
1126.900024414063 9.194581985473633 0.4093466997146606 1.335410833358765 5.798298358917236 0.4264914393424988 2.706053495407105 4.194727912545204e-002
1135.291015625 9.176510810852051 0.4084961414337158 1.3328697681427 5.778421401977539 0.4256733357906342 2.697108507156372 4.18514646589756e-002
1143.682983398438 9.163573265075684 0.4079014360904694 1.330968260765076 5.773004055023193 0.4250616133213043 2.694518804550171 4.183558747172356e-002
1152.072998046875 9.159396171569824 0.4077317416667938 1.330322265625 5.771379947662354 0.4248954653739929 2.693806171417236 4.181275144219399e-002
1160.464965820313 9.165866851806641 0.4080128371715546 1.331347465515137 5.772171497344971 0.4252021610736847 2.694234848022461 4.181317612528801e-002
1168.85595703125 9.151269912719727 0.407374233007431 1.329119086265564 5.760807991027832 0.424500435590744 2.688781023025513 4.176882281899452e-002
1177.246948242188 9.141792297363281 0.4069608747959137 1.327713966369629 5.75624418258667 0.4241056740283966 2.68661379814148 4.173726961016655e-002
1185.636962890625 9.130838394165039 0.406494677066803 1.326230525970459 5.751668930053711 0.4236221015453339 2.684362649917603 4.168353974819183e-002
1194.027954101563 9.206241607666016 0.4098086059093475 1.337079763412476 5.802299022674561 0.4269396662712097 2.707928895950317 4.194400832056999e-002
1202.4189453125 9.17149543762207 0.4083086550235748 1.332085609436035 5.776546001434326 0.4253532886505127 2.696049451828003 4.180750250816345e-002
1210.81005859375 9.140050888061523 0.4068616330623627 1.327504873275757 5.760209083557129 0.4239790141582489 2.6883225440979 4.170787334442139e-002
1219.201049804688 9.165439605712891 0.4079880714416504 1.331203103065491 5.77871561050415 0.4250532984733582 2.697003841400147 4.180311039090157e-002
1227.593017578125 9.177500724792481 0.4085498750209808 1.332932233810425 5.783236026763916 0.4255987405776978 2.699163913726807 4.181493073701859e-002
1235.984008789063 9.177756309509277 0.408606618642807 1.33305811882019 5.782862663269043 0.4256067276000977 2.699074268341065 4.182154312729836e-002
1244.375 9.143049240112305 0.4070280194282532 1.327925682067871 5.766200542449951 0.4240804016590118 2.691066265106201 4.171686246991158e-002
1252.765991210938 9.110544204711914 0.4055243730545044 1.323151469230652 5.742761135101318 0.422651082277298 2.680213212966919 4.159015789628029e-002
1261.156982421875 9.153350830078125 0.4074757993221283 1.329340934753418 5.772144794464111 0.4244934320449829 2.693885564804077 4.173129424452782e-002
I want to split the file in three parts รก 50 rows:
data = pd.read_csv(file, sep='\t', names=['Time', '60Ni', '61Ni', '62Ni', '63Cu', '64Ni', '65Cu', '66Zn'], skiprows=3, nrows=50, index_col=False, dtype=float)
data2 = pd.read_csv(file, sep='\t', names=['Time', '60Ni', '61Ni', '62Ni', '63Cu', '64Ni', '65Cu', '66Zn'], skiprows=53, nrows=50, index_col=False, dtype=float)
data3 = pd.read_csv(file, sep='\t', names=['Time', '60Ni', '61Ni', '62Ni', '63Cu', '64Ni', '65Cu', '66Zn'], skiprows=103, nrows=50, index_col=False, dtype=float)
Then I'm removing outliers with:
cols = list(data.drop(columns='Time').columns)
datao = pd.DataFrame({'Time':data['Time']})
datao[cols] = data[cols].where(np.abs(stats.zscore(data[cols])) < 2)
cols = list(data2.drop(columns='Time').columns)
data2o = pd.DataFrame({'Time':data2['Time']})
data2o[cols] = data2[cols].where(np.abs(stats.zscore(data2[cols])) < 2)
data2o[cols] = data2o[cols].mean()
cols = list(data3.drop(columns='Time').columns)
data3o = pd.DataFrame({'Time':data3['Time']})
data3o[cols] = data3[cols].where(np.abs(stats.zscore(data3[cols])) < 2)
data3o[cols] = data3o[cols].mean()
Does this make sense so far?
And now I would like to create a mean of datao, data2o and data3o seperately, resulting in three values for 60Ni, 61Ni, 62Ni, 63Cu, 64Ni, 65Cu, 66Zn. After that, I want to make a mean of these three values again. How should I do this?
I tried to make it this way:
mean_filtered_transposed = pd.DataFrame(data=np.mean(data)).T
mean_filtered_transposed['Time'] = pd.to_datetime(mean_filtered_transposed["Time"], unit='s')mean_filtered_transposed = pd.DataFrame(data=np.mean(data)).T
mean_filtered_transposed['Time'] = pd.to_datetime(mean_filtered_transposed["Time"], unit='s')
mean_filtered_transposed2 = pd.DataFrame(data=np.mean(data2)).T
mean_filtered_transposed2['Time'] = pd.to_datetime(mean_filtered_transposed["Time"], unit='s')
mean_filtered_transposed3 = pd.DataFrame(data=np.mean(data3)).T
mean_filtered_transposed3['Time'] = pd.to_datetime(mean_filtered_transposed3["Time"], unit='s')
mean_all = pd.concat(mean_filtered_transposed, mean_filtered_transposed2, mean_filtered_transposed3)
However, this results in:
"TypeError: first argument must be an iterable of pandas objects, you passed an object of type "DataFrame""
Based on documentation:
objs: a sequence or mapping of Series or DataFrame objects
So:
s1 = pd.Series(['a', 'b'])
s2 = pd.Series(['c', 'd'])
pd.concat([s1, s2])
result:
But:
s1 = pd.Series(['a', 'b'])
s2 = pd.Series(['c', 'd'])
pd.concat(s1, s2)
generates:
Related
Transform data to growth rates in Python
I have two variables and I want to express one of them (monetary_base) in terms of monthly growth. How can I do that?. In the R language you should first transform the data into time series, in Python is this also the case? #LLamando a las series que buscamos inflacion = llamada_api('https://api.estadisticasbcra.com/inflacion_mensual_oficial') base_monetaria = llamada_api('https://api.estadisticasbcra.com/base') #Armando DataFrames df = pd.DataFrame(inflacion) df_bm = pd.DataFrame(base_monetaria) #Renombrando columnas df = df.rename(columns={'d':'Fecha', 'v':'IPC'}) df_bm = df_bm.rename(columns={'d':'Fecha', 'v':'base_monetaria'}) #Arreglando tipo de datos df['Fecha']=pd.to_datetime(df['Fecha']) df_bm['Fecha']=pd.to_datetime(df_bm['Fecha']) #Verificando que las fechas esten en formato date df['Fecha'].dtype df_bm['Fecha'].dtype #Filtrando df_ipc = df[(df['Fecha'] > '2002-12-31')] df_bm_filter = df_bm[(df_bm['Fecha'] > '2002-12-31')] #Graficando plt.figure(figsize=(14,12)) df_ipc.plot(x = 'Fecha', y = 'IPC') plt.title('IPC-Mensual', fontdict={'fontsize':20}) plt.ylabel('IPC') plt.xticks(rotation=45) plt.show() The data looks like this Fecha base_monetaria 1748 2003-01-02 29302 1749 2003-01-03 29360 1750 2003-01-06 29524 1751 2003-01-07 29867 1752 2003-01-08 29957 ... ... 5966 2020-02-18 1941302 5967 2020-02-19 1941904 5968 2020-02-20 1887975 5969 2020-02-21 1855477 5970 2020-02-26 1807042 The idea is to take the data for the last day of the month and calculate the growth rate with the data for the last day of the previous month.
You can try something like this from pandas.tseries.offsets import MonthEnd import pandas as pd df = pd.DataFrame({'Fecha': ['2020-01-31', '2020-02-29', '2020-03-31', '2020-05-31', '2020-04-30', '2020-07-31', '2020-06-30', '2020-08-31', '2020-09-30', '2020-10-31', '2020-11-30', '2020-12-31'], 'price': ['32132', '54321', '3213121', '432123', '32132', '54321', '32132', '54321', '3213121', '432123', '32132', '54321']}) df['Fecha'] = df['Fecha'].astype('datetime64[ns]') df['is_month_end'] = df['Fecha'].dt.is_month_end df = df[df['is_month_end'] == True] df.sort_values('Fecha',inplace=True) df.reset_index(drop=True, inplace = True) def change(x,y): try: index = df[df['Fecha']==y].index.item() last = df.loc[index-1][1] return float(x)/float(last) except: return 0 df['new_column'] = df.apply(lambda row: change(row['price'],row['Fecha']), axis=1) df.head(12)
Assuming the base_moetaria is a monthly cumulative value then df = pd.DataFrame({'Fecha': ['2020-01-31', '2020-02-29', '2020-03-31', '2020-05-31', '2020-04-30', '2020-07-31', '2020-06-30', '2020-08-31', '2020-09-30', '2020-10-31', '2020-11-30', '2020-12-31'], 'price': [32132, 54321, 3213121, 432123, 32132, 54321, 32132, 54321, 3213121, 432123, 32132, 54321]}) df['Fecha'] = pd.to_datetime(df['Fecha']) df.set_index('Fecha', inplace=True) new_df = df.groupby(pd.Grouper(freq="M")).tail(1).reset_index() new_df['rate'] = (new_df['price'] -new_df['price'].shift(1))/new_df['price'].shift(1) The new_df['rate'] will give you the growth rate the way you explained in the comment below
The problem can be solve creating a column with the lag values of base_monetaria df_bm_filter['is_month_end'] = df_bm_filter['Fecha'].dt.is_month_end df_last_date = df_bm_filter[df_bm_filter['is_month_end'] == True] df_last_date['base_monetaria_lag'] = df_last_date['base_monetaria'].shift(1) df_last_date['bm_growth'] = (df_last_date['base_monetaria'] - df_last_date['base_monetaria_lag']) / df_last_date['base_monetaria_lag']
Tensorflow dnnregressor keeps giving me the same predicted values
I am using Tensorflows dnnregressor and when I re-load the dataset to get predicted values for the neural network I trained after a certain number of rows the predicted values are all the same. I have tried changing the learning rate and the number of hidden layers and neurons but nothing seems to really work. Here is my code: import pandas as pd from IPython.display import display pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) import warnings with warnings.catch_warnings(): warnings.filterwarnings("ignore",category=FutureWarning) import tensorflow as tf import pickle # Used to save the model import re import csv import logging import os from sklearn.model_selection import train_test_split regex = re.compile(r"\[|\]|<", re.IGNORECASE) import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix from mlxtend.plotting import plot_confusion_matrix # Removes annoying warning messages in tensorflow and python warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='error', category=FutureWarning) import sys if not sys.warnoptions: warnings.simplefilter("ignore") os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' tf.logging.set_verbosity(tf.logging.ERROR) tf.get_logger().setLevel(3) tf.get_logger().setLevel('INFO') tf.get_logger().setLevel(logging.ERROR) logging.getLogger('tensorflow').disabled = True all_data = pd.read_csv('ML_DATASET.csv') all_data = all_data.fillna(0) # Create training and test set all_data4 = all_data.iloc[:,0:] all_data4.columns = all_data4.columns.str.replace('+', 'plus') all_data4.columns = all_data4.columns.str.replace(')', ' ') all_data4.columns = all_data4.columns.str.replace('!', ' ') all_data4.columns = all_data4.columns.str.replace('(', ' ') all_data4.columns = all_data4.columns.str.replace(',', ' ') all_data4.columns = all_data4.columns.str.replace(' ', '_') all_data4.columns = all_data4.columns.str.replace('__', '_') all_data4.columns = all_data4.columns.str.replace('%', 'percentage') all_data4.columns = all_data4.columns.str.replace('$', '') all_data4.columns = all_data4.columns.str.replace('<', 'lessthan') all_data4 = all_data4.dropna(subset = ['3_year_appreciation']) train_dataset = all_data4.sample(frac=0.8,random_state=42) test_dataset = all_data4.drop(train_dataset.index) train_stats = train_dataset.describe() train_stats.pop('3_year_appreciation') train_stats = train_stats.transpose() train_labels = train_dataset.pop('3_year_appreciation') test_labels = test_dataset.pop('3_year_appreciation') # Need to change feature columns to be of numeric type feature_columns = ['Unweighted_Sample_Count_of_the_population', 'Avg_household_size_of_occupied_housing_units', 'Total_population_in_occupied_housing_units', 'Median_Estimated_Home_Value_owner_occupied_units_', 'Total_Population', 'Median_Gross_rent_as_percentage_of_household_inc', 'White_Population', 'Black/African_American_Population', 'Native_American_Population', 'Asian_Population', 'Pacific_Islander_Population', 'Some_other_race_Population', 'Mixed_Race_Population', 'Median_Age', 'Median_Household_Income', 'Total_Population_over_25', 'B15003_022E', 'B15003_023E', 'B15003_024E', 'B15003_025E', 'Median_Gross_Rent', 'Homeowner_households', 'Renter_households', 'Housing_units_with_mortgage', 'B19001_002E', 'B19001_003E', 'B19001_004E', 'B19001_005E', 'B19001_006E', 'B19001_007E', 'B19001_013E', 'B19001_014E', 'B19001_015E', 'B19001_016E', 'B19001_017E', 'Total_housing_Units', 'B25024_006E', 'B25024_007E', 'B25024_008E', 'B25024_009E', 'Total_Units', 'Units_with_9plus_Rooms', 'Families_making_more_than_5x_poverty_level_income', 'People_who_moved_in_the_past_year_within_same_county', 'Moved_within_same_state_but_not_same_county', 'Moved_from_different_state_same_country', 'Moved_from_different_country', 'Median_age_of_people_who_moved_from_different_state', 'Moved_within_same_county_bachelors_degree', 'Moved_from_different_state_At_or_above_150_percent_of_the_poverty_level', 'Number_of_people_who_work_at_home', 'Number_of_people_who_walk_to_work', 'White_women_25-29', 'Born_in_germany_population', 'Number_of_people_who_take_Non_taxi_public_transport_to_work', 'Number_of_people_who_work_in_county_government', 'Number_of_people_whose_Commuting_time_under_10_mins', 'Number_of_people_whose_commute_is_45-60_mins', 'Number_of_people_whose_commute_is_60-90_mins', 'Number_of_people_whose_commute_is_90plus_mins', 'Number_of_Sales_and_office_workers', 'Number_of_people_in_management_business_science_and_arts', 'Number_of_service_workers', 'Number_of_educational_and_health_service_workers', 'Number_of_arts_entertainment_and_food_service_workers', 'Number_of_finance_and_real_estate_workers', 'Number_of_tech_workers', 'Private_for-profit_wage_and_salary_workers', 'Self-employed_in_own_incorporated_business_workers', 'Local_government_workers', 'Federal_government_workers', 'Self-employed_in_own_not_incorporated_business_workers', 'People_in_households_receiving_SNAP_and_extra_social_security_income', 'Civilians_aged_25-64_with_more_than_a_bachelors_degree', 'Men_over_16_in_Education_legal_community_service_arts_and_media_occupations', 'Men_over_16_in_Food_preparation_and_serving_related_occupations', 'B08006_002E', 'B08006_003E', 'B08006_004E', 'B08006_005E', 'B08006_006E', 'B08006_007E', 'B08006_009E', 'B08006_010E', 'B08006_011E', 'B08006_012E', 'B08006_013E', 'B08006_014E', 'B08006_016E', 'B08006_019E', 'B08006_020E', 'B08006_021E', 'B08006_022E', 'B08006_023E', 'B08006_024E', 'B08006_025E', 'B08006_026E', 'B08006_027E', 'B08006_028E', 'B08006_029E', 'B08006_030E', 'B08006_031E', 'B08006_032E', 'B08006_033E', 'B08006_034E', 'B08006_036E', 'B08006_037E', 'B08006_038E', 'B08006_039E', 'B08006_040E', 'B08006_041E', 'B08006_042E', 'B08006_043E', 'B08006_044E', 'B08006_045E', 'B08006_046E', 'B08006_047E', 'B08006_048E', 'B08006_049E', 'B08006_050E', 'B08006_051E', 'B08007_002E', 'B08007_004E', 'B08007_005E', 'B08007_007E', 'B08007_008E', 'B08007_009E', 'B08007_010E', 'B08007_012E', 'B08007_013E', 'B08007_014E', 'B08007_015E', 'B08008_002E', 'B08008_003E', 'B08008_004E', 'B08008_005E', 'B08008_006E', 'B08008_007E', 'B08008_008E', 'B08008_009E', 'B08008_010E', 'B08008_011E', 'B08008_012E', 'B08008_013E', 'B08008_014E', 'B08013_001E', 'B08013_002E', 'B08013_003E', 'B08014_002E', 'B08014_003E', 'B08014_004E', 'B08014_005E', 'B08014_006E', 'B08014_007E', 'B08014_009E', 'B08014_010E', 'B08014_011E', 'B08014_012E', 'B08014_013E', 'B08014_014E', 'B08014_016E', 'B08014_017E', 'B08014_018E', 'B08014_019E', 'B08014_020E', 'B08014_021E', 'B08015_001E', 'B08015_002E', 'B08015_003E', 'B08105A_004E', 'B08105B_003E', 'B08111_002E', 'B08111_003E', 'B08111_004E', 'B08111_005E', 'B08113_002E', 'B08113_003E', 'B08113_004E', 'B08113_005E', 'B08113_006E', 'B08113_007E', 'B08113_008E', 'B13002_002E', 'B13002_003E', 'B13002_004E', 'B13002_005E', 'B13002_006E', 'B13002_007E', 'B13002_008E', 'B13002_009E', 'B13002_010E', 'B13002_011E', 'B13002_012E', 'B13002_013E', 'B13002_014E', 'B13002_015E', 'B13002_016E', 'B13002_017E', 'B13002_018E', 'B13002_019E', 'B13002A_002E', 'B13002A_003E', 'B13002A_004E', 'B13002A_005E', 'B13002A_006E', 'B13002A_007E', 'B13002B_002E', 'B13002B_003E', 'B13002B_004E', 'B13002B_005E', 'B13002B_006E', 'B13002B_007E', 'B13002C_002E', 'B13002C_003E', 'B13002C_004E', 'B13002C_005E', 'B13002C_006E', 'B13002C_007E', 'B13002D_002E', 'B13002D_003E', 'B13002D_004E', 'B13002D_005E', 'B13002D_006E', 'B13002D_007E', 'B13002E_002E', 'B13002E_003E', 'B13002E_004E', 'B13002E_005E', 'B13002E_006E', 'B13002E_007E', 'B13002F_002E', 'B13002F_003E', 'B13002F_004E', 'B13002F_005E', 'B13002F_006E', 'B13002F_007E', 'B13002G_002E', 'B13002G_003E', 'B13002G_004E', 'B13002G_005E', 'B13002G_006E', 'B13002G_007E', 'B13002H_002E', 'B13002H_003E', 'B13002H_004E', 'B13002H_005E', 'B13002H_006E', 'B13002H_007E', 'B13002I_002E', 'B13002I_003E', 'B13002I_004E', 'B13002I_005E', 'B13002I_006E', 'B13002I_007E', 'B13004_002E', 'B13004_003E', 'B13004_004E', 'B13004_005E', 'B13004_006E', 'B13004_007E', 'B13004_008E', 'B13004_009E', 'B13004_010E', 'B13004_011E', 'B13008_002E', 'B13008_003E', 'B13008_004E', 'B13008_005E', 'B13008_006E', 'B13008_007E', 'B13008_008E', 'B13008_009E', 'B13008_010E', 'B13008_011E', 'B13008_012E', 'B13008_013E', 'B13008_014E', 'B13008_015E', 'B13010_002E', 'B13010_003E', 'B13010_004E', 'B13010_005E', 'B13010_006E', 'B13010_007E', 'B13010_008E', 'B13010_009E', 'B13010_010E', 'B13010_011E', 'B13010_012E', 'B13010_013E', 'B13010_014E', 'B13010_015E', 'B13010_016E', 'B13010_017E', 'B13010_018E', 'B13010_019E', 'B13012_002E', 'B13012_003E', 'B13012_004E', 'B13012_005E', 'B13012_006E', 'B13012_007E', 'B13012_008E', 'B13012_009E', 'B13012_010E', 'B13012_011E', 'B13012_012E', 'B13012_013E', 'B13012_014E', 'B13012_015E', 'B13014_002E', 'B13014_003E', 'B13014_004E', 'B13014_005E', 'B13014_006E', 'B13014_007E', 'B13014_008E', 'B13014_009E', 'B13014_010E', 'B13014_011E', 'B13014_012E', 'B13014_013E', 'B13014_014E', 'B13014_015E', 'B13014_016E', 'B13014_017E', 'B13014_018E', 'B13014_019E', 'B13014_020E', 'B13014_021E', 'B13014_022E', 'B13014_023E', 'B13014_024E', 'B13014_025E', 'B13014_026E', 'B13014_027E', 'B13015_002E', 'B13015_003E', 'B13015_004E', 'B13015_005E', 'B13015_006E', 'B13015_007E', 'B13015_008E', 'B13015_009E', 'B13015_010E', 'B13015_011E', 'B13015_012E', 'B13015_013E', 'B13015_014E', 'B13015_015E', 'B13016_002E', 'B13016_003E', 'B13016_004E', 'B13016_005E', 'B13016_006E', 'B13016_007E', 'B13016_008E', 'B13016_009E', 'B13016_010E', 'B13016_011E', 'B13016_012E', 'B13016_013E', 'B13016_014E', 'B13016_015E', 'B13016_016E', 'B13016_017E', 'B14001_002E', 'B14001_003E', 'B14001_004E', 'B14001_005E', 'B14001_006E', 'B14001_007E', 'B14001_008E', 'B14001_009E', 'B14001_010E', 'B14002_003E', 'B14002_004E', 'B14002_005E', 'B14002_006E', 'B14002_007E', 'B14002_008E', 'B14002_009E', 'B14002_010E', 'B14002_011E', 'B14002_012E', 'B14002_013E', 'B14002_014E', 'B14002_015E', 'B14002_016E', 'B14002_017E', 'B14002_018E', 'B14002_019E', 'B14002_020E', 'B14002_021E', 'B14002_022E', 'B14002_023E', 'B14002_024E', 'B14002_025E', 'B14002_027E', 'B14002_028E', 'B14002_029E', 'B14002_030E', 'B14002_031E', 'B14002_032E', 'B14002_033E', 'B14002_034E', 'B14002_035E', 'B14002_036E', 'B14002_037E', 'B14002_038E', 'B14002_039E', 'B14002_040E', 'B14002_041E', 'B14002_042E', 'B14002_043E', 'B14002_044E', 'B14002_045E', 'B14002_046E', 'B14002_047E', 'B14002_048E', 'B14002_049E', 'B14003_003E', 'B14003_004E', 'B14003_005E', 'B14003_006E', 'B14003_007E', 'B14003_008E', 'B14003_009E', 'B14003_010E', 'B14003_011E', 'B14003_012E', 'B14003_013E', 'B14003_014E', 'B14003_015E', 'B14003_016E', 'B14003_017E', 'B14003_018E', 'B14003_019E', 'B14003_020E', 'B14003_021E', 'B14003_022E', 'B14003_023E', 'B14003_024E', 'B14003_025E', 'B14003_026E', 'B14003_027E', 'B14003_028E', 'B14003_029E', 'B14003_031E', 'B14003_032E', 'B14003_033E', 'B14003_034E', 'B14003_035E', 'B14003_036E', 'B14003_037E', 'B14003_038E', 'B14003_039E', 'B14003_040E', 'B14003_041E', 'B14003_042E', 'B14003_043E', 'B14003_044E', 'B14003_045E', 'B14003_046E', 'B14003_047E', 'B14003_048E', 'B14003_049E', 'B14003_050E', 'B14003_051E', 'B14003_052E', 'B14003_053E', 'B14003_054E', 'B14003_055E', 'B14003_056E', 'B14003_057E', 'B14004_003E', 'B14004_004E', 'B14004_005E', 'B14004_006E', 'B14004_007E', 'B14004_008E', 'B14004_009E', 'B14004_010E', 'B14004_011E', 'B14004_012E', 'B14004_013E', 'B14004_014E', 'B14004_015E', 'B14004_016E', 'B14004_017E', 'B14004_019E', 'B14004_020E', 'B14004_021E', 'B14004_022E', 'B14004_023E', 'B14004_024E', 'B14004_025E', 'B14004_026E', 'B14004_027E', 'B14004_028E', 'B14004_029E', 'B14004_030E', 'B14004_031E', 'B14004_032E', 'B14004_033E', 'B14005_003E', 'B14005_004E', 'B14005_005E', 'B14005_006E', 'B14005_007E', 'B14005_008E', 'B14005_009E', 'B14005_010E', 'B14005_011E', 'B14005_012E', 'B14005_013E', 'B14005_014E', 'B14005_015E', 'B14005_017E', 'B14005_018E', 'B14005_019E', 'B14005_020E', 'B14005_021E', 'B14005_022E', 'B14005_023E', 'B14005_024E', 'B14005_025E', 'B14005_026E', 'B14005_027E', 'B14005_028E', 'B14005_029E', 'B14006_002E', 'B14006_003E', 'B14006_004E', 'B14006_005E', 'B14006_006E', 'B14006_007E', 'B14006_008E', 'B14006_009E', 'B14006_010E', 'B14006_011E', 'B14006_012E', 'B14006_013E', 'B14006_014E', 'B14006_015E', 'B14006_016E', 'B14006_017E', 'B14006_018E', 'B14006_019E', 'B14006_020E', 'B14006_021E', 'B14007_003E', 'B14007_004E', 'B14007_005E', 'B14007_006E', 'B14007_007E', 'B14007_008E', 'B14007_009E', 'B14007_010E', 'B14007_011E', 'B14007_012E', 'B14007_013E', 'B14007_014E', 'B14007_015E', 'B14007_016E', 'B14007_017E', 'B14007_018E', 'B14007A_003E', 'B14007A_004E', 'B14007A_005E', 'B14007A_006E', 'B14007A_007E', 'B14007A_008E', 'B14007A_009E', 'B14007A_010E', 'B14007A_011E', 'B14007A_012E', 'B14007A_013E', 'B14007A_014E', 'B14007A_015E', 'B14007A_016E', 'B14007A_017E', 'B14007A_018E', 'B14007A_019E', 'B14007B_002E', 'B14007B_003E', 'B14007B_004E', 'B14007B_005E', 'B14007B_006E', 'B14007B_007E', 'B14007B_008E', 'B14007B_009E', 'B14007B_010E', 'B14007B_011E', 'B14007B_012E', 'B14007B_013E', 'B14007B_014E', 'B14007B_015E', 'B14007B_016E', 'B14007B_017E', 'B14007B_018E', 'B14007B_019E', 'B14007C_002E', 'B14007C_003E', 'B14007C_004E', 'B14007C_005E', 'B14007C_006E', 'B14007C_007E', 'B14007C_008E', 'B14007C_009E', 'B14007C_010E', 'B14007C_011E', 'B14007C_012E', 'B14007C_013E', 'B14007C_014E', 'B14007C_015E', 'B14007C_016E', 'B14007C_017E', 'B14007C_018E', 'B14007C_019E', 'B14007D_002E', 'B14007D_003E', 'B14007D_004E', 'B14007D_005E', 'B14007D_006E', 'B14007D_007E', 'B14007D_008E', 'B14007D_009E', 'B14007D_010E', 'B14007D_011E', 'B14007D_012E', 'B14007D_013E', 'B14007D_014E', 'B14007D_015E', 'B14007D_016E', 'B14007D_017E', 'B14007D_018E', 'B14007D_019E', 'B19054_002E', 'B19054_003E', 'B19055_002E', 'B19055_003E', 'B19056_002E', 'B19056_003E', 'B19057_002E', 'B19057_003E', 'B19058_002E', 'B19058_003E', 'B19059_002E', 'B19059_003E', 'B19060_002E', 'B19060_003E', 'B08016_002E', 'B08016_003E', 'B08016_004E', 'B08016_005E', 'B08016_006E', 'B08016_007E', 'B08016_008E', 'B08016_009E', 'B08016_010E', 'B08016_011E', 'B08016_012E', 'B08016_013E', 'B08016_014E', 'B08016_015E', 'B08016_016E', 'B08016_017E', 'B08016_018E', 'B08016_019E', 'B08016_020E', 'B08016_021E', 'B08016_022E', 'B08016_023E', 'B08017_002E', 'B08017_003E', 'B08017_004E', 'B08017_005E', 'B08017_006E', 'B08017_007E', 'B08017_008E', 'B08017_009E', 'B08017_010E', 'B08017_011E', 'B08017_012E', 'B08017_013E', 'B08017_015E', 'B08017_016E', 'B08017_017E', 'B08017_018E', 'B08017_019E', 'B08017_020E', 'B08017_021E', 'B08017_022E', 'B08017_023E', 'B08018_002E', 'B08018_003E', 'B08018_004E', 'B08018_005E', 'B08018_006E', 'B08018_007E', 'B08018_008E', 'B08101_049E', 'B08105A_007E', 'B08105B_007E', 'B08105C_007E', 'B08105D_007E', 'B08105E_007E', 'B08105F_007E', 'B08105G_007E', 'B08105H_007E', 'B08105I_007E', 'B08111_031E', 'B08113_049E', 'B08119_055E', 'B08121_007E', 'B08122_025E', 'B08122_026E', 'B08122_027E', 'B08122_028E', 'B24080_003E', 'B24080_004E', 'B24080_005E', 'B24080_006E', 'B24080_007E', 'B24080_008E', 'B24080_009E', 'B24080_010E', 'B24080_011E', 'B24080_012E', 'B24080_013E', 'B24080_014E', 'B24080_015E', 'B24080_016E', 'B24080_017E', 'B24080_018E', 'B24080_019E', 'B24080_020E', 'B24080_021E', 'B24081_001E', 'B24081_002E', 'B24081_003E', 'B24081_004E', 'B24081_005E', 'B24081_006E', 'B24081_007E', 'B24081_008E', 'B24081_009E', 'B24082_001E', 'B24082_002E', 'B24082_003E', 'B24082_004E', 'B24082_005E', 'B24082_006E', 'B24082_007E', 'B24082_008E', 'B24082_009E', 'B24082_010E', 'B24082_011E', 'B24082_012E', 'B24082_013E', 'B24082_014E', 'B24082_015E', 'B24082_016E', 'B24082_017E', 'B24082_018E', 'B24090_001E', 'B24090_002E', 'B24090_003E', 'B24090_004E', 'B24090_005E', 'B24090_006E', 'B24090_007E', 'B24090_008E', 'B24090_009E', 'B24090_010E', 'B24090_011E', 'B24090_012E', 'B24090_013E', 'B24090_014E', 'B24090_015E', 'B24090_016E', 'B24090_017E', 'B24090_018E', 'B24090_019E', 'B24090_020E', 'B24090_021E', 'B24091_001E', 'B24091_002E', 'B24091_003E', 'B24091_004E', 'B24091_005E', 'B24091_006E', 'B24091_007E', 'B24091_008E', 'B24091_009E', 'B24092_001E', 'B24092_002E', 'B24092_003E', 'B24092_004E', 'B24092_005E', 'B24092_006E', 'B24092_007E', 'B24092_008E', 'B24092_009E', 'B24092_010E', 'B24092_011E', 'B24092_012E', 'B24092_013E', 'B24092_014E', 'B24092_015E', 'B24092_016E', 'B24092_017E', 'B24092_018E', 'C24040_001E', 'C24040_002E', 'C24040_003E', 'C24040_004E', 'C24040_005E', 'C24040_006E', 'C24040_007E', 'C24040_008E', 'C24040_009E', 'C24040_010E', 'C24040_011E', 'C24040_012E', 'C24040_013E', 'C24040_014E', 'C24040_015E', 'C24040_016E', 'C24040_017E', 'C24040_018E', 'C24040_019E', 'C24040_020E', 'C24040_021E', 'C24040_022E', 'C24040_023E', 'C24040_024E', 'C24040_025E', 'C24040_026E', 'C24040_027E', 'C24040_028E', 'C24040_029E', 'C24040_030E', 'C24040_031E', 'C24040_032E', 'C24040_033E', 'C24040_034E', 'C24040_035E', 'C24040_036E', 'C24040_037E', 'C24040_038E', 'C24040_039E', 'C24040_040E', 'C24040_041E', 'C24040_042E', 'C24040_043E', 'C24040_044E', 'C24040_045E', 'C24040_046E', 'C24040_047E', 'C24040_048E', 'C24040_049E', 'C24040_050E', 'C24040_051E', 'C24040_052E', 'C24040_053E', 'C24040_054E', 'C24040_055E', 'C24050_001E', 'C24050_002E', 'C24050_003E', 'C24050_004E', 'C24050_005E', 'C24050_006E', 'C24050_007E', 'C24050_008E', 'C24050_009E', 'C24050_010E', 'C24050_011E', 'C24050_012E', 'C24050_013E', 'C24050_014E', 'C24050_015E', 'C24050_016E', 'C24050_017E', 'C24050_018E', 'C24050_019E', 'C24050_020E', 'C24050_021E', 'C24050_022E', 'C24050_023E', 'C24050_024E', 'C24050_025E', 'C24050_026E', 'C24050_027E', 'C24050_028E', 'C24050_029E', 'C24050_030E', 'C24050_031E', 'C24050_032E', 'C24050_033E', 'C24050_034E', 'C24050_035E', 'C24050_036E', 'C24050_037E', 'C24050_038E', 'C24050_039E', 'C24050_040E', 'C24050_041E', 'C24050_042E', 'C24050_043E', 'C24050_044E', 'C24050_045E', 'C24050_046E', 'C24050_047E', 'C24050_048E', 'C24050_049E', 'C24050_050E', 'C24050_051E', 'C24050_052E', 'C24050_053E', 'C24050_054E', 'C24050_055E', 'C24050_056E', 'C24050_057E', 'C24050_058E', 'C24050_059E', 'C24050_060E', 'C24050_061E', 'C24050_062E', 'C24050_063E', 'C24050_064E', 'C24050_065E', 'C24050_066E', 'C24050_067E', 'C24050_068E', 'C24050_069E', 'C24050_070E', 'C24050_071E', 'C24050_072E', 'C24050_073E', 'C24050_074E', 'C24050_075E', 'C24050_076E', 'C24050_077E', 'C24050_078E', 'C24050_079E', 'C24050_080E', 'C24050_081E', 'C24050_082E', 'C24050_083E', 'C24050_084E', 'C24060_001E', 'C24060_002E', 'C24060_003E', 'C24060_004E', 'C24060_005E', 'C24060_006E', 'C24060_007E', 'C24060_008E', 'C24060_009E', 'C24060_010E', 'C24060_011E', 'C24060_012E', 'C24060_013E', 'C24060_014E', 'C24060_015E', 'C24060_016E', 'C24060_017E', 'C24060_018E', 'C24060_019E', 'C24060_020E', 'C24060_021E', 'C24060_022E', 'C24060_023E', 'C24060_024E', 'C24060_025E', 'C24060_026E', 'C24060_027E', 'C24060_028E', 'C24060_029E', 'C24060_030E', 'C24060_031E', 'C24060_032E', 'C24060_033E', 'C24060_034E', 'C24060_035E', 'C24060_036E', 'C24070_001E', 'C24070_002E', 'C24070_003E', 'C24070_004E', 'C24070_005E', 'C24070_006E', 'C24070_007E', 'C24070_008E', 'C24070_009E', 'C24070_010E', 'C24070_011E', 'C24070_012E', 'C24070_013E', 'C24070_014E', 'C24070_015E', 'C24070_016E', 'C24070_017E', 'C24070_018E', 'C24070_019E', 'C24070_020E', 'C24070_021E', 'C24070_022E', 'C24070_023E', 'C24070_024E', 'C24070_025E', 'C24070_026E', 'C24070_027E', 'C24070_029E', 'C24070_030E', 'C24070_031E', 'C24070_032E', 'C24070_033E', 'C24070_034E', 'C24070_035E', 'C24070_036E', 'C24070_037E', 'C24070_038E', 'C24070_039E', 'C24070_040E', 'C24070_041E', 'C24070_043E', 'C24070_044E', 'C24070_045E', 'C24070_046E', 'C24070_047E', 'C24070_048E', 'C24070_049E', 'C24070_050E', 'C24070_051E', 'C24070_052E', 'C24070_053E', 'C24070_054E', 'C24070_055E', 'C24070_057E', 'C24070_058E', 'C24070_059E', 'C24070_060E', 'C24070_061E', 'C24070_062E', 'C24070_063E', 'C24070_064E', 'C24070_065E', 'C24070_066E', 'C24070_067E', 'C24070_068E', 'C24070_069E', 'C24070_070E', 'C24070_071E', 'C24070_072E', 'C24070_073E', 'C24070_074E', 'C24070_075E', 'C24070_076E', 'C24070_077E', 'C24070_078E', 'C24070_079E', 'C24070_080E', 'C24070_081E', 'C24070_082E', 'C24070_083E', 'C24070_084E', 'B27001_004E', 'B27001_005E', 'B27001_006E', 'B27001_007E', 'B27001_008E', 'B27001_009E', 'B27001_010E', 'B27001_011E', 'B27001_012E', 'B27001_013E', 'B27001_014E', 'B27001_015E', 'B27001_016E', 'B27001_017E', 'B27001_018E', 'B27001_019E', 'B27001_020E', 'B27001_021E', 'B27001_022E', 'B27001_023E', 'B27001_024E', 'B27001_025E', 'B27001_026E', 'B27001_027E', 'B27001_028E', 'B27001_029E', 'B27001_030E', 'B27001_031E', 'B27001_032E', 'B27001_033E', 'B27001_034E', 'B27001_035E', 'B27001_036E', 'B27001_037E', 'B27001_038E', 'B27001_039E', 'B27001_040E', 'B27001_041E', 'B27001_042E', 'B27001_043E', 'B27001_044E', 'B27001_045E', 'B27001_046E', 'B27001_047E', 'B27001_048E', 'B27001_049E', 'B27001_050E', 'B27001_051E', 'B27001_052E', 'B27001_053E', 'B27001_054E', 'B27001_055E', 'B27001_056E', 'B27001_057E', 'Bachelorsplus', 'Households_with_Income_lessthan35k', 'Households_with_Income_100kplus', 'Pct_of_housing_units_in_4plus_unit_buildings'] feat_cols = [] for x in feature_columns: x.strip() feat_cols.append(tf.feature_column.numeric_column(x)) # # Normalize data def norm(x): return (x - train_stats['mean']) / train_stats['std'] X_train = norm(train_dataset) y_train = train_labels X_test = norm(test_dataset) y_test = test_labels # Define the input function BATCH_SIZE = 10 epochs = None input_func=tf.estimator.inputs.pandas_input_fn(x=X_train,y=y_train,batch_size=BATCH_SIZE,num_epochs=None,shuffle=True) eval_input_func = tf.estimator.inputs.pandas_input_fn(x=X_test, y=y_test, batch_size=10, num_epochs=1, shuffle=False) test_input_func = tf.estimator.inputs.pandas_input_fn(x= X_test, batch_size=100, num_epochs=1, shuffle=False) dnn_regressor = tf.estimator.DNNRegressor( feature_columns=feat_cols, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.01, l1_regularization_strength=0.01 )) # Train model dnn_regressor.train(input_fn=input_func,steps=1000) # Predictions pred_input_func=tf.estimator.inputs.pandas_input_fn(x=X_test,batch_size=BATCH_SIZE,num_epochs=1,shuffle=False) predictions=list(dnn_regressor.predict(input_fn=pred_input_func)) # Clear Cache all_data = pd.DataFrame() all_data4 = pd.DataFrame() X_train = pd.DataFrame() y_train = pd.DataFrame() X_test = pd.DataFrame() y_test = pd.DataFrame() train_dataset = pd.DataFrame() test_dataset = pd.DataFrame() train_stats = pd.DataFrame() train_labels = pd.DataFrame() test_labels = pd.DataFrame() #Normalize function def norm(x,train_stats): return (x - train_stats['mean']) / train_stats['std'] #Append_machine_learning_outputs def append_ML_outputs(dataframe, year, dnn_regressor): dataframe = dataframe[dataframe['Year'].isin([year])] print(len(dataframe)) cols = dataframe.columns.tolist() cols = cols[-2:] + cols[:-2] cols.insert(0, cols.pop(cols.index('LocationplusType'))) dataframe=dataframe[cols] dataframe = dataframe.replace([np.inf, -np.inf], np.nan) dataframe = dataframe.fillna(0) print(len(dataframe)) stats = dataframe.describe() stats = stats.transpose() dataframe3 = dataframe.drop(['LocationplusType','Tract_number','Year'],axis=1) print(len(dataframe3)) normed_data = norm(dataframe3,stats) normed_data = pd.merge(dataframe[['LocationplusType','Tract_number','Year']],normed_data,left_index=True,right_index=True) dataframe4 = normed_data.drop(['LocationplusType','Year_x','Tract_number_x'],axis=1) dataframe4 = dataframe4.drop(['3_year_appreciation'],axis=1) print(len(dataframe4)) pred_input_func=tf.estimator.inputs.pandas_input_fn(x=dataframe4,batch_size=BATCH_SIZE,num_epochs=1,shuffle=False) example_result = pd.DataFrame(dnn_regressor.predict(input_fn=pred_input_func)) orig_data = dataframe.reset_index(drop=True) df_test = pd.merge(orig_data[['LocationplusType','Year']],example_result,left_index=True,right_index=True) df_test.rename(columns={0:'Predicted Growth Rank'}, inplace=True) return df_test all_data.columns = all_data.columns.str.replace('+', 'plus') all_data.columns = all_data.columns.str.replace(')', ' ') all_data.columns = all_data.columns.str.replace('!', ' ') all_data.columns = all_data.columns.str.replace('(', ' ') all_data.columns = all_data.columns.str.replace(',', ' ') all_data.columns = all_data.columns.str.replace(' ', '_') all_data.columns = all_data.columns.str.replace('__', '_') all_data.columns = all_data.columns.str.replace('%', 'percentage') all_data.columns = all_data.columns.str.replace('$', '') all_data.columns = all_data.columns.str.replace('<', 'lessthan') # len(df) df_list=[] for year in all_data['Year'].unique(): df_list.append(append_ML_outputs(all_data, year, dnn_regressor)) df_final = pd.concat(df_list) # Uncomment line below to write a new file df_final.to_csv('predicted_values.csv',index=False) EDIT: I am now including a GitHub repo which you can find here. This will include the data and the source code. To clarify the issue is in regards to the last block of code in the notebook in which I after a certain number of predicted values I get the same predicted values. UPDATED EDIT: I realized the large ML_DATA.csv file was not in the github link I provided. The file is 3.6 GB so I had to zip it into a file and then push it. All the data should be there now.
Nested dictionary groups from excel
I'm new in python and openpyxl. I started to learn in order to make my every day tasks easier and faster at my workplace. Task: There is an excel file with a lots of rows, looks like this excel file I want to create a daily report based on this excel file. In my example Today is 2019/05/08. Expected result: Only show the info where the date is match with Today date. Expected structure: required outcome My solution In my solution I create a list of the rows where I can find only the Today values. After that I read only that rows and create dictionaries. But the result is nothing. I also in a trouble about how to work with multiple keys. Because there are multiple issue numbers are in the list. from datetime import datetime import openpyxl from openpyxl import load_workbook from openpyxl.utils import get_column_letter from openpyxl.utils import column_index_from_string #Open excel file excel_path = "\\REE.xlsx" wb = openpyxl.load_workbook(excel_path, data_only=True) ws_1 = wb.worksheets[1] #The Today date. need some format due to excel date handling today = datetime.today() today = today.replace(hour=00, minute=00, second=00, microsecond=00) #Crate a list of the lines where only Today values are present issue_line_list = [] for cell in ws_1["B"]: if cell.value == today: issue_line = cell.row issue_line_list.append(issue_line) #Creare a txt file for output file = open("daily_report.txt", "w") #The dict what I want to use dict = [] issue_numbers_list = [] issue = [] #Create a dict for the issues for line in issue_line_list: issue_number_value = ws_1.cell(row = line, column = 3).value issue_numbers_list.append(issue_number_value) #Create a dict for other information for line in issue_line_list: issue_number_value = ws_1.cell(row = line, column = 3).value by_value = ws_1.cell(row = line, column = 2 ).value group_value = ws_1.cell(row = line, column = 4).value events_value = ws_1.cell(row = line, column = 5).value deadline_value = ws_1.cell(row = line, column = 6).value try: deadline_value = deadline_value.strftime('%Y.%m.%d') except: deadline_value = "" issue.append(issue_number_value) issue.append(by_value) issue.append(group_value) issue.append(events_value) issue.append(deadline_value) issue.append(deadline_value) #Append the two dict dict.append(issue_numbers_list) dict.append(issue) #Save it to the txt file. file.write(dict) file.close() Questions - How to solve the multiple same key issue? - How to create nested groups? - What should add or delete to my code in order to get the expected result? Remark Openpyxl is not only option. If you have a bettwer/easier/faster way I open for every idea. Thank you in advance for you support!
Can you try the following: import pandas as pd cols = ['date', 'by', 'issue_number', 'group', 'events', 'deadline'] req_cols = ['events', 'deadline'] data = [ ['2019-05-07', 'john', '113140', '#issue_closed', 'something different', ''], ['2019-05-08', 'david', '113140', '#task', 'something different', ''], ['2019-05-08', 'victor', '114761', '#task_result', 'something different', ''], ['2019-05-08', 'john', '114761', '#task', 'something different', '2019-05-10'], ['2019-05-08', 'david', '114761', '#task', 'something different', '2019-05-08'], ['2019-05-08', 'victor', '113140', '#task_result', 'something different', ''], ['2019-05-07', 'john', '113140', '#issue_created', 'something different', '2019-05-09'], ['2019-05-07', 'david', '113140', '#location', 'something different', ''], ['2019-05-07', 'victor', '113140', '#issue_closed', 'something different', 'done'], ['2019-05-07', 'john', '113140', '#task_result', 'something different', ''], ['2019-05-07', 'david', '113140', '#task', 'something different', '2019-05-10'], ] df = pd.DataFrame(data, columns=cols) df1 = df.groupby(['issue_number', 'group']).describe()[req_cols].droplevel(0, axis=1)['top'] df1.columns = req_cols print(df1) Output: events deadline issue_number group 113140 #issue_closed something different done #issue_created something different 2019-05-09 #location something different #task something different 2019-05-10 #task_result something different 114761 #task something different 2019-05-08 #task_result something different To open an excel file, you can do the following: df = pd.read_excel(excel_path, sheet_name=my_sheet) req_cols = ['EVENTS', 'DEADLINE'] df1 = df.groupby(['ISSUE NUMBER', 'GROUP']).describe()[req_cols].droplevel(0, axis=1)['top'] df1.columns = req_cols print(df1)
The task almost solved, but I faced a new issue. The code: excel_path = "\\REE.xlsx" my_sheet = 'Events' cols = ['DATE', 'BY', 'ISSUE NUMBER', 'GROUP', 'EVENTS', 'DEADLINE'] req_cols = ['EVENTS', 'DEADLINE'] df = pd.read_excel(excel_path, sheet_name = my_sheet, columns=cols) today = datetime.today().strftime('%Y-%m-%d') today_filter = (df[(df['DATE'] == today)]) df = pd.DataFrame(today_filter, columns=cols) df1 = df.groupby(['ISSUE NUMBER', 'GROUP']).describe()[req_cols].droplevel(0, axis=1['top'] df1.columns = req_cols print(df1) On the 'BY' column there are same values. eg. '#task'. But the script print only once. int his case Required result: 114761 #task Jane another words 2019-05-10 #task result John something #task John something else 2019-05-08 ... ... ... ... My code result: 114761 #task Jane another words 2019-05-10 #task result John something ... ... ... John #task something else 2019-05-08 do not print it out. Why? And there is a some result in other options also. If there are more some values at'BY' column the script print out only the first and skip the rest.
Try to include a column based on input and file name in Pandas Dataframe in Python
I have a several csv files which have the following structure: Erster Hoch Tief Schlusskurs Stuecke Volumen Datum 14.02.2017 151.55 152.35 151.05 152.25 110.043 16.687.376 13.02.2017 149.85 152.20 149.25 151.25 415.76 62.835.200 10.02.2017 149.00 150.05 148.65 149.40 473.664 70.746.088 09.02.2017 144.75 148.45 144.35 148.00 642.175 94.348.392 Erster Hoch Tief Schlusskurs Stuecke Volumen Datum 14.02.2017 111.454 111.776 111.454 111.776 44 4.918 13.02.2017 110.570 110.989 110.570 110.989 122 13.535 10.02.2017 109.796 110.705 109.796 110.705 0 0 09.02.2017 107.993 108.750 107.993 108.750 496 53.933 all are different based on the naming of the file name: wkn_A1EWWW_historic.csv wkn_A0YAQA_historic.csv I want to have the following Output: Date wkn Open High low Close pieced Volume 14.02.2017 A1EWWW 151.55 152.35 151.05 152.25 110.043 16.687.376 13.02.2017 A1EWWW 149.85 152.20 149.25 151.25 415.76 62.835.200 10.02.2017 A1EWWW 149.00 150.05 148.65 149.40 473.664 70.746.088 09.02.2017 A1EWWW 144.75 148.45 144.35 148.00 642.175 94.348.392 Date wkn Open High low Close pieced Volume 14.02.2017 A0YAQA 111.454 111.776 111.454 111.776 44 4.918 13.02.2017 A0YAQA 110.570 110.989 110.570 110.989 122 13.535 10.02.2017 A0YAQA 109.796 110.705 109.796 110.705 0 0 09.02.2017 A0YAQA 107.993 108.750 107.993 108.750 496 53.933 The code looks like the following: import pandas as pd wkn_list_dummy = {'A0YAQA','A1EWWW'} for w_list in wkn_list_dummy: url = 'C:/wkn_'+str(w_list)+'_historic.csv' df = pd.read_csv(url, encoding='cp1252', sep=';', decimal=',', index_col=0) print(df) I tried using melt but it was not working.
You can add column by just assigning a value to it: df['new_column'] = 'string' All together: import pandas as pd wkn_list_dummy = {'A0YAQA','A1EWWW'} final_df = pd.DataFrame() for w_list in wkn_list_dummy: url = 'C:/wkn_'+str(w_list)+'_historic.csv' df = pd.read_csv(url, encoding='cp1252', sep=';', decimal=',', index_col=0) df['wkn'] = w_list final_df = final_df.append(df) final_df.reset_index(inplace=True) print(final_df)
How do i select only certain rows based on label in pandas?
Here is my function: def get_historical_closes(ticker, start_date, end_date): my_dir = '/home/manish/Desktop/Equity/subset' os.chdir(my_dir) dfs = [] for files in glob.glob('*.txt'): dfs.append(pd.read_csv(files, names = ['Ticker', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Null'], parse_dates = [1])) p = pd.concat(dfs) d = p.reset_index(['Date', 'Ticker', 'Close']) pivoted = d.pivot_table(index = ['Date'], columns =['Ticker']) pivoted.columns = pivoted.columns.droplevel(0) return pivoted closes = get_historical_closes(['LT' or 'HDFC'or 'ACC'], '1999-01-01', '2014-12-31') My problem is I just want to get data for a few rows namely, data for LT, HDFC and ACC for all the dates, but when I execute the function, I am getting data for all the rows (approx. 1500 nos.) How can I slice the dataframe, so that I get only selected rows and not the entire dataframe? Raw input data is a collection of text files as so: 20MICRONS,20150401,36.5,38.95,35.8,37.35,64023,0 3IINFOTECH,20150401,5.9,6.3,5.8,6.2,1602365,0 3MINDIA,20150401,7905,7905,7850,7879.6,310,0 8KMILES,20150401,710.05,721,706,712.9,20196,0 A2ZINFRA,20150401,15.5,16.55,15.2,16,218219,0 AARTIDRUGS,20150401,648.95,665.5,639.65,648.25,42927,0 AARTIIND,20150401,348,349.4,340.3,341.85,122071,0 AARVEEDEN,20150401,42,42.9,41.55,42.3,627,0 ABAN,20150401,422,434.3,419,429.1,625857,0 ABB,20150401,1266.05,1284,1266,1277.45,70294,0 ABBOTINDIA,20150401,3979.25,4009.95,3955.3,3981.25,2677,0 ABCIL,20150401,217.8,222.95,217,221.65,11583,0 ABGSHIP,20150401,225,225,215.3,220.2,237737,0 ABIRLANUVO,20150401,1677,1677,1639.25,1666.7,106336,0 ACC,20150401,1563.7,1591.3,1553.2,1585.9,176063,0 ACCELYA,20150401,932,953.8,923,950.5,4297,0 ACE,20150401,40.1,41.7,40.05,41.15,356130,0 ACROPETAL,20150401,2.75,3,2.7,2.85,33380,0 ADANIENT,20150401,608.8,615.8,603,612.4,868006,0 ADANIPORTS,20150401,308.45,312.05,306.1,310.95,1026200,0 ADANIPOWER,20150401,46.7,48,46.7,47.75,3015649,0 ADFFOODS,20150401,60.5,60.5,58.65,59.75,23532,0 ADHUNIK,20150401,20.95,21.75,20.8,21.2,149431,0 ADORWELD,20150401,224.9,224.9,215.65,219.2,2743,0 ADSL,20150401,19,20,18.7,19.65,35053,0 ADVANIHOTR,20150401,43.1,43.1,43,43,100,0 ADVANTA,20150401,419.9,430.05,418,428,16206,0 AEGISCHEM,20150401,609,668,600,658.4,264828,0 AFL,20150401,65.25,70,65.25,68.65,9507,0 AGARIND,20150401,95,100,87.25,97.45,14387,0 AGCNET,20150401,91.95,93.75,91.4,93,2453,0 AGRITECH,20150401,5.5,6.1,5.5,5.75,540,0 AGRODUTCH,20150401,2.7,2.7,2.6,2.7,451,0 AHLEAST,20150401,196,202.4,185,192.25,357,0 AHLUCONT,20150401,249.5,258.3,246,251.3,44541,0 AHLWEST,20150401,123.9,129.85,123.9,128.35,688,0 AHMEDFORGE,20150401,229.5,237.35,228,231.45,332680,0 AIAENG,20150401,1268,1268,1204.95,1214.1,48950,0 AIL,20150401,735,747.9,725.1,734.8,31780,0 AJANTPHARM,20150401,1235,1252,1207.05,1223.3,126442,0 AJMERA,20150401,118.7,121.9,117.2,118.45,23005,0 AKSHOPTFBR,20150401,14.3,14.8,14.15,14.7,214028,0 AKZOINDIA,20150401,1403.95,1412,1392,1400.7,17115,0 ALBK,20150401,99.1,101.65,99.1,101.4,2129046,0 ALCHEM,20150401,27.9,32.5,27.15,31.6,32338,0 ALEMBICLTD,20150401,34.6,36.7,34.3,36.45,692688,0 ALICON,20150401,280,288,279.05,281.05,5937,0 ALKALI,20150401,31.6,34.2,31.6,33.95,4663,0 ALKYLAMINE,20150401,314,334,313.1,328.8,1515,0 ALLCARGO,20150401,317,323.5,315,319.15,31056,0 ALLSEC,20150401,21.65,22.5,21.6,21.6,435,0 ALMONDZ,20150401,10.6,10.95,10.5,10.75,23600,0 ALOKTEXT,20150401,7.5,8.2,7.4,7.95,8145264,0 ALPA,20150401,11.85,11.85,10.75,11.8,3600,0 ALPHAGEO,20150401,384.3,425.05,383.95,419.75,13308,0 ALPSINDUS,20150401,1.85,1.85,1.85,1.85,1050,0 ALSTOMT&D,20150401,585.85,595,576.65,588.4,49234,0 AMARAJABAT,20150401,836.5,847.75,831,843.9,121150,0 AMBIKCO,20150401,790,809,780.25,802.6,4879,0 AMBUJACEM,20150401,254.95,261.4,253.4,260.25,1346375,0 AMDIND,20150401,20.5,22.75,20.5,22.3,693,0 AMRUTANJAN,20150401,480,527.05,478.35,518.3,216407,0 AMTEKAUTO,20150401,144.5,148.45,144.2,147.45,552874,0 AMTEKINDIA,20150401,55.6,58.3,55.1,57.6,700465,0 AMTL,20150401,13.75,14.45,13.6,14.45,2111,0 ANANTRAJ,20150401,39.9,40.3,39.35,40.05,376564,0 ANDHRABANK,20150401,78.35,80.8,78.2,80.55,993038,0 ANDHRACEMT,20150401,8.85,9.3,8.75,9.1,15848,0 ANDHRSUGAR,20150401,92.05,98.95,91.55,96.15,11551,0 ANGIND,20150401,36.5,36.9,35.6,36.5,34758,0 ANIKINDS,20150401,22.95,24.05,22.95,24.05,1936,0 ANKITMETAL,20150401,2.85,3.25,2.85,3.15,29101,0 ANSALAPI,20150401,23.45,24,23.45,23.8,76723,0 ANSALHSG,20150401,29.9,29.9,28.75,29.65,7748,0 ANTGRAPHIC,20150401,0.1,0.15,0.1,0.15,23500,0 APARINDS,20150401,368.3,375.6,368.3,373.45,2719,0 APCOTEXIND,20150401,505,505,481.1,495.85,3906,0 APLAPOLLO,20150401,411.5,434,411.5,428.65,88113,0 APLLTD,20150401,458.9,464,450,454.7,72075,0 APOLLOHOSP,20150401,1351,1393.85,1351,1390,132827,0 APOLLOTYRE,20150401,169.65,175.9,169,175.2,3515274,0 APOLSINHOT,20150401,195,197,194.3,195.2,71,0 APTECHT,20150401,57.6,61,57,59.7,206475,0 ARCHIDPLY,20150401,32.95,35.8,32.5,35.35,103036,0 ARCHIES,20150401,19.05,19.4,18.8,19.25,46840,0 ARCOTECH,20150401,342.5,350,339.1,345.2,44142,0 ARIES,20150401,106.75,113.9,105,112.7,96825,0 ARIHANT,20150401,43.5,50,43.5,49.3,1647,0 AROGRANITE,20150401,61.5,62,59.55,60.15,2293,0 ARROWTEX,20150401,25.7,27.8,25.1,26.55,17431,0 ARSHIYA,20150401,39.55,41.5,39,40,69880,0 ARSSINFRA,20150401,34.65,36.5,34.6,36.3,71442,0 ARVIND,20150401,260.85,268.2,259,267.2,1169433,0 ARVINDREM,20150401,15.9,17.6,15.5,17.6,5407412,0 ASAHIINDIA,20150401,145,145,141,142.45,16240,0 ASAHISONG,20150401,113,116.7,112.15,115.85,5475,0 ASAL,20150401,45.8,45.8,38,43.95,7429,0 ASHAPURMIN,20150401,74,75.4,74,74.05,36406,0 ASHIANA,20150401,248,259,246.3,249.5,21284,0 ASHIMASYN,20150401,8.4,8.85,8.05,8.25,3253,0 ASHOKA,20150401,175.1,185.4,175.1,183.75,1319134,0 ASHOKLEY,20150401,72.7,74.75,72.7,74.05,17233199,0 ASIANHOTNR,20150401,104.45,107.8,101.1,105.15,780,0 ASIANPAINT,20150401,810,825.9,803.5,821.7,898480,0 ASIANTILES,20150401,116.25,124.4,116.25,123.05,31440,0 ASSAMCO,20150401,4.05,4.3,4.05,4.3,476091,0 ASTEC,20150401,148.5,154.5,146,149.2,322308,0 ASTRAL,20150401,447.3,451.3,435.15,448.6,64889,0 ASTRAMICRO,20150401,146.5,151.9,145.2,150.05,735681,0 ASTRAZEN,20150401,908,940.95,908,920.35,3291,0 ATFL,20150401,635,648,625.2,629.25,6202,0 ATLANTA,20150401,67.2,71,67.2,68.6,238683,0 ATLASCYCLE,20150401,203.9,210.4,203,208.05,25208,0 ATNINTER,20150401,0.2,0.2,0.2,0.2,1704,0 ATUL,20150401,1116,1160,1113,1153.05,32969,0 ATULAUTO,20150401,556.55,576.9,555.9,566.25,59117,0 AURIONPRO,20150401,192.3,224.95,191.8,217.55,115464,0 AUROPHARMA,20150401,1215,1252,1215,1247.4,1140111,0 AUSOMENT,20150401,22.6,22.6,21.7,21.7,2952,0 AUSTRAL,20150401,0.5,0.55,0.5,0.5,50407,0 AUTOAXLES,20150401,834.15,834.15,803,810.2,4054,0 AUTOIND,20150401,60,65,59.15,63.6,212036,0 AUTOLITIND,20150401,36,39,35.2,37.65,14334,0 AVTNPL,20150401,27,28,26.7,27.9,44803,0 AXISBANK,20150401,557.7,572,555.25,569.65,3753262,0 AXISCADES,20150401,335.4,345,331.4,339.65,524538,0 AXISGOLD,20150401,2473.95,2493,2461.1,2483.15,138,0 BAFNAPHARM,20150401,29.95,31.45,29.95,30.95,21136,0 BAGFILMS,20150401,3.05,3.1,2.9,3,31278,0 BAJAJ-AUTO,20150401,2027.05,2035,2002.95,2019.8,208545,0 BAJAJCORP,20150401,459,482,454,466.95,121972,0 BAJAJELEC,20150401,230,234.8,229,232.4,95432,0 BAJAJFINSV,20150401,1412,1447.5,1396,1427.55,44811,0 BAJAJHIND,20150401,14.5,14.8,14.2,14.6,671746,0 BAJAJHLDNG,20150401,1302.3,1329.85,1285.05,1299.9,24626,0 BAJFINANCE,20150401,4158,4158,4062.2,4140.05,12923,0 BALAJITELE,20150401,65.75,67.9,65.3,67.5,47063,0 BALAMINES,20150401,81.5,83.5,81.5,83.45,6674,0 BALKRISIND,20150401,649,661,640,655,16919,0 BALLARPUR,20150401,13.75,13.95,13.5,13.9,271962,0 BALMLAWRIE,20150401,568.05,580.9,562.2,576.75,17423,0 BALPHARMA,20150401,68.9,74.2,67.1,68.85,84178,0 BALRAMCHIN,20150401,50.95,50.95,49.3,50,84400,0 BANARBEADS,20150401,33,39.5,33,39.25,1077,0 BANARISUG,20150401,834.7,855,820,849.85,618,0 BANCOINDIA,20150401,105,107.5,103.25,106.8,11765,0 BANG,20150401,6.2,6.35,6.1,6.35,9639,0 BANKBARODA,20150401,162.75,170.4,162.05,168.9,2949846,0 BANKBEES,20150401,1813.45,1863,1807,1859.78,19071,0 BANKINDIA,20150401,194.6,209.8,194.05,205.75,3396490,0 BANSWRAS,20150401,65,65,60.1,63.9,6238,0 BARTRONICS,20150401,11.45,11.85,11.35,11.6,109658,0 BASF,20150401,1115,1142,1115,1124.65,14009,0 BASML,20150401,184,192,183.65,191.6,642,0 BATAINDIA,20150401,1095,1104.9,1085,1094.7,137166,0 BAYERCROP,20150401,3333,3408.3,3286.05,3304.55,8839,0 BBL,20150401,627.95,641.4,622.2,629.8,5261,0 BBTC,20150401,441,458,431.3,449.15,141334,0 BEDMUTHA,20150401,16.85,18,16.25,17.95,16412,0 BEL,20150401,3355,3595,3350,3494.2,582755,0 BEML,20150401,1100,1163.8,1086,1139.2,631231,0 BEPL,20150401,22.1,22.45,21.15,22.3,5459,0 BERGEPAINT,20150401,209.3,216.9,208.35,215.15,675963,0 BFINVEST,20150401,168.8,176.8,159.5,172.7,113352,0 BFUTILITIE,20150401,707.4,741,702.05,736.05,1048274,0 BGLOBAL,20150401,2.9,3.05,2.9,3.05,16500,0 BGRENERGY,20150401,117.35,124,117.35,122.3,207979,0 BHAGYNAGAR,20150401,17.9,17.9,16.95,17.5,1136,0 BHARATFORG,20150401,1265.05,1333.1,1265.05,1322.6,704419,0 BHARATGEAR,20150401,73.5,77.7,72.7,75.9,13730,0 BHARATRAS,20150401,810,840,800,821.4,981,0 BHARTIARTL,20150401,393.3,404.85,393.05,402.3,5494883,0 BHEL,20150401,235.8,236,229.6,230.7,3346075,0 BHUSANSTL,20150401,65.15,67.9,63.65,64,1108540,0 BIL,20150401,401.3,422,401.3,419.35,2335,0 BILENERGY,20150401,0.8,0.95,0.8,0.95,8520,0 BINANIIND,20150401,90.55,93.95,90.2,93.3,27564,0 BINDALAGRO,20150401,23.4,23.4,22.25,22.8,111558,0 BIOCON,20150401,472.5,478.85,462.7,466.05,1942983,0 BIRLACORPN,20150401,415,420,402.8,414.7,11345,0 BIRLACOT,20150401,0.05,0.1,0.05,0.1,439292,0 BIRLAERIC,20150401,52.3,54.45,52.15,53.7,9454,0 BIRLAMONEY,20150401,24.35,28.85,23.9,28.65,78710,0 BLBLIMITED,20150401,3.7,3.7,3.65,3.65,550,0 BLISSGVS,20150401,128,132.55,124.3,126.15,261958,0 BLKASHYAP,20150401,13.7,15.15,13.7,14.15,118455,0 BLUEDART,20150401,7297.35,7315,7200,7285.55,2036,0 BLUESTARCO,20150401,308.75,315,302,311.35,19046,0 BLUESTINFO,20150401,199,199.9,196.05,199.45,1268,0 BODALCHEM,20150401,34.5,34.8,33.05,34.65,65623,0 BOMDYEING,20150401,64,66.3,63.7,65.95,1168851,0 BOSCHLTD,20150401,25488,25708,25201,25570.7,16121,0 BPCL,20150401,810.95,818,796.5,804.2,1065969,0 BPL,20150401,30.55,32.5,30.55,31.75,116804,0 BRFL,20150401,146,147.9,142.45,144.3,7257,0 BRIGADE,20150401,143.8,145.15,140.25,144.05,36484,0 BRITANNIA,20150401,2155.5,2215.3,2141.35,2177.55,245908,0 BROADCAST,20150401,3.35,3.5,3.3,3.3,4298,0 BROOKS,20150401,38.4,39.5,38.4,39.3,19724,0 BSELINFRA,20150401,1.9,2.15,1.85,2.05,97575,0 BSL,20150401,29.55,31.9,27.75,31,9708,0 BSLGOLDETF,20150401,2535,2535,2501.5,2501.5,122,0 BSLIMITED,20150401,27.5,27.5,25.45,27.15,728818,0 BURNPUR,20150401,9.85,9.85,9.1,9.15,144864,0 BUTTERFLY,20150401,190.95,194,186.1,192.35,25447,0 BVCL,20150401,17.25,17.7,16.5,17.7,9993,0 CADILAHC,20150401,1755,1796.8,1737.05,1790.15,302149,0 CAIRN,20150401,213.85,215.6,211.5,213.35,841463,0 CAMLINFINE,20150401,89.5,91.4,87.5,91.1,32027,0 CANBK,20150401,366.5,383.8,365.15,381,1512605,0 CANDC,20150401,20.6,24.6,20.6,23.25,9100,0 CANFINHOME,20150401,611.1,649.95,611.1,644.7,72233,0 CANTABIL,20150401,47.6,50.5,47.6,50.25,5474,0 CAPF,20150401,398.85,427,398,421.75,224074,0 CAPLIPOINT,20150401,1020,1127.8,1020,1122.65,108731,0 CARBORUNIV,20150401,191.05,197,188.35,190,42681,0 CAREERP,20150401,151.9,156.6,149,153.25,26075,0 CARERATING,20150401,1487,1632.75,1464,1579.2,65340,0 CASTROLIND,20150401,476,476.25,465.1,467.3,185850,0 CCCL,20150401,4.2,4.7,4.2,4.65,47963,0 CCHHL,20150401,10.8,11,10.4,10.8,69325,0 CCL,20150401,178.35,185.9,176,184.3,244917,0 CEATLTD,20150401,805.25,830.8,785.75,826.7,501415,0 CEBBCO,20150401,18.3,20.25,18.1,19.85,40541,0 CELEBRITY,20150401,11.5,12.5,11.5,12.1,5169,0 CELESTIAL,20150401,59.9,61.8,59.5,60.05,128386,0 CENTENKA,20150401,152,159.9,148.2,157.1,16739,0 CENTEXT,20150401,1.5,1.5,1.2,1.25,19308,0 CENTRALBK,20150401,106,107.2,104.3,106.3,992782,0 CENTUM,20150401,756.85,805,756.8,801.9,26848,0 CENTURYPLY,20150401,234,245,234,243.45,367540,0 CENTURYTEX,20150401,633.6,682.4,631,675.35,3619413,0 CERA,20150401,2524.75,2524.75,2470,2495.3,6053,0 CEREBRAINT,20150401,15.6,16.2,14.65,14.8,348478,0 CESC,20150401,604.95,613.4,595.4,609.75,294334,0 CGCL,20150401,173,173,173,173,9,0 CHAMBLFERT,20150401,70.2,73.4,70.2,72.65,2475030,0 CHEMFALKAL,20150401,72.8,77,72,76.3,1334,0 CHENNPETRO,20150401,69,70.35,68.3,68.95,160576,0 CHESLINTEX,20150401,10.1,10.1,8.75,9.4,1668,0 CHOLAFIN,20150401,599.85,604,582.15,598.2,23125,0 CHROMATIC,20150401,3.4,4.05,3,3.3,63493,0 CIGNITITEC,20150401,433,444.95,432,440,32923,0 CIMMCO,20150401,92,94.05,91,94.05,19931,0 CINELINE,20150401,14.5,14.95,14.5,14.9,4654,0 CINEVISTA,20150401,3.3,3.3,3.3,3.3,10,0 CIPLA,20150401,714,716.5,703.85,709.6,1693796,0 CLASSIC,20150401,1.5,1.55,1.45,1.45,7770,0 CLNINDIA,20150401,824.7,837.9,819,828.8,6754,0 CLUTCHAUTO,20150401,13.75,13.75,13.6,13.6,1414,0 CMAHENDRA,20150401,9.35,9.5,8.9,9.15,1005172,0 CMC,20150401,1925.85,1925.85,1891,1907.25,153068,0 CNOVAPETRO,20150401,20,22.75,17.1,22.75,1656,0 COALINDIA,20150401,362.9,364.25,358,363,1428949,0 COLPAL,20150401,2003.4,2009.9,1990.05,2002.5,92909,0 COMPUSOFT,20150401,9.4,10.05,9,9.7,15083,0 CONCOR,20150401,1582.35,1627.3,1561,1582.85,182280,0 CONSOFINVT,20150401,36.55,40,36.5,40,439,0 CORDSCABLE,20150401,25.55,28,24.1,25.8,15651,0 COREEDUTEC,20150401,8,8.85,7.6,8.4,890455,0 COROMANDEL,20150401,268.5,271.35,266.15,268.35,42173,0 CORPBANK,20150401,52.5,55,52.05,54.1,1141752,0 COSMOFILMS,20150401,76.9,80,76.2,79.25,21020,0 COUNCODOS,20150401,1.2,1.2,1.2,1.2,2850,0 COX&KINGS,20150401,323,324.85,316.5,317.8,76998,0 CPSEETF,20150401,24.2,24.37,24.08,24.34,180315,0 CREATIVEYE,20150401,3.4,3.6,2.8,3.45,8545,0 CRISIL,20150401,2049,2052.45,2000,2030.7,3928,0 CROMPGREAV,20150401,164.85,167.4,163.2,166.1,2739478,0 CTE,20150401,18.55,18.55,16.85,17.05,8260,0 CUB,20150401,97.35,98.75,96.4,98.3,182702,0 CUMMINSIND,20150401,879,900.95,874.75,889.9,358652,0 CURATECH,20150401,10.8,11,9.75,10,755,0 CYBERTECH,20150401,28.5,33.45,28.1,33.4,103549,0 CYIENT,20150401,509.9,515,495.1,514.1,30415,0 DAAWAT,20150401,105,112.25,99.5,108.4,26689,0 DABUR,20150401,266.5,268.5,264.65,266.55,642177,0 DALMIABHA,20150401,428.15,439.9,422.5,432.65,9751,0 DALMIASUG,20150401,17.5,17.5,16.45,17.15,12660,0 DATAMATICS,20150401,66.5,75,66,72.15,119054,0 DBCORP,20150401,378,378,362.6,369.45,8799,0 DBREALTY,20150401,67,67.15,65.8,66.3,212297,0 DBSTOCKBRO,20150401,47.6,47.65,47.45,47.55,24170,0 DCBBANK,20150401,110.95,114.95,110.15,114.45,935858,0 DCM,20150401,84.5,88.75,84.1,87,34747,0 DCMSHRIRAM,20150401,107.95,114.3,107.95,112.8,29474,0 DCW,20150401,16.75,17.2,16.65,17.15,270502,0 DECCANCE,20150401,310.05,323.9,310.05,321.55,446,0 DECOLIGHT,20150401,1.45,1.45,1.4,1.4,1100,0 DEEPAKFERT,20150401,140,144,138.25,139.95,162156,0 DEEPAKNTR,20150401,68,70.65,66.4,69.95,8349,0 DEEPIND,20150401,46.6,54.4,46.3,51.9,52130,0 DELTACORP,20150401,79.95,82.75,79.75,82.35,889247,0 DELTAMAGNT,20150401,36.6,37.45,36.6,37.45,60,0 DEN,20150401,121.45,127,121.2,122.4,59512,0 DENABANK,20150401,50.8,51.5,50.1,51.35,376680,0 DENORA,20150401,136.7,136.7,131.05,133.6,743,0 DHAMPURSUG,20150401,36.8,36.95,34.85,36.35,38083,0 DHANBANK,20150401,30.8,32.1,30.5,31.75,195779,0 DHANUKA,20150401,690,690,652,660.15,24958,0 DHARSUGAR,20150401,14.15,14.7,13.8,14.45,1748,0 DHFL,20150401,468.9,474.9,461.6,467.85,448551,0 DHUNINV,20150401,97.15,103,94.5,99.85,15275,0 DIAPOWER,20150401,44.9,45.95,43.3,45.55,126085,0 DICIND,20150401,343,347,341,341.95,7745,0 DIGJAM,20150401,8,8.15,7.75,8.05,96467,0 DISHMAN,20150401,168,172.65,164.7,171.8,778414,0 DISHTV,20150401,82.2,84.85,81.35,84.15,5845850,0 DIVISLAB,20150401,1770.1,1809,1770.1,1802.35,68003,0 DLF,20150401,157,160.9,156.2,159.7,3098216,0 DLINKINDIA,20150401,165.05,168,162.2,164.75,22444,0 DOLPHINOFF,20150401,120.8,134.4,119.5,130.2,190716,0 DONEAR,20150401,15,15.95,14.5,15.35,679,0 DPL,20150401,46.6,49,44,45.45,25444,0 DPSCLTD,20150401,17.15,17.15,16.55,16.85,916,0 DQE,20150401,24.3,24.8,22.75,23.1,57807,0 DRDATSONS,20150401,5.8,6.1,5.7,6,2191357,0 DREDGECORP,20150401,374.9,403,372.65,393.4,106853,0 DRREDDY,20150401,3541,3566.8,3501.7,3533.65,282785,0 DSKULKARNI,20150401,77.6,77.6,74,77.1,3012,0 DSSL,20150401,9.5,9.5,9.5,9.5,50,0 DTIL,20150401,206.95,231.75,205.95,219.05,1437,0 DUNCANSLTD,20150401,15.55,16.3,15.3,15.85,740,0 DWARKESH,20150401,21,21,19.85,20.7,9410,0 DYNAMATECH,20150401,3868,4233,3857.1,3920.55,59412,0 DYNATECH,20150401,2.85,3,2.85,3,3002,0 EASTSILK,20150401,1.55,1.85,1.55,1.75,9437,0 EASUNREYRL,20150401,40.05,43,40.05,42.55,21925,0 ECEIND,20150401,136,148,127,133.85,43034,0 ECLERX,20150401,1603.8,1697,1595,1600.65,123468,0 EDELWEISS,20150401,63.65,67.5,63,66.6,451255,0 EDL,20150401,23.9,25,23.9,24.4,7799,0 EDUCOMP,20150401,12.45,13.55,12.35,13.55,499009,0 EICHERMOT,20150401,15929,16196.95,15830.05,16019.5,45879,0 EIDPARRY,20150401,174.05,175.8,168.65,171.2,56813,0 EIHAHOTELS,20150401,228,232.8,225,228,85,0 EIHOTEL,20150401,107.25,110,107.25,109.5,57306,0 EIMCOELECO,20150401,399,409.5,399,409.5,184,0 EKC,20150401,9.35,11.15,9.35,11.05,350782,0 ELAND,20150401,14.3,16.45,14.3,16.25,191406,0 ELDERPHARM,20150401,90.5,91.5,89.45,91.5,23450,0 ELECON,20150401,66.5,76.2,66.25,74.45,6045416,0 ELECTCAST,20150401,19.8,20.55,18.9,19.4,1956889,0 ELECTHERM,20150401,25.9,25.9,22.2,24,14611,0 ELGIEQUIP,20150401,147.5,150.4,146.4,150,9475,0 .... ZENITH, 20150401,...
I use EdChum code from his comment and add some clarification. I think the main problem is d is output dataframe d cannot be looped in cycle for, if you need one output from all *.txt files. import pandas as pd import glob def get_historical_closes(ticker, start_date, end_date): dfs = [] #create empty df for output d = pd.DataFrame() #glob can use path with *.txt - see http://stackoverflow.com/a/3215392/2901002 for files in glob.glob('/home/manish/Desktop/Equity/subset/*.txt'): #added index_col for multiindex df dfs.append(pd.read_csv(files, index_col=['Date', 'Ticker', 'Close'], names = ['Ticker', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Null'], parse_dates = [1])) p = pd.concat(dfs) #d is output from all .txt files, so cannot be looped in cycle for d = p.reset_index(['Date', 'Ticker', 'Close']) d = d[(d['Ticker'].isin(ticker)) & (d['Date'] > start_date) & (d['Date'] < end_date)] pivoted = d.pivot_table(index = ['Date'], columns =['Ticker']) pivoted.columns = pivoted.columns.droplevel(0) return pivoted #function isin need list of columns, so 'or' can be replaced by ',' #arguments are changed for testing: 'HDFC' to 'AGCNET' and end_date '2014-12-31' to '2015-12-31' closes = get_historical_closes(['LT','AGCNET','ACC'], '1999-01-01', '2015-12-31') print closes