Related
I have an image where I'm trying to export and do transform as rectangle (no matter in base photo). I have done with finding largest contour in image using mask (trained in pytorch). In variable pr_mask I have stored mask from network. After that from that mask I can get extract contours of my image. So from this image:
I can extract contours like this:
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),5)
canny = cv2.Canny(blur, 30, 80, 3)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9,9))
flag, thresh = cv2.threshold(canny, 80, 255, cv2.THRESH_BINARY)
kernel = np.ones((10,10),np.uint8)
dilation = cv2.dilate(canny,kernel,iterations = 1)
ret,thresh = cv2.threshold(dilation, 200, 255, 0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
After that I fetch largest contour and then trying to extract contours:
approx = np.ones((10,10),np.uint8)
d = 0
while (len(approx)>4):
d=d+1
approx = cv2.approxPolyDP(largestcontour,d, True)
cv2.drawContours(imagebase, [largestcontour], -1, (0,255,0), 3)
hull = []
hull.append(cv2.convexHull(largestcontour, False))
cv2.drawContours(imagebase, hull, -1, (0,0,255), 3)
After that I get tthis result:
Is it possible to extract square (rectangle) which will transform my image to exact square without rounded corners and to fit whole image?
I'm trying to find a way how to solve this "perspective" issue and align element to specific position. My image is taken by cameras, so it can be in different positions, where boundingRectangle will not work ... any suggestions?
I'm trying to extract the dots that form an ellipse then draw it . But because of some points that can be considered as outliers, I got an invalid mask of ellipse. Like this:
Here is the code that I'm executing, but it always selects the outlier
`cv2.rectangle(cleanedpartiallyimage, (0, 0), (1200, 10), (0, 0, 0), -1)
cv2.rectangle(cleanedpartiallyimage, (0, 0), (47, 1200), (0, 0, 0), -1)
image = cv2.cvtColor(cleanedpartiallyimage, cv2.COLOR_BGR2HSV) lower = np.array([85, 0, 20], dtype="uint8")
upper = np.array([95, 255, 255], dtype="uint8") mygray = cv2.inRange(image, lower, upper)
#--- Gaussian and Canny filters to make it easy to get the contours
blurred = cv2.GaussianBlur(mygray, (5, 5), 0) imageCanny = cv2.Canny(blurred, 0, 100, 0)
ret,th = cv2.threshold(imageCanny,127,255, 0)
#--- Find all the contours in the binary image ---
contours,hierarchy = cv2.findContours(th,3,1)
cnt = contours big_contour = [] max = 0 for i in cnt:
area = cv2.contourArea(i) #--- find the contour having biggest area ---
if(area > max): max = area big_contour = i
final = cv2.drawContours(imageCanny, big_contour, -1, (0,255,0), 3)
actualcontours, hierarchy = cv2.findContours(final, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
#---Removing side contour points
actualcontours = getactualcontours(actualcontours, 60)
empty = np.zeros((image.shape[0], image.shape[1], 3), np.uint8)
#---Removes linear contour points
ConvexHullPoints = contoursConvexHull(actualcontours)
#---Converts the points to Ellipse using fitEllipse
test41 = cv2.polylines(empty, [ConvexHullPoints], True, (255, 255, 255), 3)
imageCannyee = cv2.Canny(test41, 0, 100, 0)
contours, hierarchy = cv2.findContours(imageCannyee, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
for cont in contours:
if len(cont) < 20:
break
elps = cv2.fitEllipse(cont)
anotherempty = np.zeros((image.shape[0], image.shape[1], 3), np.uint8)
#---Drawing the ellipse into the empty mask
cv2.ellipse(anotherempty, elps, (255, 255, 255), 2) plt.imshow(anotherempty)
Here's a simple approach:
Obtain binary image. We load the image, convert to grayscale, Gaussian blur, then Otsu's threshold to obtain a binary image.
Dilate to form single contour. Next we create an elliptical shaped kernel using cv2.getStructuringElement with the cv2.MORPH_ELLIPSE parameter and dilate to combine small individual contours into a single large contour.
Identify ellipse. Next we find contours, filter using contour area and then detect the ellipse with cv2.fitEllipse().
import cv2
# Load image, grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# Dilate with elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
dilate = cv2.dilate(thresh, kernel, iterations=2)
# Find contours, filter using contour threshold area, draw ellipse
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
area = cv2.contourArea(c)
if area > 5000:
ellipse = cv2.fitEllipse(c)
cv2.ellipse(image, ellipse, (36,255,12), 2)
cv2.imshow('thresh', thresh)
cv2.imshow('dilate', dilate)
cv2.imshow('image', image)
cv2.waitKey()
I'm trying to detect and draw a rectangular contour on every painting on for example this image:
I followed some guides and did the following:
Grayscale conversion
Applied median blur
Sharpen image
Applied adaptive Threshold
Applied Morphological Gradient
Find contours
Draw contours
And got the following result:
I know it's messy but is there a way to somehow detect and draw a contour around the paintings better?
Here is the code I used:
path = '<PATH TO THE PICTURE>'
#reading in and showing original image
image = cv2.imread(path)
image = cv2.resize(image,(880,600)) # resize was nessecary because of the large images
cv2.imshow("original", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# grayscale conversion
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow("painting_gray", gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
# we need to find a way to detect the edges better so we implement a couple of things
# A little help was found on stackoverflow: https://stackoverflow.com/questions/55169645/square-detection-in-image
median = cv2.medianBlur(gray,5)
cv2.imshow("painting_median_blur", median) #we use median blur to smooth the image
cv2.waitKey(0)
cv2.destroyAllWindows()
# now we sharpen the image with help of following URL: https://www.analyticsvidhya.com/blog/2021/08/sharpening-an-image-using-opencv-library-in-python/
kernel = np.array([[0, -1, 0],
[-1, 5,-1],
[0, -1, 0]])
image_sharp = cv2.filter2D(src=median, ddepth=-1, kernel=kernel)
cv2.imshow('painting_sharpend', image_sharp)
cv2.waitKey(0)
cv2.destroyAllWindows()
# now we apply adapptive thresholding
# thresholding: https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html#adaptive-thresholding
thresh = cv2.adaptiveThreshold(src=image_sharp,maxValue=255,adaptiveMethod=cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
thresholdType=cv2.THRESH_BINARY,blockSize=61,C=20)
cv2.imshow('thresholded image', thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()
# lets apply a morphological transformation
kernel = np.ones((7,7),np.uint8)
gradient = cv2.morphologyEx(thresh, cv2.MORPH_GRADIENT, kernel)
cv2.imshow('dilated image', gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()
# # lets now find the contours of the image
# # find contours: https://docs.opencv.org/4.x/dd/d49/tutorial_py_contour_features.html
contours, hierarchy = cv2.findContours(gradient, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print("contours: ", len(contours))
print("hierachy: ", len(hierarchy))
print(hierarchy)
cv2.drawContours(image, contours, -1, (0,255,0), 3)
cv2.imshow("contour image", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
Tips, help or code is appreciated!
Here's a simple approach:
Obtain binary image. We load the image, grayscale, Gaussian blur, then Otsu's threshold to obtain a binary image.
Two pass dilation to merge contours. At this point, we have a binary image but individual separated contours. Since we can assume that a painting is a single large square contour, we can merge small individual adjacent contours together to form a single contour. To do this, we create a vertical and horizontal kernel using cv2.getStructuringElement then dilate to merge them together. Depending on the image, you may need to adjust the kernel sizes or number of dilation iterations.
Detect paintings. Now we find contours and filter using contour area using a minimum threshold area to filter out small contours. Finally we obtain the bounding rectangle coordinates and draw the rectangle with cv2.rectangle.
Code
import cv2
# Load image, grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread('1.jpeg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (13,13), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# Two pass dilate with horizontal and vertical kernel
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9,5))
dilate = cv2.dilate(thresh, horizontal_kernel, iterations=2)
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,9))
dilate = cv2.dilate(dilate, vertical_kernel, iterations=2)
# Find contours, filter using contour threshold area, and draw rectangle
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
area = cv2.contourArea(c)
if area > 20000:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(image, (x, y), (x + w, y + h), (36, 255, 12), 3)
cv2.imshow('thresh', thresh)
cv2.imshow('dilate', dilate)
cv2.imshow('image', image)
cv2.waitKey()
So here is the actual size of the portrait frame.
So here is small code.
#!/usr/bin/python 37
#OpenCV 4.3.0, Raspberry Pi 3/B/4B-w/4/8GB RAM, Buster,v10.
#Date: 3rd, June, 2020
import cv2
# Load the image
img = cv2.imread('portrait.jpeg')
# convert to grayscale
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edged = cv2.Canny(img, 120,890)
# Apply adaptive threshold
thresh = cv2.adaptiveThreshold(edged, 255, 1, 1, 11, 2)
thresh_color = cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR)
# apply some dilation and erosion to join the gaps - change iteration to detect more or less area's
thresh = cv2.dilate(thresh,None,iterations = 50)
thresh = cv2.erode(thresh,None,iterations = 50)
# Find the contours
contours,hierarchy = cv2.findContours(thresh,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
# For each contour, find the bounding rectangle and draw it
for cnt in contours:
area = cv2.contourArea(cnt)
if area > 20000:
x,y,w,h = cv2.boundingRect(cnt)
cv2.rectangle(img,
(x,y),(x+w,y+h),
(0,255,0),
2)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
Here is output:
Problem Summary: I have got many complex histopathology images with different dimensions. Complex means a single image having multiple images in it as shown in below input image examples. I need to separate out or crop each single image only and not the text/label/caption of it from that input complex image and further save each of them individually. For the bounding boxes I have gone through the white boundaries (separation) along the single images.
Complex Input Image Example 1:
Complex Input Image Example 2:
Complex Input Image Example 3:
Code I have tried:
import cv2
import numpy as np
# reading the input image
img = cv2.imread('cmp.jpg')
cv2.imshow("histology image", img)
# defining border color
lower = (0, 80, 110)
upper = (0, 120, 150)
# applying thresholding on border color
mask = cv2.inRange(img, lower, upper)
cv2.imshow("masked", mask)
# Using dilate threshold
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 15))
mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, kernel)
# coloring border to white for other images
img[mask==255] = (255,255,255)
cv2.imshow("white_border", img)
# converting image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# applying otsu threshold
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU )[1]
cv2.imshow("thresholded", thresh)
# applying 'Open' morphological operation
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (17,17))
morph = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
morph = 255 - morph
cv2.imshow("morphed", morph)
# finding contours and bounding boxes
bboxes = []
bboxes_img = img.copy()
contours = cv2.findContours(morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
for cntr in contours:
x,y,w,h = cv2.boundingRect(cntr)
cv2.rectangle(bboxes_img, (x, y), (x+w, y+h), (0, 0, 255), 1)
bboxes.append((x,y,w,h))
cv2.imshow("boundingboxes", bboxes_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
I am not getting exact bounding boxes for each of single images present in the input complex image and further I need to save each cropped image individually. Any kind of help will be much appreciated.
I'm trying to get the corners of this rectangle:
.
I tried using cv2.cornerHarris(rectangle, 2, 3, 0.04), but the left edges are not showed due to image brightness, I guess. So I tried applying a threshold before using cornerHarris, but the image produced showed a lot of vertices along the edges, not being possible to filter the corners.
I know that I need to filter it before using cornerHarris, but I don't know how. Could someone help me with this problem?
Ps. I've already tried to use blur, but it also doesn't work.
import cv2
import numpy as np
import matplotlib.pyplot as plt
rectangle = cv2.imread('rectangle.png', cv2.IMREAD_GRAYSCALE)
rectangle = np.where(rectangle > np.mean(rectangle), 255, 0).astype(np.uint8)
dst_rectangle = cv2.cornerHarris(rectangle, 2, 3, 0.04)
dst_rectangle = cv2.dilate(dst_rectangle, None)
mask = np.where(dst_rectangle > 0.01*np.max(dst_rectangle), 255, 0).astype(np.uint8)
points = np.nonzero(mask)
plt.imshow(dst_rectangle, cmap='gray')
plt.plot(points[1], points[0], 'or')
plt.show()
I would approach it differently by getting the corners of the rotated bounding box of the contour after adaptive thresholding. Here is my code in Python/OpenCV.
Input:
import cv2
import numpy as np
# read image
img = cv2.imread("rectangle.png")
# convert img to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = 255-gray
# do adaptive threshold on gray image
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 17, 1)
thresh = 255-thresh
# apply morphology
kernel = np.ones((3,3), np.uint8)
morph = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
morph = cv2.morphologyEx(morph, cv2.MORPH_CLOSE, kernel)
# separate horizontal and vertical lines to filter out spots outside the rectangle
kernel = np.ones((7,3), np.uint8)
vert = cv2.morphologyEx(morph, cv2.MORPH_OPEN, kernel)
kernel = np.ones((3,7), np.uint8)
horiz = cv2.morphologyEx(morph, cv2.MORPH_OPEN, kernel)
# combine
rect = cv2.add(horiz,vert)
# thin
kernel = np.ones((3,3), np.uint8)
rect = cv2.morphologyEx(rect, cv2.MORPH_ERODE, kernel)
# get largest contour
contours = cv2.findContours(rect, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
for c in contours:
area_thresh = 0
area = cv2.contourArea(c)
if area > area_thresh:
area = area_thresh
big_contour = c
# get rotated rectangle from contour
rot_rect = cv2.minAreaRect(big_contour)
box = cv2.boxPoints(rot_rect)
box = np.int0(box)
print(box)
# draw rotated rectangle on copy of img
rot_bbox = img.copy()
cv2.drawContours(rot_bbox,[box],0,(0,0,255),2)
# write img with red rotated bounding box to disk
cv2.imwrite("rectangle_thresh.png", thresh)
cv2.imwrite("rectangle_outline.png", rect)
cv2.imwrite("rectangle_bounds.png", rot_bbox)
# display it
cv2.imshow("IMAGE", img)
cv2.imshow("THRESHOLD", thresh)
cv2.imshow("MORPH", morph)
cv2.imshow("VERT", vert)
cv2.imshow("HORIZ", horiz)
cv2.imshow("RECT", rect)
cv2.imshow("BBOX", rot_bbox)
cv2.waitKey(0)
Thresholded Image:
Rectangle Region Extracted:
Rotated Bounding Box on Image:
Rotated Bounding Box Corners:
[[446 335]
[163 328]
[168 117]
[451 124]]
ADDITION:
Here is a slightly shorter version of the code, which is achievable by adding some gaussian blurring before thresholding.
import cv2
import numpy as np
# read image
img = cv2.imread("rectangle.png")
# convert img to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = 255-gray
# blur image
blur = cv2.GaussianBlur(gray, (3,3), 0)
# do adaptive threshold on gray image
thresh = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 75, 2)
thresh = 255-thresh
# apply morphology
kernel = np.ones((5,5), np.uint8)
rect = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
rect = cv2.morphologyEx(rect, cv2.MORPH_CLOSE, kernel)
# thin
kernel = np.ones((5,5), np.uint8)
rect = cv2.morphologyEx(rect, cv2.MORPH_ERODE, kernel)
# get largest contour
contours = cv2.findContours(rect, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
for c in contours:
area_thresh = 0
area = cv2.contourArea(c)
if area > area_thresh:
area = area_thresh
big_contour = c
# get rotated rectangle from contour
rot_rect = cv2.minAreaRect(big_contour)
box = cv2.boxPoints(rot_rect)
box = np.int0(box)
for p in box:
pt = (p[0],p[1])
print(pt)
# draw rotated rectangle on copy of img
rot_bbox = img.copy()
cv2.drawContours(rot_bbox,[box],0,(0,0,255),2)
# write img with red rotated bounding box to disk
cv2.imwrite("rectangle_thresh.png", thresh)
cv2.imwrite("rectangle_outline.png", rect)
cv2.imwrite("rectangle_bounds.png", rot_bbox)
# display it
cv2.imshow("IMAGE", img)
cv2.imshow("THRESHOLD", thresh)
cv2.imshow("RECT", rect)
cv2.imshow("BBOX", rot_bbox)
cv2.waitKey(0)
Thresholded Image:
Rectangle Region Extracted:
Rotated Bounding Box on Image:
Rotated Bounding Box Corners:
(444, 335)
(167, 330)
(170, 120)
(448, 125)
Here's a simple approach:
Obtain binary image. We load the image, grayscale, Gaussian blur, then adaptive threshold.
Morphological operations. We create a rectangular kernel and morph open to remove the small noise
Find distorted rectangle contour and draw onto a mask. Find contours, determine rotated bounding box, and draw onto a blank mask
Find corners. We use the Shi-Tomasi Corner Detector already implemented as cv2.goodFeaturesToTrack which is supposedly shows better results compared to the Harris Corner Detector
Here's a visualization of each step:
Binary image
Morph open
Find rotated rectangle contour and draw/fill onto a blank mask
Draw rotated rectangle and corners to get result
Corner coordinates
(448.0, 337.0)
(164.0, 332.0)
(452.0, 123.0)
(168.0, 118.0)
Code
import cv2
import numpy as np
# Load image, grayscale, Gaussian blur, adaptive threshold
image = cv2.imread("1.png")
mask = np.zeros(image.shape, dtype=np.uint8)
gray = 255 - cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 51, 3)
# Morph open
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
# Find distorted rectangle contour and draw onto a mask
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
rect = cv2.minAreaRect(cnts[0])
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(image,[box],0,(36,255,12),2)
cv2.fillPoly(mask, [box], (255,255,255))
# Find corners on the mask
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
corners = cv2.goodFeaturesToTrack(mask, maxCorners=4, qualityLevel=0.5, minDistance=150)
for corner in corners:
x,y = corner.ravel()
cv2.circle(image,(x,y),8,(255,120,255),-1)
print("({}, {})".format(x,y))
cv2.imshow("thresh", thresh)
cv2.imshow("opening", opening)
cv2.imshow("mask", mask)
cv2.imshow("image", image)
cv2.waitKey(0)
You can try with an adaptive threshold. Then you may either use cornerHarris if you only need corners, or depending on what you need to do next, you could also find useful findContours, which returns a list of bounding boxes
I was able to locate 3 out of the 4 points, the 4th point can be found easily given the other three points since it's rectangle. Here is my solution:
import cv2
import numpy as np
img = cv2.imread('6dUIr.png',1)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#smooth the image
kernel = np.ones((5,5),np.float32)/25
gray = cv2.filter2D(gray,-1,kernel)
#histogram equalization
clahe = cv2.createCLAHE(clipLimit=1.45, tileGridSize=(4,4))
cl1 = clahe.apply(gray)
#find edges
edges = cv2.Canny(cl1,4,100)
#find corners
dst = cv2.cornerHarris(edges,2,3,0.04)
#result is dilated for marking the corners, not important
dst = cv2.dilate(dst,None)
# Threshold for an optimal value, it may vary depending on the image.
img[dst>0.25*dst.max()]=[0,0,255]
cv2.imshow('edges', edges)
cv2.imshow('output', img)
# cv2.imshow('Histogram equalized', img_output)
cv2.waitKey(0)
The code has many hard coded thresholds but it's a good start.