How to strip a 2d array in python? - python

For editors: this is NOT stripping all strings in an array but stripping the array itself
So suppose i have an array like this:
[[0, 1, 8, 4, 0, 0],
[1, 2, 3, 0, 0, 0],
[3, 2, 3, 0, 5, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]]
I want a function stripArray(0, array) where the first argument is the "empty" value. After applying this function i want the returned array to look like this:
[[0, 1, 8, 4, 0],
[1, 2, 3, 0, 0],
[3, 2, 3, 0, 5]]
Values that were marked as empty (in this case 0) were stripped from the right and bottom sides. How would I go about implementing such a function?
In the real case where I want to use it in the array instead of numbers there are dictionaries.

It is better to do this vectorized
import numpy as np
arr = np.array([[0, 1, 8, 4, 0, 0],
[1, 2, 3, 0, 0, 0],
[3, 2, 3, 0, 5, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])
def stripArray(e, arr):
return arr[(arr!=e).any(axis = 1), :][:, (arr!=e).any(axis = 0)]
stripArray(0, arr)
array([[0, 1, 8, 4, 0],
[1, 2, 3, 0, 0],
[3, 2, 3, 0, 5]])

Here is an answer which doesnt need numpy:
from typing import List, Any
def all_value(value: Any, arr: List[float]) -> bool:
return all(map(lambda x: x==value, arr))
def transpose_array(arr: List[List[float]]) -> List[List[float]]:
return list(map(list, zip(*arr)))
def strip_array(value: Any, arr: List[List[float]]) -> List[List[float]]:
# delete empty rows
arr = [row for row in arr if not all_value(value, row)]
#transpose and delete empty columns
arr = transpose_array(arr)
arr = [col for col in arr if not all_value(value, col)]
#transpose back
arr = transpose_array(arr)
return arr
test = [[0, 1, 8, 4, 0, 0],
[1, 2, 3, 0, 0, 0],
[3, 2, 3, 0, 5, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]]
result = strip_array(0, test)
Output:
result
[[0, 1, 8, 4, 0],
[1, 2, 3, 0, 0],
[3, 2, 3, 0, 5]]

Code:
def strip_array(array, empty_val=0):
num_bad_columns = 0
while np.all(array[:, -(num_bad_columns+1)] == 0):
num_bad_columns += 1
array = array[:, :(-num_bad_columns)]
num_bad_rows = 0
while np.all(array[-(num_bad_rows+1), :] == 0):
num_bad_rows += 1
array = array[:(-num_bad_rows), :]
return array
array = np.array(
[[0, 1, 8, 4, 0, 0],
[1, 2, 3, 0, 0, 0],
[3, 2, 3, 0, 5, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]]
)
print(array)
print(strip_array(array, 0))
Output:
[[0 1 8 4 0 0]
[1 2 3 0 0 0]
[3 2 3 0 5 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]]
[[0 1 8 4 0]
[1 2 3 0 0]
[3 2 3 0 5]]

try using np.delete to remove unwanted rows or columns
data=[[0, 1, 8, 4, 0, 0],
[1, 2, 3, 0, 0, 0],
[3, 2, 3, 0, 5, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]]
def drop_row(data):
lstIdx=[]
for i in range(len(data)):
count=0
for j in range(len(data[i])):
if data[i][j] == 0:
count+=1
if count==len(data[i]):
print("row zero")
lstIdx.append(i)
#for i in lstIdx:
data=np.delete(data,lstIdx,axis=0)
return data
def drop_column(data):
lstIdx=[]
if len(data)==0:
return data
for j in range(len(data[0])):
count=0
for i in range(len(data)):
if data[i][j] == 0:
count+=1
if count==len(data):
print("column zero")
lstIdx.append(j)
data=np.delete(data,lstIdx,axis=1)
return data
data=drop_row(data)
data=drop_column(data)
print(data)
output:
[[0 1 8 4 0]
[1 2 3 0 0]
[3 2 3 0 5]]

Related

How access odd index elements and even index elements and merge them vertically

I've started learning numpy since yesterday.
my AIM is
Extract odd index elements from numpy array & even index elements from numpy and merge side by side vertically.
Let's say I have the array
mat = np.array([[1, 1, 0, 0, 0],
[0, 1, 0, 0, 1],
[1, 0, 0, 1, 1],
[0, 0, 0, 0, 0],
[1, 0, 1, 0, 1]])
What I've tried.
-->I've done transposing as I've to merge side by by side vertically.
mat = np.transpose(mat)
Which gives me
[[1 0 1 0 1]
[1 1 0 0 0]
[0 0 0 0 1]
[0 0 1 0 0]
[0 1 1 0 1]]
I've tried accessing odd index elements
odd = mat[1::2] print(odd)
Gives me
[[1 1 0 0 0] ----> wrong...should be [0,1,0,0,1] right? I'm confused
[0 0 1 0 0]] --->wrong...Should be [0,0,0,0,0] right? Where these are coming from?
My final output should like like
[[0 0 1 1 1]
[1 0 1 0 0]
[0 0 0 0 1]
[0 0 0 1 0]
[1 0 0 1 1]]
Type - np.nd array
Looks like you want:
mat[np.r_[1:mat.shape[0]:2,:mat.shape[0]:2]].T
Output:
array([[0, 0, 1, 1, 1],
[1, 0, 1, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, 0, 1, 0],
[1, 0, 0, 1, 1]])
Intermediate:
np.r_[1:mat.shape[0]:2,:mat.shape[0]:2]
output: array([1, 3, 0, 2, 4])
While the selection of rows is straight forward, there are various ways of combining them.
In [244]: mat = np.array([[1, 1, 0, 0, 0],
...: [0, 1, 0, 0, 1],
...: [1, 0, 0, 1, 1],
...: [0, 0, 0, 0, 0],
...: [1, 0, 1, 0, 1]])
The odd rows:
In [245]: mat[1::2,:] # or mat[1::2]
Out[245]:
array([[0, 1, 0, 0, 1],
[0, 0, 0, 0, 0]])
The even rows:
In [246]: mat[0::2,:]
Out[246]:
array([[1, 1, 0, 0, 0],
[1, 0, 0, 1, 1],
[1, 0, 1, 0, 1]])
Joining the rows verticallly (np.vstack can also be used):
In [247]: np.concatenate((mat[1::2,:], mat[0::2,:]), axis=0)
Out[247]:
array([[0, 1, 0, 0, 1],
[0, 0, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 0, 0, 1, 1],
[1, 0, 1, 0, 1]])
But since you want columns - tranpose:
In [248]: np.concatenate((mat[1::2,:], mat[0::2,:]), axis=0).transpose()
Out[248]:
array([[0, 0, 1, 1, 1],
[1, 0, 1, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, 0, 1, 0],
[1, 0, 0, 1, 1]])
We could transpose the selections first:
np.concatenate((mat[1::2,:].T, mat[0::2,:].T), axis=1)
or transpose before indexing (note the change in the ':' slice position):
np.concatenate((mat.T[:,1::2], mat.T[:,0::2]), axis=1)
The r_ in the other answer converts the slices into arrays and concatenates them, to make one row indexing array. That's equally valid.
So here alternate is the logic you can use.
1. convert array to list
2. Access nested list items based on mat[1::2] - odd & mat[::2] for even
3. concat them using np.concat at `axis =0` vertically.
4. Transpose them.
Implementaion.
mat = np.array([[1, 1, 0, 0, 0],
[0, 1, 0, 0, 1],
[1, 0, 0, 1, 1],
[0, 0, 0, 0, 0],
[1, 0, 1, 0, 1]])
mat_list = mat.tolist() ##############Optional
l_odd = mat_list[1::2]
l_even= mat_list[::2]
mask = np.concatenate((l_odd, l_even), axis=0)
mask = np.transpose(mask)
print(mask)
output #
[[0 0 1 1 1]
[1 0 1 0 0]
[0 0 0 0 1]
[0 0 0 1 0]
[1 0 0 1 1]]
Checking Type
print(type(mask))
Gives
<class 'numpy.ndarray'>

Python Numpy stack 2d arrays in vector

So, I would like to stack couple 2d arrays to vector so it would look like this:
[[[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]]
[[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]]
[[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]]]
I can make smth like this:
import numpy as np
a = np.zeros((5, 5), dtype=int)
b = np.zeros((5, 5), dtype=int)
c = np.stack((a, b), 0)
print(c)
To get this:
[[[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]]
[[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]]]
But I cant figure out how to add third 2d array to such vector or how to create such vector of 2d arrays iteratively in a loop. Append, stack, concat just dont keep the needed shape
So, any suggestions?
Thank you!
Conclusion:
Thanks to Tom and Mozway we've got two answers
Tom's:
data_x_train = x_train[np.where((y_train==0) | (y_train==1))
Mozway's:
out = np.empty((0,5,5))
while condition:
# get new array
a = XXX
out = np.r_[out, a[None]]
out
Assuming the following arrays:
a = np.ones((5, 5), dtype=int)
b = np.ones((5, 5), dtype=int)*2
c = np.ones((5, 5), dtype=int)*3
You can stack all at once using:
np.stack((a, b, c), 0)
If you really need to add the arrays iteratively, you can use np.r_:
out = a[None]
for i in (b,c):
out = np.r_[out, i[None]]
output:
array([[[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1]],
[[2, 2, 2, 2, 2],
[2, 2, 2, 2, 2],
[2, 2, 2, 2, 2],
[2, 2, 2, 2, 2],
[2, 2, 2, 2, 2]],
[[3, 3, 3, 3, 3],
[3, 3, 3, 3, 3],
[3, 3, 3, 3, 3],
[3, 3, 3, 3, 3],
[3, 3, 3, 3, 3]]])
edit: if you do not know the arrays in advance
out = np.empty((0,5,5))
while condition:
# get new array
a = XXX
out = np.r_[out, a[None]]
out
Do you mean something like:
np.tile(a, (3, 1, 1))
array([[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]])
Edit:
Do you mean something like:
test = np.tile(a, (3000, 1, 1))
filtered_subset = test[[1, 10, 100], :, :]
array([[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]])

Move unique values across different dimensions

I have a requirement where I want to convert a 2D matrix to 3D by separating 3 unique values across 3 dimensions.
For Example:
convert
A = [1 2 3 3
1 1 2 1
3 2 2 3
1 3 3 2]
to
A = [[1 0 0 0
1 1 0 1
0 0 0 0
1 0 0 0]
[0 1 0 0
0 0 1 0
0 1 1 0
0 0 0 1]
[0 0 1 1
0 0 0 0
1 0 0 1
0 1 1 0]]
Pardon me if the syntax of matrix representation is not correct.
Use broadcasting with outer-equality for a vectorized solution -
# Input array
In [8]: A
Out[8]:
array([[1, 2, 3, 3],
[1, 1, 2, 1],
[3, 2, 2, 3],
[1, 3, 3, 2]])
In [11]: np.equal.outer(np.unique(A),A).view('i1')
Out[11]:
array([[[1, 0, 0, 0],
[1, 1, 0, 1],
[0, 0, 0, 0],
[1, 0, 0, 0]],
[[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 1, 1, 0],
[0, 0, 0, 1]],
[[0, 0, 1, 1],
[0, 0, 0, 0],
[1, 0, 0, 1],
[0, 1, 1, 0]]], dtype=int8)
To use the explicit dimension-extension + comparison, it would be :
(A == np.unique(A)[:,None,None]).view('i1')
You can use np.unique and take advantage of boolean arrays and cast them to int using numpy.ndarray.astype.
import numpy as np
a=np.array([[1, 2, 3, 3], [1, 1, 2, 1], [3, 2, 2, 3], [1, 3, 3, 2]])
[a==i.astype(int) for i in np.unique(a)]
Output:
[array([[1, 0, 0, 0],
[1, 1, 0, 1],
[0, 0, 0, 0],
[1, 0, 0, 0]]),
array([[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 1, 1, 0],
[0, 0, 0, 1]]),
array([[0, 0, 1, 1],
[0, 0, 0, 0],
[1, 0, 0, 1],
[0, 1, 1, 0]])]
EDIT: Ch3steR's answer is better
A = np.array([[1,2,3,3], [1,1,2,1], [3,2,2,3], [1,3,3,2]])
unique_values = np.unique(A)
B = np.array([np.zeros_like(A) for i in range(len(unique_values))])
for idx, value in enumerate(unique_values):
B[idx][A == value] = 1

How to transform 1D list of values to 2D grid of 0's and 1's in python [duplicate]

This question already has answers here:
How can I one hot encode in Python?
(22 answers)
Closed 3 years ago.
I would like to take a list of values and transform them to a table (2D-list) of 0's and 1's, with one column for each unique number in the source list and an equal number of rows to the original. Each row will have a 1 if that column index matches the original value-1.
I have code that accomplishes this task, but I'm wondering if there is a better/faster way to do it. (The actual dataset has millions of entries vs. the simplified set below)
Sample Input:
value_list = [1, 2, 1, 3, 6, 5, 4, 3]
Desired output:
output_table = [[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0]]
Current Solution:
value_list = [1, 2, 1, 3, 6, 5, 4, 3]
max_val = max(value_list)
# initialize to table of 0's
a = [([0] * max_val) for i in range(len(value_list))]
# overwrite with 1's where required
for i in range(len(value_list)):
j = value_list[i] - 1
a[i][j] = 1
print(f'a = ')
for row in a:
print(f'{row}')
You can do:
import numpy as np
value_list = [1, 2, 1, 3, 6, 5, 4, 3]
# create matrix of zeros
x = np.zeros(shape=(len(value_list), max(value_list)), dtype='int')
for i,v in enumerate(value_list):
x[i,v-1] = 1
print(x)
Output:
[[1 0 0 0 0 0]
[0 1 0 0 0 0]
[1 0 0 0 0 0]
[0 0 1 0 0 0]
[0 0 0 0 0 1]
[0 0 0 0 1 0]
[0 0 0 1 0 0]
[0 0 1 0 0 0]]
You can try this:
dummy_list = [0]*6
output_table = [dummy_list[:i-1] + [1] + dummy_list[i:] for i in value_list]
Output:
output_table = [[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0]]

Combining arrays to yield a new collective array

I have three (n,n) arrays that I need to combine in a very specific way, in order to yield n*n new arrays, that have to be combined into one big array.
I essentially need to take one element from each array and create a new (3,3) array, wherein the diagonal is the three elements (the rest is empty) and then combine these new arrays into one.
It's a bit difficult to explain properly. I've attempted to give an example below which hopefully gives an idea of what I'm trying to do.
Example: Given three (2,3) arrays:
a = np.array([[2,5,9], [7,2,4]])
b = np.array([[3,6,2], [1,6,8]])
c = np.array([[8,7,4], [9,3,1]])
create six arrays with the elements from a, b, and c as the diagonals:
T1 = ([[ 2, 0, 0],
[ 0, 3, 0],
[ 0, 0, 8]])
T2 = ([[ 5, 0, 0],
[ 0, 6, 0],
[ 0, 0, 7]])
T3 = ([[ 9, 0, 0],
[ 0, 2, 0],
[ 0, 0, 4]])
T4 = ([[ 7, 0, 0],
[ 0, 1, 0],
[ 0, 0, 9]])
T5 = ([[ 2, 0, 0],
[ 0, 6, 0],
[ 0, 0, 3])
T6 = ([[ 4, 0, 0],
[ 0, 8, 0],
[ 0, 0, 1]])
combine the six arrays to yield
array([[ 2, 0, 0, 5, 0, 0, 9, 0, 0],
[ 0, 3, 0, 0, 6, 0, 0, 2, 0],
[ 0, 0, 8, 0, 0, 7, 0, 0, 4],
[ 7, 0, 0, 2, 0, 0, 4, 0, 0],
[ 0, 1, 0, 0, 6, 0, 0, 8, 0],
[ 0, 0, 9, 0, 0, 3, 0, 0, 1]])
as in
array([[ T1, T2, T3],
[ T4, T5, T6]])
*The six arrays are not needed in themselves as separate arrays, only the final array is needed. I've just chosen this route as it makes it a bit more apparent what the final one consists of.
It can be done with einsum:
ABC = np.array((a,b,c))
i,j,k = ABC.shape
out = np.zeros((i*j,i*k),ABC.dtype)
np.einsum("jiki->ijk",out.reshape(j,i,k,i))[...] = ABC
out
# array([[2, 0, 0, 5, 0, 0, 9, 0, 0],
# [0, 3, 0, 0, 6, 0, 0, 2, 0],
# [0, 0, 8, 0, 0, 7, 0, 0, 4],
# [7, 0, 0, 2, 0, 0, 4, 0, 0],
# [0, 1, 0, 0, 6, 0, 0, 8, 0],
# [0, 0, 9, 0, 0, 3, 0, 0, 1]])
Explanation:
What does the reshape do?
axis 2 (size k)
/-----------------------\
axis 3 (size i)
/-----\ /-----\ /-----\
a s / a s / [[2, 0, 0, 5, 0, 0, 9, 0, 0],
x i | x i | [0, 3, 0, 0, 6, 0, 0, 2, 0],
i z | i z \ [0, 0, 8, 0, 0, 7, 0, 0, 4],
s e | s e / [7, 0, 0, 2, 0, 0, 4, 0, 0],
| | [0, 1, 0, 0, 6, 0, 0, 8, 0],
0 j \ 1 i \ [0, 0, 9, 0, 0, 3, 0, 0, 1]]
It isolates the 3x3 diagonal matrices into axes 1,3.
What does einsum do here?
It maps the axes of the reshaped out to those of ABC;
"jiki->ijk" means that axis 0 ("j") maps to axis 1, axes 1 and 3 ("i") map to axis 0, and axis 2 ("k") maps to axis 2.
Mapping two axes to one (as with "i") has the special meaning of taking the diagonal.
einsum creates a writeable view, so all that's left to do is assigning ABC to that.
Note: that we use the same letters i,j,k for the shape and for the einsum spec doesn't syntactically mean anything, it just makes the thing a lot more readable.
We can combine the 3 arrays with stack (or np.array):
In [65]: a = np.array([[2,5,9], [7,2,4]])
...: b = np.array([[3,6,2], [1,6,8]])
...: c = np.array([[8,7,4], [9,3,1]])
In [66]: abc = np.stack((a,b,c))
In [67]: abc.shape
Out[67]: (3, 2, 3)
One 'column' of abc is one of your diagonals:
In [68]: abc[:,0,0]
Out[68]: array([2, 3, 8])
Make a target array to hold all 6 diagonals:
In [69]: TT = np.zeros((6,3,3),int)
We can then set one diagonal with:
In [70]: idx=np.arange(3)
In [71]: TT[0,idx,idx] = abc[:,0,0]
In [72]: TT
Out[72]:
array([[[2, 0, 0],
[0, 3, 0],
[0, 0, 8]],
...
To set all 6 we need an array that matches this shape:
In [74]: TT[:,idx,idx].shape
Out[74]: (6, 3)
Reshape abc. The result is (3,6). Transpose to make a (6,3):
In [75]: abc.reshape(3,6)
Out[75]:
array([[2, 5, 9, 7, 2, 4],
[3, 6, 2, 1, 6, 8],
[8, 7, 4, 9, 3, 1]])
In [76]: TT[:,idx,idx] = abc.reshape(3,6).T
In [77]: TT
Out[77]:
array([[[2, 0, 0],
[0, 3, 0],
[0, 0, 8]],
[[5, 0, 0],
[0, 6, 0],
[0, 0, 7]],
[[9, 0, 0],
[0, 2, 0],
[0, 0, 4]],
[[7, 0, 0],
[0, 1, 0],
[0, 0, 9]],
[[2, 0, 0],
[0, 6, 0],
[0, 0, 3]],
[[4, 0, 0],
[0, 8, 0],
[0, 0, 1]]])
Rearrange elements with reshapes and transpose:
In [82]: TT.reshape(2,3,3,3).transpose(0,2,1,3).reshape(6,9)
Out[82]:
array([[2, 0, 0, 5, 0, 0, 9, 0, 0],
[0, 3, 0, 0, 6, 0, 0, 2, 0],
[0, 0, 8, 0, 0, 7, 0, 0, 4],
[7, 0, 0, 2, 0, 0, 4, 0, 0],
[0, 1, 0, 0, 6, 0, 0, 8, 0],
[0, 0, 9, 0, 0, 3, 0, 0, 1]])
I came up that, step by step. You may want to recreate those steps for yourself. I won't take up the space here.
There may be more direct ways of creating this, but I think the steps are instructive.
Here is one way to do that with advanced indexing:
import numpy as np
a = np.array([[2, 5, 9], [7, 2, 4]])
b = np.array([[3, 6, 2], [1, 6, 8]])
c = np.array([[8, 7, 4], [9, 3, 1]])
# Put all input arrays together
abc = np.stack([a, b, c])
# Works with any shape and number of arrays
n, r, c = abc.shape
# Row and column index grid
ii, jj = np.ogrid[:r, :c]
# Shift row and column indices over submatrices of result
idx = np.arange(n)[:, np.newaxis, np.newaxis]
row_idx = ii * n + idx
col_idx = jj * n + idx
# Broadcast indices
row_idx, col_idx = np.broadcast_arrays(row_idx, col_idx)
# Make output
out = np.zeros((n * r, n * c), abc.dtype)
out[row_idx, col_idx] = abc
print(out)
# [[2 0 0 5 0 0 9 0 0]
# [0 3 0 0 6 0 0 2 0]
# [0 0 8 0 0 7 0 0 4]
# [7 0 0 2 0 0 4 0 0]
# [0 1 0 0 6 0 0 8 0]
# [0 0 9 0 0 3 0 0 1]]
I am unsure as to why you would need to do this, but I believe that I have answered your question anyway. The code is roughly commented, and the variable names are slightly odd, however, it does what you wanted it to do and it does it in the way you suggested above. The code is not very efficient or fast, though it could be cleaned up and made much faster. It takes the arrays you want to convert into the larger output array, makes them the diagonals of 6 3x3 arrays, and then inserts them into the required spot in the output array.
# Import numpy
import numpy as np
# Create your arrays
a = np.array([[2,5,9], [7,2,4]])
b = np.array([[3,6,2], [1,6,8]])
c = np.array([[8,7,4], [9,3,1]])
# Make them into a list
abc = []
abc.append(a)
abc.append(b)
abc.append(c)
# Create an array that will contain T1, T2, ...
arrays = []
for i in range(6):
arr = np.ndarray(shape=(3, 3))
# Fill the array with zeros
for x in range(3):
for y in range(3):
arr[x][y] = 0
for j in range(3):
arr[j][j] = abc[j][0 if i < 3 else 1][i % 3]
arrays.append(arr)
# Combine the arrays into one, in the way specified
bigarr = np.ndarray(shape=(6, 9))
offsetX = 0
offsetY = 0
arr = 0
# Loop over all of the arrays (T1, T2, etc.)
for arr in range(6):
for i in range(3):
for j in range(3):
bigarr[i + offsetX][j + offsetY] = arrays[arr][i][j]
# Offset the place the arrays will be inserted
offsetY += 3
if offsetY >= 9:
offsetY = 0
offsetX += 3
# The final output is bigarr
print(bigarr)
I hope this answers your question, and if not helps you find another answer.

Categories