After training the below model and plotting the train and validation accuracy I'm getting two straight horizontal lines (picture attached).
These are the parameters
Params:
mid_units: 256.0
activation: relu
dropout: 0.34943936277356535
optimizer: adam
batch_size: 64.0
for cls in os.listdir(path):
for sound in tqdm(os.listdir(os.path.join(path, cls))):
wav = librosa.load(os.path.join(os.path.join(path, cls, sound)), sr=16000)[0].astype(np.float32)
tmp_samples.append(wav)
tmp_labels.append(cls)
X_train, X_test, y_train , y_test = train_test_split( tmp_samples, tmp_labels , test_size=0.60,shuffle=True)
X_test,X_valid, y_test , y_valid = train_test_split( X_test, y_test , test_size=0.50,shuffle=True)
for x,y in zip(X_train,y_train):
extract_features_with_aug(x, y, model, samples , labels )
for x,y in zip(X_test,y_test):
extract_features(x, y, model, plain_samples , plain_labels )
for x,y in zip(X_valid,y_valid):
extract_features(x, y, model, valid_sample,valid_label)
X_train = np.asarray(samples)
y_train = np.asarray(labels)
X_test = np.asarray(plain_samples)
y_test=np.asarray(plain_labels)
X_valid = np.asarray(valid_sample)
y_valid=np.asarray(valid_label)
X_train = shuffle(samples)
y_train = shuffle(labels)
X_test = shuffle(plain_samples)
y_test=shuffle(plain_labels)
X_valid = shuffle(valid_sample)
y_valid=shuffle(valid_label)
return X_train, y_train , X_test , y_test ,X_valid,y_valid
Model:
input = layers.Input( batch_shape=(None,1024,1),dtype=tf.float32,name='audio')
drop=layers.Dropout( dropout_rate ) (input)
fl= layers.Flatten() (drop)
l= layers.Dense( mid_units , activation= activation )(fl)
ba=layers.BatchNormalization() (l)
drop2=layers.Dropout( dropout_rate ) (ba)
net=layers.Dense( 5, activation= activation )(drop2)
model = Model(inputs=input, outputs=net)
model.summary()
return model
def train_model(
X_train, y_train , X_test , y_test , X_valid,y_valid,
fname, # Path where to save the model
mid_units,
activation ,
dropout ,
batch_size ,
optimizer
):
# Generate the model
general_model = create_model( mid_units, activation , dropout )
general_model.compile(optimizer= optimizer , loss='categorical_crossentropy',
metrics=['accuracy'])
# Create some callbacks
callbacks = [tf.keras.callbacks.ModelCheckpoint(filepath=fname, monitor='val_loss', save_best_only=True),
tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.95, patience=5, verbose=1,
min_lr=0.000001)]
################
history = general_model.fit(X_train, y_train, epochs=EPOCHS, validation_data = ( X_valid,y_valid ), batch_size= batch_size ,
callbacks=callbacks, verbose=1)
For the training history I'm getting fixed values
3027/3027 [==============================] - 29s 9ms/step - loss: nan - accuracy: 0.2150 - val_loss: nan - val_accuracy: 0.2266
Epoch 97/100
3027/3027 [==============================] - 31s 10ms/step - loss: nan - accuracy: 0.2150 - val_loss: nan - val_accuracy: 0.2266
Epoch 98/100
3027/3027 [==============================] - 41s 14ms/step - loss: nan - accuracy: 0.2150 - val_loss: nan - val_accuracy: 0.2266
Epoch 99/100
3027/3027 [==============================] - 32s 11ms/step - loss: nan - accuracy: 0.2150 - val_loss: nan - val_accuracy: 0.2266
Epoch 100/100
Related
I am running tf.keras.callbacks.ModelCheckpoint with the accuracy metric but loss is used to save the best checkpoints. I have tested this in different places (my computer and collab) and two different code and faced the same issue. Here is an example code and the results:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import os
import shutil
def get_uncompiled_model():
inputs = keras.Input(shape=(784,), name="digits")
x = layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = layers.Dense(10, activation="softmax", name="predictions")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
def get_compiled_model():
model = get_uncompiled_model()
model.compile(
optimizer="rmsprop",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
return model
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# Preprocess the data (these are NumPy arrays)
x_train = x_train.reshape(60000, 784).astype("float32") / 255
x_test = x_test.reshape(10000, 784).astype("float32") / 255
y_train = y_train.astype("float32")
y_test = y_test.astype("float32")
# Reserve 10,000 samples for validation
x_val = x_train[-10000:]
y_val = y_train[-10000:]
x_train = x_train[:-10000]
y_train = y_train[:-10000]
ckpt_folder = os.path.join(os.getcwd(), 'ckpt')
if os.path.exists(ckpt_folder):
shutil.rmtree(ckpt_folder)
ckpt_path = os.path.join(r'D:\deep_learning\tf_keras\semantic_segmentation\logs', 'mymodel_{epoch}')
callbacks = [
tf.keras.callbacks.ModelCheckpoint(
# Path where to save the model
# The two parameters below mean that we will overwrite
# the current checkpoint if and only if
# the `val_loss` score has improved.
# The saved model name will include the current epoch.
filepath=ckpt_path,
montior="val_accuracy",
# save the model weights with best validation accuracy
mode='max',
save_best_only=True, # only save the best weights
save_weights_only=False,
# only save model weights (not whole model)
verbose=1
)
]
model = get_compiled_model()
model.fit(
x_train, y_train, epochs=3, batch_size=1, callbacks=callbacks, validation_split=0.2, steps_per_epoch=1
)
1/1 [==============================] - ETA: 0s - loss: 2.6475 - accuracy: 0.0000e+00
Epoch 1: val_loss improved from -inf to 2.32311, saving model to D:\deep_learning\tf_keras\semantic_segmentation\logs\mymodel_1
1/1 [==============================] - 6s 6s/step - loss: 2.6475 - accuracy: 0.0000e+00 - val_loss: 2.3231 - val_accuracy: 0.1142
Epoch 2/3
1/1 [==============================] - ETA: 0s - loss: 1.9612 - accuracy: 1.0000
Epoch 2: val_loss improved from 2.32311 to 2.34286, saving model to D:\deep_learning\tf_keras\semantic_segmentation\logs\mymodel_2
1/1 [==============================] - 5s 5s/step - loss: 1.9612 - accuracy: 1.0000 - val_loss: 2.3429 - val_accuracy: 0.1187
Epoch 3/3
1/1 [==============================] - ETA: 0s - loss: 2.8378 - accuracy: 0.0000e+00
Epoch 3: val_loss did not improve from 2.34286
1/1 [==============================] - 5s 5s/step - loss: 2.8378 - accuracy: 0.0000e+00 - val_loss: 2.2943 - val_accuracy: 0.1346
In your code, You write montior instead of monitor, and the function doesn't have this word as param then use the default value, If you write like below, You get what you want:
callbacks = [
tf.keras.callbacks.ModelCheckpoint(
filepath=ckpt_path,
monitor="val_accuracy",
mode='max',
save_best_only=True,
save_weights_only=False,
verbose=1
)
]
Code:
import tensorflow.keras as tfk
import pandas as pd
import numpy as np
dataset = pd.read_csv("translator.csv")
x_train, x_test = dataset[["Afrikaans Woorde", "English Words"]]
y_train, y_test = dataset[["Total Letter Amount", "Incommon Letters"]]
x_train = np.array(x_train)
y_train = np.array(y_train)
x_test = np.array(x_test)
y_test = np.array(y_test)
model = tfk.models.Sequential()
input_layer = model.add(tfk.layers.Flatten())
hidden_layer1 = model.add(tfk.layers.Dense(128, activation="relu"))
hidden_layer2 = model.add(tfk.layers.Dense(128, activation="relu"))
output_layer = model.add(tfk.layers.Dense(1))
compiler = model.compile(optimizer="adam", loss="spare_categorical_crossentropy", metrics=["accuracy"])
fitter = model.fit(x_train, y_train, epochs=10)
val_loss, val_acc = model.evaluate(x_test, y_test)
print(f"Percentage loss {val_loss * 100}%", f"Percentage accuracy {val_acc * 100}%")
Error:
IndexError: list index out of range
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_5408/3773670894.py in <module>
22 compiler = model.compile(optimizer="adam", loss="spare_categorical_crossentropy", metrics=["accuracy"])
23
---> 24 fitter = model.fit(x_train, y_train, epochs=10)
25
26 val_loss, val_acc = model.evaluate(x_test, y_test)
Question:
I have tried everything, I am not sure what to do? I have, even converted the dataset to an numpy array, yet it still gives me the error.
This specific model is to see if I can build a Translator just from a couple of words.
I tried with random input, your model architecture outputs 1, which means binary classification.
Working sample code
import tensorflow.keras as tfk
import numpy as np
import tensorflow as tf
X_train = np.random.random((1512,18))
y_train = np.random.random((1512,1))
dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train))
train_data = dataset.shuffle(len(X_train)).batch(32)
train_data = train_data.prefetch(
buffer_size=tf.data.experimental.AUTOTUNE)
model = tfk.models.Sequential()
input = model.add(tfk.layers.Dense(15, activation=tf.nn.relu, input_shape=(18,)))
input_layer = model.add(tfk.layers.Flatten())
hidden_layer1 = model.add(tfk.layers.Dense(128, activation="relu"))
hidden_layer2 = model.add(tfk.layers.Dense(128, activation="relu"))
output_layer = model.add(tfk.layers.Dense(1))
model.compile(optimizer='adam',
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=['accuracy'])
fitter = model.fit(train_data, epochs=5, batch_size=5, verbose=1)
Output
Epoch 1/5
48/48 [==============================] - 4s 5ms/step - loss: 5.9153e-08 - accuracy: 0.0000e+00
Epoch 2/5
48/48 [==============================] - 0s 4ms/step - loss: 5.9153e-08 - accuracy: 0.0000e+00
Epoch 3/5
48/48 [==============================] - 0s 5ms/step - loss: 5.9153e-08 - accuracy: 0.0000e+00
Epoch 4/5
48/48 [==============================] - 0s 6ms/step - loss: 5.9153e-08 - accuracy: 0.0000e+00
Epoch 5/5
48/48 [==============================] - 0s 5ms/step - loss: 5.9153e-08 - accuracy: 0.0000e+00
I'm trying to teach a model to predict stock price, my dataframe has a lot of column because of one hot encoding, this is my code for the model.
seq_len = 128
opt = keras.optimizers.Adam(learning_rate=0.001)
def create_model():
in_seq = Input(shape = (seq_len, 143))
x = Bidirectional(LSTM(128, return_sequences=True))(in_seq)
x = Bidirectional(LSTM(128, return_sequences=True))(x)
x = Bidirectional(LSTM(64, return_sequences=True))(x)
avg_pool = GlobalAveragePooling1D()(x)
max_pool = GlobalMaxPooling1D()(x)
conc = concatenate([avg_pool, max_pool])
conc = Dense(64, activation="relu")(conc)
out = Dense(1, activation="linear")(conc)
model = Model(inputs=in_seq, outputs=out)
model.compile(loss="mse", optimizer= opt, metrics=['mae', 'mape'])
return model
model = create_model()
#model.summary()
#callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=2)
callback = tf.keras.callbacks.ModelCheckpoint('Bi-LSTM.hdf5', monitor='val_loss', save_best_only=True, verbose=1)
model.fit(X_train, y_train,
batch_size=2048,
verbose=2,
callbacks=[callback],
epochs=200,
#shuffle=True,
validation_data=(X_val, y_val),)
model = tf.keras.models.load_model('/content/Bi-LSTM.hdf5')
###############################################################################
'''Calculate predictions and metrics'''
#Calculate predication for training, validation and test data
train_pred = model.predict(X_train)
val_pred = model.predict(X_val)
test_pred = model.predict(X_test)
#Print evaluation metrics for all datasets
train_eval = model.evaluate(X_train, y_train, verbose=0)
val_eval = model.evaluate(X_val, y_val, verbose=0)
test_eval = model.evaluate(X_test, y_test, verbose=0)
print(' ')
print('Evaluation metrics')
print('Training Data - Loss: {:.4f}, MAE: {:.4f}, MAPE: {:.4f}'.format(train_eval[0], train_eval[1], train_eval[2]))
print('Validation Data - Loss: {:.4f}, MAE: {:.4f}, MAPE: {:.4f}'.format(val_eval[0], val_eval[1], val_eval[2]))
print('Test Data - Loss: {:.4f}, MAE: {:.4f}, MAPE: {:.4f}'.format(test_eval[0], test_eval[1], test_eval[2]))
but during training, the results are
Epoch 000xx: val_loss did not improve from inf
Epoch x/xxx
x/x - 19s - loss: nan - mae: nan - mape: nan - val_loss: nan - val_mae: nan - val_mape: nan
So my questions are,
Will letting the model train longer improve the result ?
Can I fix this model or do I have to change into another model ?
Please kindly let me know where I am wrong.
I trained LSTM classification model, but got weird results (0 accuracy). Here is my dataset with preprocessing steps:
import pandas as pd
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow import keras
import numpy as np
url = 'https://raw.githubusercontent.com/MislavSag/trademl/master/trademl/modeling/random_forest/X_TEST.csv'
X_TEST = pd.read_csv(url, sep=',')
url = 'https://raw.githubusercontent.com/MislavSag/trademl/master/trademl/modeling/random_forest/labeling_info_TEST.csv'
labeling_info_TEST = pd.read_csv(url, sep=',')
# TRAIN TEST SPLIT
X_train, X_test, y_train, y_test = train_test_split(
X_TEST.drop(columns=['close_orig']), labeling_info_TEST['bin'],
test_size=0.10, shuffle=False, stratify=None)
### PREPARE LSTM
x = X_train['close'].values.reshape(-1, 1)
y = y_train.values.reshape(-1, 1)
x_test = X_test['close'].values.reshape(-1, 1)
y_test = y_test.values.reshape(-1, 1)
train_val_index_split = 0.75
train_generator = keras.preprocessing.sequence.TimeseriesGenerator(
data=x,
targets=y,
length=30,
sampling_rate=1,
stride=1,
start_index=0,
end_index=int(train_val_index_split*X_TEST.shape[0]),
shuffle=False,
reverse=False,
batch_size=128
)
validation_generator = keras.preprocessing.sequence.TimeseriesGenerator(
data=x,
targets=y,
length=30,
sampling_rate=1,
stride=1,
start_index=int((train_val_index_split*X_TEST.shape[0] + 1)),
end_index=None, #int(train_test_index_split*X.shape[0])
shuffle=False,
reverse=False,
batch_size=128
)
test_generator = keras.preprocessing.sequence.TimeseriesGenerator(
data=x_test,
targets=y_test,
length=30,
sampling_rate=1,
stride=1,
start_index=0,
end_index=None,
shuffle=False,
reverse=False,
batch_size=128
)
# convert generator to inmemory 3D series (if enough RAM)
def generator_to_obj(generator):
xlist = []
ylist = []
for i in range(len(generator)):
x, y = train_generator[i]
xlist.append(x)
ylist.append(y)
X_train = np.concatenate(xlist, axis=0)
y_train = np.concatenate(ylist, axis=0)
return X_train, y_train
X_train_lstm, y_train_lstm = generator_to_obj(train_generator)
X_val_lstm, y_val_lstm = generator_to_obj(validation_generator)
X_test_lstm, y_test_lstm = generator_to_obj(test_generator)
# test for shapes
print('X and y shape train: ', X_train_lstm.shape, y_train_lstm.shape)
print('X and y shape validate: ', X_val_lstm.shape, y_val_lstm.shape)
print('X and y shape test: ', X_test_lstm.shape, y_test_lstm.shape)
and here is my model with resuslts:
### MODEL
model = keras.models.Sequential([
keras.layers.LSTM(124, return_sequences=True, input_shape=[None, 1]),
keras.layers.LSTM(258),
keras.layers.Dense(1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(X_train_lstm, y_train_lstm, epochs=10, batch_size=128,
validation_data=[X_val_lstm, y_val_lstm])
# history = model.fit_generator(train_generator, epochs=40, validation_data=validation_generator, verbose=1)
score, acc = model.evaluate(X_val_lstm, y_val_lstm,
batch_size=128)
historydf = pd.DataFrame(history.history)
historydf.head(10)
Why do I get 0 accuracy?
You're using sigmoid activation, which means your labels must be in range 0 and 1. But in your case, the labels are 1. and -1.
Just replace -1 with 0.
for i, y in enumerate(y_train_lstm):
if y == -1.:
y_train_lstm[i,:] = 0.
for i, y in enumerate(y_val_lstm):
if y == -1.:
y_val_lstm[i,:] = 0.
for i, y in enumerate(y_test_lstm):
if y == -1.:
y_test_lstm[i,:] = 0.
Sidenote:
The signals are very close, it would be hard to distinguish them. So, probably accuracy won't be high with simple models.
After training with 0. and 1. labels,
model = keras.models.Sequential([
keras.layers.LSTM(124, return_sequences=True, input_shape=(30, 1)),
keras.layers.LSTM(258),
keras.layers.Dense(1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(X_train_lstm, y_train_lstm, epochs=5, batch_size=128,
validation_data=(X_val_lstm, y_val_lstm))
# history = model.fit_generator(train_generator, epochs=40, validation_data=validation_generator, verbose=1)
score, acc = model.evaluate(X_val_lstm, y_val_lstm,
batch_size=128)
historydf = pd.DataFrame(history.history)
historydf.head(10)
Epoch 1/5
12/12 [==============================] - 5s 378ms/step - loss: 0.7386 - accuracy: 0.4990 - val_loss: 0.6959 - val_accuracy: 0.4896
Epoch 2/5
12/12 [==============================] - 4s 318ms/step - loss: 0.6947 - accuracy: 0.5133 - val_loss: 0.6959 - val_accuracy: 0.5104
Epoch 3/5
12/12 [==============================] - 4s 318ms/step - loss: 0.6941 - accuracy: 0.4895 - val_loss: 0.6930 - val_accuracy: 0.5104
Epoch 4/5
12/12 [==============================] - 4s 332ms/step - loss: 0.6946 - accuracy: 0.5269 - val_loss: 0.6946 - val_accuracy: 0.5104
Epoch 5/5
12/12 [==============================] - 4s 334ms/step - loss: 0.6931 - accuracy: 0.4901 - val_loss: 0.6929 - val_accuracy: 0.5104
3/3 [==============================] - 0s 73ms/step - loss: 0.6929 - accuracy: 0.5104
loss accuracy val_loss val_accuracy
0 0.738649 0.498980 0.695888 0.489583
1 0.694708 0.513256 0.695942 0.510417
2 0.694117 0.489463 0.692987 0.510417
3 0.694554 0.526852 0.694613 0.510417
4 0.693118 0.490143 0.692936 0.510417
Source code in colab: https://colab.research.google.com/drive/10yRf4TfGDnp_4F2HYoxPyTlF18no-8Dr?usp=sharing
Cant understand why keras linear regression model is not working. Using Boston Housing data.Get Loss as nan
path='/Users/admin/Desktop/airfoil_self_noise.csv'
df=pd.read_csv(path,sep='\t',header=None)
y=df[5] #TARGET
df2=df.iloc[:,:-1]
X_train, X_test, y_train, y_test = train_test_split(df2, y, test_size=0.2)
p = Sequential()
p.add(Dense(units=20, activation='relu', input_dim=5))
p.add(Dense(units=20, activation='relu'))
p.add(Dense(units=1))
p.compile(loss='mean_squared_error',
optimizer='sgd')
p.fit(X_train, y_train, epochs=10, batch_size=32)
this yeilds:
Epoch 1/10
1202/1202 [==============================] - 0s 172us/step - loss: nan
Epoch 2/10
1202/1202 [==============================] - 0s 37us/step - loss: nan
Epoch 3/10
1202/1202 [==============================] - 0s 38us/step - loss: nan
Epoch 4/10
1202/1202 [==============================] - 0s 36us/step - loss: nan
Epoch 5/10
1202/1202 [==============================] - 0s 36us/step - loss: nan
Epoch 6/10
1202/1202 [==============================] - 0s 40us/step - loss: nan
Just to get you started, building on the top of NaN loss when training regression network
import pandas as pd
import keras
from keras.layers import Dense, Input
from keras import Sequential
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
#Grabbing these 2 lines from your example
path='/Users/admin/Desktop/airfoil_self_noise.csv'
df = pd.read_csv("airfoil_self_noise.csv", sep = '\t', header = None)
y = df[5]
df2 = df.iloc[:, :-1]
#preprocessing. Vectorization and Scaling
X_train, X_test, y_train, y_test = train_test_split(df2.values, y.values, test_size = 0.2)
X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)
p = Sequential()
p.add(Dense(units = 20, activation ='relu', input_dim = 5))
p.add(Dense(units = 20, activation ='relu'))
p.add(Dense(units = 1))
p.compile(loss = 'mean_squared_error', optimizer = 'adam')
print(p.fit(X_train, y_train, epochs = 100, batch_size = 64))