Related
The case is if I want to reverse select a python list to n like:
n = 3
l = [1,2,3,4,5,6]
s = l[5:n:-1] # s is [6, 5]
OK, it works, but how can I set n's value to select the whole list?
let's see this example, what I expect the first line is [5, 4, 3, 2, 1]
[40]: for i in range(-1, 5):
...: print(l[4:i:-1])
...:
[]
[5, 4, 3, 2]
[5, 4, 3]
[5, 4]
[5]
[]
if the upper bound n set to 0, the result will lost 0. but if n is -1, the result is empty because -1 means "the last one".
The only way I can do is:
if n < 0:
s = l[5::-1]
else:
s = l[5:n:-1]
a bit confusing.
To fully reverse the list by slicing:
l = [1,2,3,4,5,6]
print(l[::-1])
#[6, 5, 4, 3, 2, 1]
If you want to be able to partially or fully reverse the list based on the value of n, you can do it like this:
l = [1,2,3,4,5,6]
def custom_reverse(l,n):
return [l[i] for i in range(len(l)-1,n,-1)]
print(custom_reverse(l,3)) #[6, 5]
print(custom_reverse(l,-1)) #[6, 5, 4, 3, 2, 1]
Hopefully this is what you mean.
print(l[n+1::-1])
I am struggling to solve an exercise regarding lists in Python. The exercise says:
Write a function that takes a list containing numbers and lists of
numbers inside them, reverses it (including the lists of numbers
inside the main list) using recursion.
Afterwards, the function should return a tuple containing three
elements. The first element represents the amount of all the numbers
present in the list (including the ones in the sublists), the second
element is the sum of all the numbers (also the ones inside the
sublists), and the third element is a sorted list of all the integers.
Again we should use recursion.
I managed to reverse the whole list using two functions, but when it comes to accessing the numbers inside the sublists to use them for the tuple, I really don't know what to do.
Here you can have a look at the list of lists:
lista = [3, 3, 5, [[1, 8, [9, 3]], 3, [2, [9, [5, 6],[9]] ] ]]
Here you can check my code:
def exercise (lista):
lista_ordinata = []
count = 0
somma = 0
reverse_list(lista)
for x,y in enumerate(lista):
if isinstance (x,(int)):
count += 1
else:
count = 0
for num in lista:
if isinstance(num,(int)):
somma += num
for i in lista:
if isinstance(i,int):
lista_ordinata.append(i)
return (count,somma,lista_ordinata)
def is_list (lista):
return isinstance(lista,list)
def reverse_list(lista):
lista_nuova = lista[::-1]
for x,y in enumerate(lista_nuova):
if is_list(y):
lista_nuova[x] = reverse_list(y)
lista.clear()
lista.extend(lista_nuova)
return lista
Here you can see the expected list which I reversed:
lista = [[[[[9], [6, 5], 9], 2], 3, [[3, 9], 8, 1]], 5, 3, 3]
The function must return the following tuple:
(13,66, [1,2,3,5,6,8,9])
The output I get is incorrect:
(4, 11, [5, 3, 3])
The first element should be the counting of all the numbers, and not just the numbers outside the sublists, The sum is also incorrect, The list is not outputting all the numbers.
What should I do? Keep in mind that the "exercise" function should use recursion.
You are using recursion just fine in the reverse function, just use recursion in you exercise function:
def exercise(lista):
lista_ordinata = []
count = 0
somma = 0
# reverse_list(lista)
for x in lista:
if isinstance(x, list):
recursion = exercise(x) # call recursion until you have a list with only integers
# and add the result to your running totals
count += recursion[0]
somma += recursion[1]
lista_ordinata.extend(recursion[2])
else:
count += 1
somma += x
lista_ordinata.append(x)
lista_ordinata = sorted(list(set(lista_ordinata)))
return count, somma, lista_ordinata
print(exercise(lista))
(13, 66, [1, 2, 3, 5, 6, 8, 9])
def exercise(a, polish=sorted):
if not isinstance(a, list):
return 1, a, {a}
a.reverse()
amount, sum, numbers = 0, 0, set()
for b in a:
a, s, n = exercise(b, set)
amount += a
sum += s
numbers |= n
return amount, sum, polish(numbers)
Or with a little helper doing the reversals and collecting the numbers:
def exercise(a):
def go(a):
if isinstance(a, list):
a.reverse()
for b in a:
go(b)
else:
numbers.append(a)
numbers = []
go(a)
return len(numbers), sum(numbers), sorted(set(numbers))
Demo:
lista = [3, 3, 5, [[1, 8, [9, 3]], 3, [2, [9, [5, 6],[9]] ] ]]
>>> exercise(lista)
(13, 66, [1, 2, 3, 5, 6, 8, 9])
>>> lista
[[[[[9], [6, 5], 9], 2], 3, [[3, 9], 8, 1]], 5, 3, 3]
Here's a way without any loops at all.
First of all, we can have a definition for a partial insertion sort, which inserts any value to its correct position in an existing sorted array.
def partialInsertionSort(val, idx, sortarr):
if idx == len(sortarr):
sortarr.append(val)
elif val < sortarr[idx]:
sortarr.insert(idx, val)
elif val > sortarr[idx]:
sortarr = partialInsertionSort(val, idx+1, sortarr)
return sortarr
As you travel through any list a, unless you've reached the end of a, there are two possibilities:
The current item is another list -> Recurse through the sublist!
The current item is a digit -> Increment total and count. If this digit is a previously unseen digit, 'insert' it to your list of sorted digits.
Done with the above two possible options, you have thus processed the current element, and can move to the next element by incrementing the index i.
def reverse_and_sort(a, i, out, sortarr, total, count):
if i==len(a):
return out, sortarr, total, count
if isinstance(a[i], list):
a[i], sortarr, total, count = reverse_and_sort(a[i], 0, [], sortarr, total, count)
else:
total += a[i]
count += 1
if a[i] not in sortarr:
sortarr = partialInsertionSort(a[i], 0, sortarr)
out.insert(0, a[i])
return reverse_and_sort(a, i+1, out, sortarr, total, count)
Test:
rev, srt, total, count = reverse_and_sort(lista, 0, [], [], 0, 0)
print(rev) #[[[[[9], [6, 5], 9], 2], 3, [[3, 9], 8, 1]], 5, 3, 3]
print(srt) #[1, 2, 3, 5, 6, 8, 9]
print(total) #66
print(count) #13
A relatively short version, which uses the add operator is given by that:
from operator import add
def sorter(l):
if isinstance(l, list):
temp = [0, 0, []]
for e in map(sorter, l):
temp = list(map(add, e, temp))
return temp[0], temp[1], sorted(set(temp[2]))
return 1, l, [l]
It should give the correct result:
test_list = [[[[[9], [6, 5], 9], 2], 3, [[3, 9], 8, 1]], 5, 3, 3]
sorter(test_list)
>>> (13, 66, [1, 2, 3, 5, 6, 8, 9])
Two liner approach!
Here is a simple solution to the problem, using indirect recursion. Indirect recursion is where a function f(x) calls a function g(x) which in turn calls f(x).
If your problem was just the first part, the solution is just a simple 2 liner -
f = lambda x: [g(i) for i in reversed(x)]
g = lambda x: f(x) if type(x)==list else x
f(lista)
[[[[[9], [6, 5], 9], 2], 3, [[3, 9], 8, 1]], 5, 3, 3]
Beautiful right?
The main idea here is that at an element level you just need to check if the element is an integer and return it, else you need to use another function that lets you iterate over the list. You can have counters at the level of the second function which lets you track the sum and the count and return it with the final function call.
Since you also have the 2nd part to the solution which is using a few counters, you can modify the above code for g(x) to incorporate that as below -
cnt = []
sm = []
#function to iterate over a reversed list
f = lambda x: [g(i) for i in reversed(x)]
#function to call f if list else updated counters and return element
def g(x):
if type(x)==list:
return f(x)
else:
cnt.append(1) #ONLY MODIFICATION
sm.append(x) #ONLY MODIFICATION
return x
#call f and return sum of counters
def rec(l):
o = f(l)
return o, (sum(cnt), sum(sm), sorted(sm))
out, tup = rec(lista)
print(out)
print(tup)
[[[[[9], [6, 5], 9], 2], 3, [[3, 9], 8, 1]], 5, 3, 3]
(13, 66, [1, 2, 3, 3, 3, 3, 5, 5, 6, 8, 9, 9, 9])
def exercise(lista, total = 0, count = 0, all_int = []):
for item in lista:
if isinstance(item, list):
count, total, all_int = exercise(item, total, count, all_int)
elif isinstance(item, int):
total += item
count += 1
if item not in all_int:
all_int.append(item)
all_int.sort()
lista.reverse()
return count, total, all_int
Maybe this would help :)
def exercise (lista):
reverse_list(lista)
r = count_numbers(lista), sum_numbers(lista), sorted(pull_out(lista))
return r
def is_list (lista):
return isinstance(lista,list)
def reverse_list(lista):
lista_nuova = []
for e in lista[::-1]:
if is_list(e):
lista_nuova.append(reverse_list(e))
else:
lista_nuova.append(e)
return lista_nuova
def count_numbers(lista):
c = 0
for e in lista:
if is_list(e):
c += count_numbers(e)
else:
c+=1
return c
def sum_numbers(lista):
s = 0
for e in lista:
if is_list(e):
s += sum_numbers(e)
else:
s+=e
return s
def pull_out(lista):
b_lista = []
for e in lista:
if is_list(e):
b_lista.extend(pull_out(e))
else:
b_lista.append(e)
return b_lista
lista = [3, 3, 5, [[1, 8, [9, 3]], 3, [2, [9, [5, 6],[9]] ] ]]
r = exercise(lista)
print(r)
# (13, 66, [1, 2, 3, 3, 3, 3, 5, 5, 6, 8, 9, 9, 9])
I did it with separate functions for clarity.
Here I have a list
a = [1, 2, 1, 4, 5, 7, 8, 4, 6]
Now I want a following output but without for loop.
Remove all the duplicate from the list.
[2, 5, 7, 8, 6]
output list contain only single occurrence number
Given: a = [1, 2, 1, 4, 5, 7, 8, 4, 6]
One liner:
b = [x for x in a if a.count(x) == 1]
You can use a Counter and a conditional list comprehension or filter in order to maintain the original order:
from collections import Counter
c = Counter(a)
clean_a = filter(lambda x: c[x] == 1, a) # avoids 'for' ;-)
# clean_a = list(filter(lambda x: c[x] == 1, a)) # Python3, if you need a list
# clean_a = [x for x in a if c[a] == 1] # would be my choice
This is a very simple and inefficient implementation.
We use a while loop to access every element of a. In the loop we check if the current element appears only once in the list. If yes, we add it to a new list.
a = [1, 2, 1, 4, 5, 7, 8, 4, 6]
index = 0
result = []
while index < len(a):
if a.count(a[index]) == 1:
result.append(a[index])
index += 1
print(result)
def cleaner(LIST, pos):
if len(LIST)>pos:
if LIST[pos] in LIST[pos+1:]:
LIST.pop(pos)
# OR
# LIST.remove(LIST[pos])
cleaner(LIST, pos)
else:
pos+=1
cleaner(LIST, pos)
return LIST
LIST = [1, 2, 1, 4, 5, 7, 8, 4, 6]
print(cleaner(LIST, 0))
i want to write a function that takes in a list of numbers (positive integers) and returns a list of sorted numbers such that odd numbers come first and even numbers come last
For example:
my_sort([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) => [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
my_sort([1, 2]) => [1, 2]
my_sort([2, 1]) => [1, 2]
my_sort([3, 3, 4]) => [3, 3, 4]
my_sort([90, 45, 66]) => [45, 66, 90]'''
This is my code
def my_sort(numbers):
a = [n for n in numbers if n % 2 != 0]
b = [n for n in numbers if n % 2 == 0]
new_num = b + a
for m in numbers:
if a and b:
return new_num
else:
return "Invalid sorted output"
Which fails all the test. I'm new to programming and python. So I'ld appreciate if anyone could help me with this.
And here is the unittest
import unittest
class MySortTestCases(unittest.TestCase):
def setUp(self):
self.result1 = my_sort([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
self.result2 = my_sort([1, 2])
self.result3 = my_sort([2, 1])
self.result4 = my_sort([3, 3, 4])
self.result5 = my_sort([90, 45, 66])
def test_output_1(self):
self.assertEqual(self.result1, [1, 3, 5, 7, 9, 2, 4, 6, 8, 10],
msg='Invalid sorted output')
def test_output_2(self):
self.assertEqual(self.result2, [1, 2], msg='Invalid sorted
output')
def test_output_3(self):
self.assertEqual(self.result3, [1, 2], msg='Invalid sorted
output')
def test_output_4(self):
self.assertEqual(self.result4, [3, 3, 4], msg='Invalid sorted
output')
def test_output_5(self):
self.assertEqual(self.result5, [45, 66, 90], msg='Invalid
sorted output')
You could so it by splitting the list into odd and even and then sorting both and concatenating the two lists.
def my_sort(numbers):
odd = [n for n in numbers if n % 2 != 0]
even = [n for n in numbers if n % 2 == 0]
return sorted(odd) + sorted(even)
See that this
>>> my_sort([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
[1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
But using a key function avoids constructing the split lists:
>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> numbers.sort(key=lambda v: (v%2==0, v))
>>> numbers
[1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
This sorts the list using a key function that returns a tuple of (0, v) if v is odd and (1, v) if even. This causes the odd numbers to appear before the even numbers in an ascending ordered sort.
It can be turned into a function:
def my_sort(numbers):
return sorted(numbers, key=lambda v: (v%2==0, v))
So, I went ahead and grabbed your code and did just a few tests by myself to see the actual output. Your code doesn't actually sort the list currently. It only puts the even numbers first and the odd numbers second. Which by the sound of it isn't what you want either.
>>> my_sort([4, 5, 7, 1, 2, 6, 3])
[4, 2, 6, 5, 7, 1, 3]
>>> my_sort([1, 2])
[2, 1]
These were the outputs I got by running your code using the Python interpreter. As you can see the even numbers are first, unsorted, followed by the odd numbers, also unsorted. This just has to do with the way you made the new_num list. You have new_num = b + a, but you created b by looking for all the even numbers b = [n for n in numbers if n % 2 == 0] and created a by looking for all the odd numbers a = [n for n in numbers if n % 2 != 0]. The % returns the remainder. So, if a number is divisible by 2 it returns 0 and this means that it is even. So, you can either flip the assignment of a and b or you can flip when you add them together so a is first and b is second.
As for the individual chunks not being sorted. Python has a built in sorted function that you can call on list sorted(my_list) that returns a sorted version of that list. So, if you just run that on your a and b when you're adding them together to create your new_num list then the numbers for each should be sorted just fine.
Your if statements at the end inside your for loop are also not working properly. Giving an already sorted list just returns the list given. Your code here:
for m in numbers:
if a and b:
return new_num
else:
return "Invalid sorted output"
This is looping through the original list given and returns the new_num if a and b exists. Since a and b will always exist this will always return new_num and never the "Invalid sorted output" statement. You need to make sure you're checking to see if the numbers list is already sorted with the expected output of your function. My suggestion would be check to see if new_num is the same as numbers.
Just use sorted twice. First to sort the list, and again to sort it by odd then even using the key parameter.
x = [3,5,4,1,6,8,10,2,9,7]
sorted(sorted(x), key=lambda x: (x+1)%2)
# returns:
# [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
This should work... It makes sense if you are joining Andela.
def my_sort(theNumbers):
#pass
evenNumbers=[]
oddNumbers=[]
#CHECK IF EVEN OR ODD THEN STORE THEN SEPARATE
for i in theNumbers:
if i%2==0:
evenNumbers.append(i)
else:
oddNumbers.append(i)
#print (evenNumbers)
#SORT DEM LISTS
evenNumbers.sort()
oddNumbers.sort()
#print (evenNumbers)
#join the two
oddNumbers+=evenNumbers
print (oddNumbers)
#my_sort([11111, 1, 11, 979749, 1111, 1111])
This code will sort even and odd numbers without creating a temporary list.
def segregateEvenOdd(arr, index=0, iterations=0):
if iterations == len(arr):
return arr
if arr[index]%2 == 0:
arr.append(arr[index])
arr.pop(index)
return segregateEvenOdd(arr, index, iterations+1 )
if arr[index]%2 != 0:
return segregateEvenOdd(arr,index+1,iterations+1)
arr = [ 2, 3, 9, 45, 2, 5, 10, 47 ]
output = segregateEvenOdd(arr)
print(output)
# Output
# [3, 9, 45, 5, 47, 2, 2, 10]
This code should work:
def sort_integers(list_of_integers):
odd_numbers = [n for n in list_of_integers if n%2!=0]
odd_numbers = sorted(odd_numbers, reverse = True)
print(odd_numbers)
even_numbers = [x for x in list_of_integers if x%2 == 0]
even_numbers = sorted(even_numbers, reverse = True)
print(even_numbers)
new_sorted_list = even_numbers + odd_numbers
print(new_sorted_list)
I want my program to take a list that is already created, go through it and check for any elements that repeat. Then create a new list with just the elements that repeat.
def repeated_elements(data):
repeats = []
for element in data:
result = data.count(element)
if result > 1:
repeats.append(element)
return data
print (repeated_elements([1, 2, 3, 1, 3]))#should print out [1, 3, 1, 3]
print (repeated_elements([1, 2, 3, 4, 5]))# should print out []
print (repeated_elements([5, 5, 5, 5, 5]))# should print out [5, 5, 5, 5, 5]
print (repeated_elements([10, 9, 10, 10, 9, 8]))# should print out [10, 9, 10, 10, 9]
The program ends up printing out the starting sets
Better way to achieve this via using collections.Counter with list comprehension expression as:
>>> from collections import Counter
>>> my_list = [1, 2, 3, 1, 3]
>>> my_counter = Counter(my_list)
>>> [i for i in my_list if my_counter[i]>1]
[1, 3, 1, 3]
First of all, you are returning data instead of repeats so it ends up printing out the starting set.
Second - your indentation of the return statement inside the for loop will return the result in the first iteration of the loop. If you fix that, the code will work.
def repeated_elements(data):
repeats = []
for element in data:
result = data.count(element)
if result > 1:
repeats.append(element)
return repeats
How about:
>>> lst = [1, 2, 3, 1, 3]
>>> repeated = [i for i in lst if lst.count(i) > 1]
[1, 3, 1, 3]