Pipeline works with "nveglglessink", but not with "ximagesink" - python

I am really new to GStreamer and DeepStream. I have a pipeline created based on deepstream-test1. This is the order in which the elements appeared:
filesrc (an h264) -> h264parse -> nvv4l2decoder -> nvstreammux ->
nvinfer -> nvvideoconvert -> nvdsosd -> nvegltransform ->
nveglglessink
This works fine as intended. Heres the code:
import sys
sys.path.append('../')
import gi
gi.require_version('Gst', '1.0')
from gi.repository import GObject, Gst
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call
import pyds
PGIE_CLASS_ID_VEHICLE = 0
PGIE_CLASS_ID_BICYCLE = 1
PGIE_CLASS_ID_PERSON = 2
PGIE_CLASS_ID_ROADSIGN = 3
def osd_sink_pad_buffer_probe(pad,info,u_data):
frame_number=0
#Intiallizing object counter with 0.
obj_counter = {
PGIE_CLASS_ID_VEHICLE:0,
PGIE_CLASS_ID_PERSON:0,
PGIE_CLASS_ID_BICYCLE:0,
PGIE_CLASS_ID_ROADSIGN:0
}
num_rects=0
gst_buffer = info.get_buffer()
if not gst_buffer:
print("Unable to get GstBuffer ")
return
# Retrieve batch metadata from the gst_buffer
# Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
# C address of gst_buffer as input, which is obtained with hash(gst_buffer)
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
try:
# Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
# The casting is done by pyds.glist_get_nvds_frame_meta()
# The casting also keeps ownership of the underlying memory
# in the C code, so the Python garbage collector will leave
# it alone.
#frame_meta = pyds.glist_get_nvds_frame_meta(l_frame.data)
frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
except StopIteration:
break
frame_number=frame_meta.frame_num
num_rects = frame_meta.num_obj_meta
l_obj=frame_meta.obj_meta_list
while l_obj is not None:
try:
# Casting l_obj.data to pyds.NvDsObjectMeta
#obj_meta=pyds.glist_get_nvds_object_meta(l_obj.data)
obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data)
except StopIteration:
break
obj_counter[obj_meta.class_id] += 1
obj_meta.rect_params.border_color.set(0.0, 0.0, 1.0, 0.0)
try:
l_obj=l_obj.next
except StopIteration:
break
# Acquiring a display meta object. The memory ownership remains in
# the C code so downstream plugins can still access it. Otherwise
# the garbage collector will claim it when this probe function exits.
display_meta=pyds.nvds_acquire_display_meta_from_pool(batch_meta)
display_meta.num_labels = 1
py_nvosd_text_params = display_meta.text_params[0]
# Setting display text to be shown on screen
# Note that the pyds module allocates a buffer for the string, and the
# memory will not be claimed by the garbage collector.
# Reading the display_text field here will return the C address of the
# allocated string. Use pyds.get_string() to get the string content.
py_nvosd_text_params.display_text = "Frame Number={} Number of Objects={} Vehicle_count={} Person_count={}".format(frame_number, num_rects, obj_counter[PGIE_CLASS_ID_VEHICLE], obj_counter[PGIE_CLASS_ID_PERSON])
# Now set the offsets where the string should appear
py_nvosd_text_params.x_offset = 10
py_nvosd_text_params.y_offset = 12
# Font , font-color and font-size
py_nvosd_text_params.font_params.font_name = "Serif"
py_nvosd_text_params.font_params.font_size = 10
# set(red, green, blue, alpha); set to White
py_nvosd_text_params.font_params.font_color.set(1.0, 1.0, 1.0, 1.0)
# Text background color
py_nvosd_text_params.set_bg_clr = 1
# set(red, green, blue, alpha); set to Black
py_nvosd_text_params.text_bg_clr.set(0.0, 0.0, 0.0, 1.0)
# Using pyds.get_string() to get display_text as string
print(pyds.get_string(py_nvosd_text_params.display_text))
pyds.nvds_add_display_meta_to_frame(frame_meta, display_meta)
try:
l_frame=l_frame.next
except StopIteration:
break
return Gst.PadProbeReturn.OK
def main(args):
# Check input arguments
if len(args) != 2:
sys.stderr.write("usage: %s <media file or uri>\n" % args[0])
sys.exit(1)
# Standard GStreamer initialization
GObject.threads_init()
Gst.init(None)
# Create gstreamer elements
# Create Pipeline element that will form a connection of other elements
print("Creating Pipeline \n ")
pipeline = Gst.Pipeline()
if not pipeline:
sys.stderr.write(" Unable to create Pipeline \n")
# Source element for reading from the file
print("Creating Source \n ")
source = Gst.ElementFactory.make("filesrc", "file-source")
if not source:
sys.stderr.write(" Unable to create Source \n")
# Since the data format in the input file is elementary h264 stream,
# we need a h264parser
print("Creating H264Parser \n")
h264parser = Gst.ElementFactory.make("h264parse", "h264-parser")
if not h264parser:
sys.stderr.write(" Unable to create h264 parser \n")
# Use nvdec_h264 for hardware accelerated decode on GPU
print("Creating Decoder \n")
decoder = Gst.ElementFactory.make("nvv4l2decoder", "nvv4l2-decoder")
if not decoder:
sys.stderr.write(" Unable to create Nvv4l2 Decoder \n")
# Create nvstreammux instance to form batches from one or more sources.
streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
sys.stderr.write(" Unable to create NvStreamMux \n")
# Use nvinfer to run inferencing on decoder's output,
# behaviour of inferencing is set through config file
pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
if not pgie:
sys.stderr.write(" Unable to create pgie \n")
# Use convertor to convert from NV12 to RGBA as required by nvosd
nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor")
if not nvvidconv:
sys.stderr.write(" Unable to create nvvidconv \n")
# Create OSD to draw on the converted RGBA buffer
nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
if not nvosd:
sys.stderr.write(" Unable to create nvosd \n")
# Finally render the osd output
if is_aarch64():
transform = Gst.ElementFactory.make("nvegltransform", "nvegl-transform")
print("Creating EGLSink \n")
sink = Gst.ElementFactory.make("nveglglessink", "nvvideo-renderer")
if not sink:
sys.stderr.write(" Unable to create egl sink \n")
print("Playing file %s " %args[1])
source.set_property('location', args[1])
streammux.set_property('width', 1920)
streammux.set_property('height', 1080)
streammux.set_property('batch-size', 1)
streammux.set_property('batched-push-timeout', 4000000)
pgie.set_property('config-file-path', "dstest1_pgie_config.txt")
print("Adding elements to Pipeline \n")
pipeline.add(source)
pipeline.add(h264parser)
pipeline.add(decoder)
pipeline.add(streammux)
pipeline.add(pgie)
pipeline.add(nvvidconv)
pipeline.add(nvosd)
pipeline.add(sink)
if is_aarch64():
pipeline.add(transform)
# we link the elements together
# file-source -> h264-parser -> nvh264-decoder ->
# nvinfer -> nvvidconv -> nvosd -> video-renderer
print("Linking elements in the Pipeline \n")
source.link(h264parser)
h264parser.link(decoder)
sinkpad = streammux.get_request_pad("sink_0")
if not sinkpad:
sys.stderr.write(" Unable to get the sink pad of streammux \n")
srcpad = decoder.get_static_pad("src")
if not srcpad:
sys.stderr.write(" Unable to get source pad of decoder \n")
srcpad.link(sinkpad)
streammux.link(pgie)
pgie.link(nvvidconv)
nvvidconv.link(nvosd)
if is_aarch64():
nvosd.link(transform)
transform.link(sink)
else:
nvosd.link(sink)
# create an event loop and feed gstreamer bus mesages to it
loop = GObject.MainLoop()
bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect ("message", bus_call, loop)
# Lets add probe to get informed of the meta data generated, we add probe to
# the sink pad of the osd element, since by that time, the buffer would have
# had got all the metadata.
osdsinkpad = nvosd.get_static_pad("sink")
if not osdsinkpad:
sys.stderr.write(" Unable to get sink pad of nvosd \n")
osdsinkpad.add_probe(Gst.PadProbeType.BUFFER, osd_sink_pad_buffer_probe, 0)
# start play back and listen to events
print("Starting pipeline \n")
pipeline.set_state(Gst.State.PLAYING)
try:
loop.run()
except:
pass
# cleanup
pipeline.set_state(Gst.State.NULL)
if __name__ == '__main__':
sys.exit(main(sys.argv))
But whenever i try to replace nvegltransform -> nveglglessink of the pipeline with ximagesink i get an error saying:
Error: gst-stream-error-quark: Internal data stream error. (1):
/dvs/git/dirty/git-master_linux/deepstream/sdk/src/gst-plugins/gst-nvinfer/gstnvinfer.cpp(2288):
gst_nvinfer_output_loop ():
/GstPipeline:pipeline0/GstNvInfer:primary-inference: streaming
stopped, reason not-linked (-1)
I needed to remove nveglglessink from the pipeline originally, but as nvegltransform is related to nveglglessink i decided to remove both. And in place of them i used ximagesink.
This is the pipeline i am working on (which gives the error mentioned):
filesrc (an h264) -> h264parse -> nvv4l2decoder -> nvstreammux ->
nvinfer -> nvvideoconvert -> nvdsosd -> ximagesink
Heres the code:
import sys
sys.path.append('../')
import gi
gi.require_version('Gst', '1.0')
from gi.repository import GObject, Gst
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call
import pyds
PGIE_CLASS_ID_VEHICLE = 0
PGIE_CLASS_ID_BICYCLE = 1
PGIE_CLASS_ID_PERSON = 2
PGIE_CLASS_ID_ROADSIGN = 3
def osd_sink_pad_buffer_probe(pad,info,u_data):
frame_number=0
#Intiallizing object counter with 0.
obj_counter = {
PGIE_CLASS_ID_VEHICLE:0,
PGIE_CLASS_ID_PERSON:0,
PGIE_CLASS_ID_BICYCLE:0,
PGIE_CLASS_ID_ROADSIGN:0
}
num_rects=0
gst_buffer = info.get_buffer()
if not gst_buffer:
print("Unable to get GstBuffer ")
return
# Retrieve batch metadata from the gst_buffer
# Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
# C address of gst_buffer as input, which is obtained with hash(gst_buffer)
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
try:
# Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
# The casting is done by pyds.glist_get_nvds_frame_meta()
# The casting also keeps ownership of the underlying memory
# in the C code, so the Python garbage collector will leave
# it alone.
#frame_meta = pyds.glist_get_nvds_frame_meta(l_frame.data)
frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
except StopIteration:
break
frame_number=frame_meta.frame_num
num_rects = frame_meta.num_obj_meta
l_obj=frame_meta.obj_meta_list
while l_obj is not None:
try:
# Casting l_obj.data to pyds.NvDsObjectMeta
#obj_meta=pyds.glist_get_nvds_object_meta(l_obj.data)
obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data)
except StopIteration:
break
obj_counter[obj_meta.class_id] += 1
obj_meta.rect_params.border_color.set(0.0, 0.0, 1.0, 0.0)
try:
l_obj=l_obj.next
except StopIteration:
break
# Acquiring a display meta object. The memory ownership remains in
# the C code so downstream plugins can still access it. Otherwise
# the garbage collector will claim it when this probe function exits.
display_meta=pyds.nvds_acquire_display_meta_from_pool(batch_meta)
display_meta.num_labels = 1
py_nvosd_text_params = display_meta.text_params[0]
# Setting display text to be shown on screen
# Note that the pyds module allocates a buffer for the string, and the
# memory will not be claimed by the garbage collector.
# Reading the display_text field here will return the C address of the
# allocated string. Use pyds.get_string() to get the string content.
py_nvosd_text_params.display_text = "Frame Number={} Number of Objects={} Vehicle_count={} Person_count={}".format(frame_number, num_rects, obj_counter[PGIE_CLASS_ID_VEHICLE], obj_counter[PGIE_CLASS_ID_PERSON])
# Now set the offsets where the string should appear
py_nvosd_text_params.x_offset = 10
py_nvosd_text_params.y_offset = 12
# Font , font-color and font-size
py_nvosd_text_params.font_params.font_name = "Serif"
py_nvosd_text_params.font_params.font_size = 10
# set(red, green, blue, alpha); set to White
py_nvosd_text_params.font_params.font_color.set(1.0, 1.0, 1.0, 1.0)
# Text background color
py_nvosd_text_params.set_bg_clr = 1
# set(red, green, blue, alpha); set to Black
py_nvosd_text_params.text_bg_clr.set(0.0, 0.0, 0.0, 1.0)
# Using pyds.get_string() to get display_text as string
print(pyds.get_string(py_nvosd_text_params.display_text))
pyds.nvds_add_display_meta_to_frame(frame_meta, display_meta)
try:
l_frame=l_frame.next
except StopIteration:
break
return Gst.PadProbeReturn.OK
def main(args):
# Check input arguments
if len(args) != 2:
sys.stderr.write("usage: %s <media file or uri>\n" % args[0])
sys.exit(1)
# Standard GStreamer initialization
GObject.threads_init()
Gst.init(None)
# Create gstreamer elements
# Create Pipeline element that will form a connection of other elements
print("Creating Pipeline \n ")
pipeline = Gst.Pipeline()
if not pipeline:
sys.stderr.write(" Unable to create Pipeline \n")
# Source element for reading from the file
print("Creating Source \n ")
source = Gst.ElementFactory.make("filesrc", "file-source")
if not source:
sys.stderr.write(" Unable to create Source \n")
# Since the data format in the input file is elementary h264 stream,
# we need a h264parser
print("Creating H264Parser \n")
h264parser = Gst.ElementFactory.make("h264parse", "h264-parser")
if not h264parser:
sys.stderr.write(" Unable to create h264 parser \n")
# Use nvdec_h264 for hardware accelerated decode on GPU
print("Creating Decoder \n")
decoder = Gst.ElementFactory.make("nvv4l2decoder", "nvv4l2-decoder")
if not decoder:
sys.stderr.write(" Unable to create Nvv4l2 Decoder \n")
# Create nvstreammux instance to form batches from one or more sources.
streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
sys.stderr.write(" Unable to create NvStreamMux \n")
# Use nvinfer to run inferencing on decoder's output,
# behaviour of inferencing is set through config file
pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
if not pgie:
sys.stderr.write(" Unable to create pgie \n")
# Use convertor to convert from NV12 to RGBA as required by nvosd
nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor")
if not nvvidconv:
sys.stderr.write(" Unable to create nvvidconv \n")
# Create OSD to draw on the converted RGBA buffer
nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
if not nvosd:
sys.stderr.write(" Unable to create nvosd \n")
# Finally render the osd output
# if is_aarch64():
# transform = Gst.ElementFactory.make("nvegltransform", "nvegl-transform")
# print("Creating EGLSink \n")
# sink = Gst.ElementFactory.make("nveglglessink", "nvvideo-renderer")
# if not sink:
# sys.stderr.write(" Unable to create egl sink \n")
print("Creating XIMAGESINK \n")
ximagesink = Gst.ElementFactory.make("ximagesink", "video-sink")
if not ximagesink:
sys.stderr.write(" Unable to create ximagesink \n")
print("Playing file %s " %args[1])
source.set_property('location', args[1])
streammux.set_property('width', 1920)
streammux.set_property('height', 1080)
streammux.set_property('batch-size', 1)
streammux.set_property('batched-push-timeout', 4000000)
pgie.set_property('config-file-path', "dstest1_pgie_config.txt")
print("Adding elements to Pipeline \n")
pipeline.add(source)
pipeline.add(h264parser)
pipeline.add(decoder)
pipeline.add(streammux)
pipeline.add(pgie)
pipeline.add(nvvidconv)
pipeline.add(nvosd)
pipeline.add(ximagesink)
print("Linking elements in the Pipeline \n")
source.link(h264parser)
h264parser.link(decoder)
# Link elements manually as streammux donot have a static sink pad
decoder_srcpad = decoder.get_static_pad("src")
if not decoder_srcpad:
sys.stderr.write(" Unable to get source pad of decoder \n")
streammux_sinkpad = streammux.get_request_pad("sink_0")
if not streammux_sinkpad:
sys.stderr.write(" Unable to get the sink pad of streammux \n")
decoder_srcpad.link(streammux_sinkpad)
streammux.link(pgie)
pgie.link(nvvidconv)
nvvidconv.link(nvosd)
nvosd.link(ximagesink)
# create an event loop and feed gstreamer bus mesages to it
loop = GObject.MainLoop()
bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect ("message", bus_call, loop)
# Lets add probe to get informed of the meta data generated, we add probe to
# the sink pad of the osd element, since by that time, the buffer would have
# had got all the metadata.
osdsinkpad = nvosd.get_static_pad("sink")
if not osdsinkpad:
sys.stderr.write(" Unable to get sink pad of nvosd \n")
osdsinkpad.add_probe(Gst.PadProbeType.BUFFER, osd_sink_pad_buffer_probe, 0)
# start play back and listen to events
print("Starting pipeline \n")
pipeline.set_state(Gst.State.PLAYING)
try:
loop.run()
except:
pass
# cleanup
pipeline.set_state(Gst.State.NULL)
if __name__ == '__main__':
sys.exit(main(sys.argv))
Could you help me understand what I am doing wrong? Thank you.
NOTE: I am using NVIDIA JETSON XAVIER, LINUX, DeepStream 6 and GStreamer 1.0

You may use nvvideoconvert for copying from NVMM memory into system memory as expected by xvimagesink:
... nvstreammux -> nvinfer -> nvvideoconvert -> nvdsosd -> nvvideoconvert -> xvimagesink

Related

using a python queue with an external class - not in the same file

I have a question regarding threading and queueing in python. I have a class that recognises faces and another script that is supposed to retrieve these recognised faces. And I'm unable to retrieve the recognised faces, once recognition starts
I posted another question that relates to this one, but here it's more about the actual user recognition part (this just in case someone stumbles over my other question and thinks this may be a duplicate).
So as said, I have a class that uses imutile and face_recognition to do just that - do face recognition. My issue with the class is that, once it's started it does recognise faces perfectly but it's not possible from an outside class (from within another script) to call any other method for example to retrieve a dict with the currently identified faces. I think this is problably because, once the actual recognition is called, the call to other methods within this class is not going through because of threading???. I attached the complete code for reference below.
Here is the code that is supposed to start the recogniser class and retrieve the results from within another script:
class recognizerAsync(Thread):
def __init__(self):
super(recognizerAsync,self).__init__()
print("initiating recognizer class from recognizerAsync")
if (use_user == True):
#myRecognizer = recognizer(consoleLog, debugMsg, run_from_flask)
self.myRecognizer = the_recognizer.recognizerAsync(False, True, True)
#face_thread = recognizerAsync(consoleLog, debugMsg, False)
def run(self):
print("starting up recogizer from callRecognizerThread")
self.myRecognizer.run()
if (use_user == True):
self.myRecognizer.start()
while (True):
if ( not q.full() ):
#fd = random.randint(1,10)
fd = self.myRecognizer.returnRecognizedFaces()
print(f"PRODUCER: putting into queue {fd}")
q.put(fd)
#else:
# print("ERROR :: Queue q is full")
time.sleep(10)
And I start this like so in the very end:
mirror = GUI(window)
mirror.setupGUI()
window.after(1000, mirror.updateNews)
face_thread = recognizerAsync()
face_thread.start()
window.mainloop()
My question is, how would I need to change either the recogniser classier the recognizerAsync class in the other script, so that while the method faceRecognizer() is running indefinitely, one can still call other methods - specifically returnRecognizedFaces()???
Thank you very much, folks.
#!/usr/bin/env python3
# import the necessary packages for face detection
from imutils.video import VideoStream
from imutils.video import FPS
import face_recognition
import imutils
import pickle
import time
import base64
import json
from threading import Thread
class recognizerAsync(Thread):
# How long in ms before a person detection is considered a new event
graceTimeBeforeNewRecognition = 6000 #60000
# the time in ms when a person is detected
timePersonDetected = 0
# ceate an empty faces dictionary to compare later with repetive encounterings
faces_detected_dict = {"nil": 0}
# Determine faces from encodings.pickle file model created from train_model.py
encodingsP = "" # "encodings.pickle"
# load the known faces and embeddings along with OpenCV's Haar
# cascade for face detection - i do this in the class initialization
#data = pickle.loads(open(encodingsP, "rb").read())
data = ''
# print dictionary of recognized faces on the console?
print_faces = False
debug_mnessagesa = False
called_from_flask = True # this changes the path to the
def __init__(self, print_val=False, debug_val=False, called_from_flask=True):
super(recognizerAsync,self).__init__()
self.print_faces = print_val
self.debug_messages = debug_val
if (called_from_flask == False):
encodingsP = "encodings.pickle"
else:
encodingsP = "Recognizer/encodings.pickle"
# load the known faces and embeddings along with OpenCV's Haar
# cascade for face detection
self.data = pickle.loads(open(encodingsP, "rb").read())
if (self.debug_messages == True):
print("Faces class initialized")
def run(self):
self.faceRecognizer()
def returnRecognizedFaces(self):
if (self.debug_messages == True):
print("from returnRecognizedFaces: returning: " + str((({k:self.faces_detected_dict[k] for k in self.faces_detected_dict if k!='nil'}))))
# print(f"from returnRecognizedFaces: returning: {self.faces_detected_dict}")
return(({k:self.faces_detected_dict[k] for k in self.faces_detected_dict if k!='nil'}))
def faceRecognizer(self):
try:
# initialize the video stream and allow the camera sensor to warm up
# Set the ser to the followng
# src = 0 : for the build in single web cam, could be your laptop webcam
# src = 2 : I had to set it to 2 inorder to use the USB webcam attached to my laptop
#vs = VideoStream(src=2,framerate=10).start()
vs = VideoStream(src=0,framerate=10).start()
#vs = VideoStream(usePiCamera=True).start()
time.sleep(2.0)
# start the FPS counter
fps = FPS().start()
if (self.debug_messages == True):
print("starting face detection - press Ctrl C to stop")
# loop over frames from the video file stream
while (True):
# grab the frame from the threaded video stream and resize it
# to 500px (to speedup processing)
frame = vs.read()
try:
frame = imutils.resize(frame, width=500)
except:
# Error: (h, w) = image.shape[:2]
# AttributeError: 'NoneType' object has no attribute 'shape'
break
# Detect the fce boxes
boxes = face_recognition.face_locations(frame)
# compute the facial embeddings for each face bounding box
encodings = face_recognition.face_encodings(frame, boxes)
names = []
# loop over the facial embeddings
for encoding in encodings:
# attempt to match each face in the input image to our known encodings
matches = face_recognition.compare_faces(self.data["encodings"], encoding)
name = "unknown" #if face is not recognized, then print Unknown
timePersonDetected = time.time()*1000.0
# check to see if we have found a match
if (True in matches):
# find the indexes of all matched faces then initialize a
# dictionary to count the total number of times each face
# was matched
matchedIdxs = [i for (i, b) in enumerate(matches) if b]
counts = {}
# loop over the matched indexes and maintain a count for
# each recognized face face
for i in matchedIdxs:
name = self.data["names"][i]
counts[name] = counts.get(name, 0) + 1
# determine the recognized face with the largest number
# of votes (note: in the event of an unlikely tie Python
# will select first entry in the dictionary)
name = max(counts, key=counts.get)
# If someone in your dataset is identified, print their name on the screen and provide them through rest
if (max(self.faces_detected_dict, key=self.faces_detected_dict.get) != name or timePersonDetected > self.faces_detected_dict[name] + self.graceTimeBeforeNewRecognition):
# put the face in the dictionary with time detected so we can prrovide this info
# in the rest endpoint for others - this is not really used internally,
# except for the timePersonDetected time comparison above
self.faces_detected_dict[name] = timePersonDetected
# update the list of names
names.append(name)
# exemplary way fo cleaning up the dict and removing the nil entry - kept here for reference:
#new_dict = ({k:self.faces_detected_dict[k] for k in self.faces_detected_dict if k!='nil'})
self.last_recognized_face = name
if (self.print_faces == True):
print(self.last_recognized_face)
# clean up the dictionary
new_dict = {}
for k, v in list(self.faces_detected_dict.items()):
if (v + self.graceTimeBeforeNewRecognition) < (time.time()*1000.0) and str(k) != 'nil':
if (self.debug_messages == True):
print('entry ' + str(k) + " dropped due to age")
else:
new_dict[k] = v
self.faces_detected_dict = new_dict
if (self.debug_messages == True):
print(f"faces dict: {self.faces_detected_dict}")
# update the FPS counter
fps.update()
time.sleep(1)
except KeyboardInterrupt:
if (self.debug_messages == True):
print("Ctrl-C received - cleaning up and exiting")
pass

Gstreamer leaky queue stops the pipeline

The following code get in inputs a list of url and it create a Gstreamer pipeline. Specifically, for each url, a uridecodebin element is initialized and attached to a queue element. Each queue has the following properties: leaky=2, max-size-buffers=1 and flush-on-eos=1. When I start the pipeline, I can see from nvidia-smi dmon that some video is decoded (NVDEC is used). After a second, everything stops.
I would expect that decoding to keep going, and to push frames into the queue with each queue dropping the old frame every time it receives a new one. Am I wrong?
Code to initialize a Bin to decode the video (source_bin.py). You probably don't need to read it, but here it is:
import sys
from gi.repository import Gst
from pipeline.utils.pipeline import create_gst_elemement
class SourceBin:
#classmethod
def create_source_bin(cls, index: int, uri: str):
# Create a source GstBin to abstract this bin's content from the rest of the pipeline
bin_name = "source-bin-%02d" % index
nbin = Gst.Bin.new(bin_name)
if not nbin:
sys.stderr.write(" Unable to create source bin \n")
# Source element for reading from the uri.
# We will use decodebin and let it figure out the container format of the
# stream and the codec and plug the appropriate demux and decode plugins.
uri_decode_bin = create_gst_elemement("uridecodebin", f"uridecodebin_{index}")
# We set the input uri to the source element
uri_decode_bin.set_property("uri", uri)
# Connect to the "pad-added" signal of the decodebin which generates a
# callback once a new pad for raw data has been created by the decodebin
uri_decode_bin.connect("pad-added", cls.callback_newpad, nbin)
uri_decode_bin.connect("pad-removed", cls.callback_pad_removed, nbin)
uri_decode_bin.connect("no-more-pads", cls.callback_no_more_pads, nbin)
uri_decode_bin.connect("child-added", cls.decodebin_child_added, nbin)
# We need to create a ghost pad for the source bin which will act as a proxy
# for the video decoder src pad. The ghost pad will not have a target right
# now. Once the decode bin creates the video decoder and generates the
# cb_newpad callback, we will set the ghost pad target to the video decoder
# src pad.
Gst.Bin.add(nbin, uri_decode_bin)
bin_pad = nbin.add_pad(
Gst.GhostPad.new_no_target("src", Gst.PadDirection.SRC)
)
if not bin_pad:
sys.stderr.write(" Failed to add ghost pad in source bin \n")
return None
# Connect bus
return nbin
#classmethod
def callback_newpad(cls, uridecodebin, uridecodebin_new_src_pad, data):
print(f"SourceBin: added pad {uridecodebin_new_src_pad.name} to {uridecodebin.name}")
caps = uridecodebin_new_src_pad.get_current_caps()
gststruct = caps.get_structure(0)
gstname = gststruct.get_name()
source_bin = data
features = caps.get_features(0)
# Need to check if the pad created by the decodebin is for video and not audio.
if gstname.find("video") != -1:
# Link the decodebin pad only if decodebin has picked nvidia decoder plugin nvdec_*.
# We do this by checking if the pad caps contain NVMM memory features.
if features.contains("memory:NVMM"):
# Get the source bin ghost pad
bin_ghost_pad = source_bin.get_static_pad("src")
if not bin_ghost_pad.set_target(uridecodebin_new_src_pad):
sys.stderr.write(
"Failed to link decoder src pad to source bin ghost pad\n"
)
else:
sys.stderr.write(" Error: Decodebin did not pick nvidia decoder plugin.\n")
#classmethod
def decodebin_child_added(cls, child_proxy, Object, name, user_data):
if name.find("decodebin") != -1:
Object.connect("child-added", cls.decodebin_child_added, user_data)
#classmethod
def callback_pad_removed(cls, uridecodebin, uridecodebin_removed_src_pad, data):
print(f"SourceBin: Removed pad {uridecodebin_removed_src_pad.name} from {uridecodebin.name}")
#classmethod
def callback_no_more_pads(cls, uridecodebin, data):
print(f"SourceBin: No more pads for {uridecodebin.name}")
Pipeline:
import sys
sys.path.append("../")
import gi
gi.require_version("Gst", "1.0")
gi.require_version("GstRtspServer", "1.0")
from gi.repository import GObject, Gst
from source_bin import SourceBin
def create_gst_elemement(factory_name, instance_name):
element = Gst.ElementFactory.make(factory_name, instance_name)
if not element:
sys.stderr.write(f" Unable to create {factory_name} {instance_name} \n")
return element
ai_rules = fususcore_api.get_ai_rules()
urls = [
"my rtsp url..."
]
GObject.threads_init()
Gst.init(None)
pipeline = Gst.Pipeline()
source_bins = [
SourceBin.create_source_bin(i, url)
for i, url in enumerate(urls)
]
frames_queues = list()
for i in range(len(source_bins)):
frames_queue = create_gst_elemement("queue", f"frame_queue_{i}")
frames_queue.set_property("leaky", 2)
frames_queue.set_property("max-size-buffers", 1)
frames_queue.set_property("flush-on-eos", 1)
frames_queues.append(frames_queue)
for source_bin, frames_queue in zip(source_bins, frames_queues):
pipeline.add(source_bin)
pipeline.add(frames_queue)
source_bin.link(frames_queue)
# loop = GObject.MainLoop()
# bus = pipeline.get_bus()
# bus.add_signal_watch()
# bus.connect("message", bus_call, loop)
pipeline.set_state(Gst.State.PLAYING)
For your convenience, you can find a graph of the pipeline: https://drive.google.com/file/d/1Vu8DR1Puam14k-fUKVBW2bG1gN4AgSPm/view?usp=sharing . Everything you see on the left of a queue is the Bin to decode the video. Each row represent a stream and it's identical to the other ones.

Read-Out of two channels of National Instrument USB 6211 with python

I'm trying to read out two channels simultaneously if an USB 6211 with python. To that end, I tried to adapt the example from http://www.scipy.org/Cookbook/Data_Acquisition_with_NIDAQmx by changing the line
CHK(nidaq.DAQmxCreateAIVoltageChan(
taskHandle,
"Dev1/ai0",
"",
DAQmx_Val_Cfg_Default,
float64(-10.0),
float64(10.0),
DAQmx_Val_Volts,
None))
to
CHK(nidaq.DAQmxCreateAIVoltageChan(
taskHandle,
"Dev1/ai0:1",
"",
DAQmx_Val_Cfg_Default,
float64(-10.0),
float64(10.0),
DAQmx_Val_Volts,
None))
But then, I keep receiving the error message that "nidaq call failed with error -200229: 'Buffer is too small to fit read data". Adding the line CHK(nidaq.DAQmxCfgInputBuffer(taskHandle, uInt32(10000000))) or increasing the length of the data array did not help...
Could someone point me to the right variable to change?
I found an answer here: http://www.physics.oregonstate.edu/~hetheriw/whiki/py/topics/ni/files/ni-daq_ctypes_multichannel_adc_usb_6008.txt
In short, the arguments of nidaq.DAQmxReadAnalogF64() need the additional argument "-1" after taskHandle. The line should then look like this:
CHK(nidaq.DAQmxReadAnalogF64(taskHandle, -1,float64(1.0),
DAQmx_Val_GroupByScanNumber,#DAQmx_Val_GroupByChannel,#DAQmx_Val_GroupByScanNumber
data.ctypes.data,max_num_samples,
ctypes.byref(read),None))
Here is an object I use to do A to D with a USB-6009. Note: at the bottom is an example of the calling procedure.
#-------------------------------------------------------------------------------
# Name: This is a object that takes data from the AtoD board
# Purpose:
#
# Author: Carl Houtman
#
# Created: 12/10/2012
# Copyright: (c) Carl Houtman 2012
# Licence: none
#-------------------------------------------------------------------------------
from PyDAQmx import *
import numpy
class DAQInput:
def __init__(self, num_data, num_chan, channel, high, low):
""" This is init function that opens the channel"""
# Declare variables passed by reference
taskHandle = TaskHandle()
read = int32()
data = numpy.zeros((10000,),dtype=numpy.float64)
sumi = [0,0,0,0,0,0,0,0,0,0]
#Get the passed variables
self.num_data = num_data
self.channel = channel
self.high = high
self.low = low
self.num_chan = num_chan
# Create a task and configure a channel
DAQmxCreateTask(b"",byref(self.taskHandle))
DAQmxCreateAIVoltageChan(self.taskHandle,self.channel,b"",DAQmx_Val_Cfg_Default,
self.low,self.high,DAQmx_Val_Volts,None)
# Start the task
DAQmxStartTask(self.taskHandle)
def getData(self):
""" This function gets the data from the board and calculates the average"""
DAQmxReadAnalogF64(self.taskHandle,self.num_data,10.0,DAQmx_Val_GroupByChannel,
self.data,10000,byref(self.read),None)
# Calculate the average of the values in data (could be several channels)
i = self.read.value
for j in range(self.num_chan):
self.sumi[j] = numpy.sum(self.data[j*i:(j+1)*i])/self.read.value
return self.sumi
def killTask(self):
""" This function kills the tasks"""
# If the task is still alive kill it
if self.taskHandle != 0:
DAQmxStopTask(self.taskHandle)
DAQmxClearTask(self.taskHandle)
if __name__ == '__main__':
myDaq = DAQInput(100, 2, b"Dev1/ai0:1", 10.0, -10.0)
result = myDaq.getData()
print ("the average readings were {:.4f} and {:.4f} volts".format(result[0], result[1]))
myDaq.killTask()

Alternative to tuntap

I'm trying to transmit TCP/IP over a radio that is connected to my computer (specifically, the USRP). Right now, it's done very simply using Tun/Tap to set up a new network interface. Here's the code:
from gnuradio import gr, gru, modulation_utils
from gnuradio import usrp
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import random
import time
import struct
import sys
import os
# from current dir
from transmit_path import transmit_path
from receive_path import receive_path
import fusb_options
#print os.getpid()
#raw_input('Attach and press enter')
# Linux specific...
# TUNSETIFF ifr flags from <linux/tun_if.h>
IFF_TUN = 0x0001 # tunnel IP packets
IFF_TAP = 0x0002 # tunnel ethernet frames
IFF_NO_PI = 0x1000 # don't pass extra packet info
IFF_ONE_QUEUE = 0x2000 # beats me ;)
def open_tun_interface(tun_device_filename):
from fcntl import ioctl
mode = IFF_TAP | IFF_NO_PI
TUNSETIFF = 0x400454ca
tun = os.open(tun_device_filename, os.O_RDWR)
ifs = ioctl(tun, TUNSETIFF, struct.pack("16sH", "gr%d", mode))
ifname = ifs[:16].strip("\x00")
return (tun, ifname)
# /////////////////////////////////////////////////////////////////////////////
# the flow graph
# /////////////////////////////////////////////////////////////////////////////
class my_top_block(gr.top_block):
def __init__(self, mod_class, demod_class,
rx_callback, options):
gr.top_block.__init__(self)
self.txpath = transmit_path(mod_class, options)
self.rxpath = receive_path(demod_class, rx_callback, options)
self.connect(self.txpath);
self.connect(self.rxpath);
def send_pkt(self, payload='', eof=False):
return self.txpath.send_pkt(payload, eof)
def carrier_sensed(self):
"""
Return True if the receive path thinks there's carrier
"""
return self.rxpath.carrier_sensed()
# /////////////////////////////////////////////////////////////////////////////
# Carrier Sense MAC
# /////////////////////////////////////////////////////////////////////////////
class cs_mac(object):
"""
Prototype carrier sense MAC
Reads packets from the TUN/TAP interface, and sends them to the PHY.
Receives packets from the PHY via phy_rx_callback, and sends them
into the TUN/TAP interface.
Of course, we're not restricted to getting packets via TUN/TAP, this
is just an example.
"""
def __init__(self, tun_fd, verbose=False):
self.tun_fd = tun_fd # file descriptor for TUN/TAP interface
self.verbose = verbose
self.tb = None # top block (access to PHY)
def set_top_block(self, tb):
self.tb = tb
def phy_rx_callback(self, ok, payload):
"""
Invoked by thread associated with PHY to pass received packet up.
#param ok: bool indicating whether payload CRC was OK
#param payload: contents of the packet (string)
"""
if self.verbose:
print "Rx: ok = %r len(payload) = %4d" % (ok, len(payload))
if ok:
os.write(self.tun_fd, payload)
def main_loop(self):
"""
Main loop for MAC.
Only returns if we get an error reading from TUN.
FIXME: may want to check for EINTR and EAGAIN and reissue read
"""
min_delay = 0.001 # seconds
while 1:
payload = os.read(self.tun_fd, 10*1024)
if not payload:
self.tb.send_pkt(eof=True)
break
if self.verbose:
print "Tx: len(payload) = %4d" % (len(payload),)
delay = min_delay
while self.tb.carrier_sensed():
sys.stderr.write('B')
time.sleep(delay)
if delay < 0.050:
delay = delay * 2 # exponential back-off
self.tb.send_pkt(payload)
# /////////////////////////////////////////////////////////////////////////////
# main
# /////////////////////////////////////////////////////////////////////////////
def main():
mods = modulation_utils.type_1_mods()
demods = modulation_utils.type_1_demods()
parser = OptionParser (option_class=eng_option, conflict_handler="resolve")
expert_grp = parser.add_option_group("Expert")
parser.add_option("-m", "--modulation", type="choice", choices=mods.keys(),
default='gmsk',
help="Select modulation from: %s [default=%%default]"
% (', '.join(mods.keys()),))
parser.add_option("-v","--verbose", action="store_true", default=False)
expert_grp.add_option("-c", "--carrier-threshold", type="eng_float", default=30,
help="set carrier detect threshold (dB) [default=%default]")
expert_grp.add_option("","--tun-device-filename", default="/dev/net/tun",
help="path to tun device file [default=%default]")
transmit_path.add_options(parser, expert_grp)
receive_path.add_options(parser, expert_grp)
for mod in mods.values():
mod.add_options(expert_grp)
for demod in demods.values():
demod.add_options(expert_grp)
fusb_options.add_options(expert_grp)
(options, args) = parser.parse_args ()
if len(args) != 0:
parser.print_help(sys.stderr)
sys.exit(1)
if options.rx_freq is None or options.tx_freq is None:
sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")
parser.print_help(sys.stderr)
sys.exit(1)
# open the TUN/TAP interface
(tun_fd, tun_ifname) = open_tun_interface(options.tun_device_filename)
# Attempt to enable realtime scheduling
r = gr.enable_realtime_scheduling()
if r == gr.RT_OK:
realtime = True
else:
realtime = False
print "Note: failed to enable realtime scheduling"
# If the user hasn't set the fusb_* parameters on the command line,
# pick some values that will reduce latency.
if options.fusb_block_size == 0 and options.fusb_nblocks == 0:
if realtime: # be more aggressive
options.fusb_block_size = gr.prefs().get_long('fusb', 'rt_block_size', 1024)
options.fusb_nblocks = gr.prefs().get_long('fusb', 'rt_nblocks', 16)
else:
options.fusb_block_size = gr.prefs().get_long('fusb', 'block_size', 4096)
options.fusb_nblocks = gr.prefs().get_long('fusb', 'nblocks', 16)
#print "fusb_block_size =", options.fusb_block_size
#print "fusb_nblocks =", options.fusb_nblocks
# instantiate the MAC
mac = cs_mac(tun_fd, verbose=True)
# build the graph (PHY)
tb = my_top_block(mods[options.modulation],
demods[options.modulation],
mac.phy_rx_callback,
options)
mac.set_top_block(tb) # give the MAC a handle for the PHY
if tb.txpath.bitrate() != tb.rxpath.bitrate():
print "WARNING: Transmit bitrate = %sb/sec, Receive bitrate = %sb/sec" % (
eng_notation.num_to_str(tb.txpath.bitrate()),
eng_notation.num_to_str(tb.rxpath.bitrate()))
print "modulation: %s" % (options.modulation,)
print "freq: %s" % (eng_notation.num_to_str(options.tx_freq))
print "bitrate: %sb/sec" % (eng_notation.num_to_str(tb.txpath.bitrate()),)
print "samples/symbol: %3d" % (tb.txpath.samples_per_symbol(),)
#print "interp: %3d" % (tb.txpath.interp(),)
#print "decim: %3d" % (tb.rxpath.decim(),)
tb.rxpath.set_carrier_threshold(options.carrier_threshold)
print "Carrier sense threshold:", options.carrier_threshold, "dB"
print
print "Allocated virtual ethernet interface: %s" % (tun_ifname,)
print "You must now use ifconfig to set its IP address. E.g.,"
print
print " $ sudo ifconfig %s 192.168.200.1" % (tun_ifname,)
print
print "Be sure to use a different address in the same subnet for each machine."
print
tb.start() # Start executing the flow graph (runs in separate threads)
mac.main_loop() # don't expect this to return...
tb.stop() # but if it does, tell flow graph to stop.
tb.wait() # wait for it to finish
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
pass
(Anyone familiar with GNU Radio will recognize this as tunnel.py)
My question is, is there a better way to move packets to and from the kernel than tun/tap? I've been looking at ipip or maybe using sockets, but I'm pretty sure those won't be very fast. Speed is what I'm most concerned with.
Remember that tunnel.py is a really, really rough example, and hasn't been updated in a while. It's not really meant to be a basis for other code, so be careful of how much you rely on the code.
Also, remember that TCP over unreliable radio links has significant issues:
http://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_over_wireless_networks

How to get duration of steaming data with GStreamer

I'm writing a program for converting media file to mp3 file with GStreamer. It works, but I would like to know the duration of audio stream, too. Following is the simplified code.
import logging
import pygst
pygst.require('0.10')
import gst
# this is very important, without this, callbacks from gstreamer thread
# will messed our program up
import gobject
gobject.threads_init()
def on_new_buffer(appsink):
buf = appsink.emit('pull-buffer')
print 'new buffer', len(buf)
def on_new_preroll(appsink):
buf = appsink.emit('pull-preroll')
print 'new preroll', len(buf)
def on_pad_added(decoder, pad):
print 'Pad added'
decoder.link(converter)
pipeline.set_state(gst.STATE_PLAYING)
def on_msg(msg):
if msg.type == gst.MESSAGE_ERROR:
error, debug = msg.parse_error()
print error, debug
elif msg.type == gst.MESSAGE_EOS:
duration = pipeline.query_duration(gst.FORMAT_TIME)
print 'Duration', duration
pipeline = gst.Pipeline('pipeline')
appsrc = gst.element_factory_make('appsrc', 'src')
decoder = gst.element_factory_make('decodebin2', 'decoder')
converter = gst.element_factory_make('audioconvert', 'converter')
lame = gst.element_factory_make('lamemp3enc', 'lame')
appsink = gst.element_factory_make('appsink', 'sink')
pipeline.add(appsrc, decoder, lame, converter, appsink)
gst.element_link_many(appsrc, decoder)
gst.element_link_many(converter, lame, appsink)
# -- setup appskink --
# -- setup decoder --
decoder.connect('pad-added', on_pad_added)
# -- setup mp3 encoder --
lame.set_property('bitrate', 128)
# -- setup appsink --
# this makes appsink emit singals
appsink.set_property('emit-signals', True)
# turns off sync to make decoding as fast as possible
appsink.set_property('sync', False)
appsink.connect('new-buffer', on_new_buffer)
appsink.connect('new-preroll', on_new_preroll)
pipeline.set_state(gst.STATE_PAUSED)
data = open(r'D:\Musics\Fiona Fung - Proud Of You.mp3', 'rb').read()
buf = gst.Buffer(data)
appsrc.emit('push-buffer', buf)
appsrc.emit('end-of-stream')
bus = pipeline.get_bus()
while True:
msg = bus.poll(gst.MESSAGE_ANY, -1)
on_msg(msg)
I didn't use filesrc as source, I use appsrc instead. I would like to read streaming data from Internet rather than a file. Strangely, as result, the output duration is -1
....
new buffer 315
new buffer 320
new buffer 335
new buffer 553
Duration (-1L, <enum GST_FORMAT_TIME of type GstFormat>)
If I switch the appsrc to filesrc, then the duration is correct
import logging
import pygst
pygst.require('0.10')
import gst
# this is very important, without this, callbacks from gstreamer thread
# will messed our program up
import gobject
gobject.threads_init()
def on_new_buffer(appsink):
buf = appsink.emit('pull-buffer')
print 'new buffer', len(buf)
def on_new_preroll(appsink):
buf = appsink.emit('pull-preroll')
print 'new preroll', len(buf)
def on_pad_added(decoder, pad):
print 'Pad added'
decoder.link(converter)
pipeline.set_state(gst.STATE_PLAYING)
def on_msg(msg):
if msg.type == gst.MESSAGE_ERROR:
error, debug = msg.parse_error()
print error, debug
elif msg.type == gst.MESSAGE_EOS:
duration = pipeline.query_duration(gst.FORMAT_TIME)
print 'Duration', duration
pipeline = gst.Pipeline('pipeline')
filesrc = gst.element_factory_make('filesrc', 'src')
decoder = gst.element_factory_make('decodebin2', 'decoder')
converter = gst.element_factory_make('audioconvert', 'converter')
lame = gst.element_factory_make('lamemp3enc', 'lame')
appsink = gst.element_factory_make('appsink', 'sink')
pipeline.add(filesrc, decoder, lame, converter, appsink)
gst.element_link_many(filesrc, decoder)
gst.element_link_many(converter, lame, appsink)
# -- setup filesrc --
filesrc.set_property('location', r'D:\Musics\Fiona Fung - Proud Of You.mp3')
# -- setup decoder --
decoder.connect('pad-added', on_pad_added)
# -- setup mp3 encoder --
lame.set_property('bitrate', 128)
# -- setup appsink --
# this makes appsink emit singals
appsink.set_property('emit-signals', True)
# turns off sync to make decoding as fast as possible
appsink.set_property('sync', False)
appsink.connect('new-buffer', on_new_buffer)
appsink.connect('new-preroll', on_new_preroll)
pipeline.set_state(gst.STATE_PAUSED)
bus = pipeline.get_bus()
while True:
msg = bus.poll(gst.MESSAGE_ANY, -1)
on_msg(msg)
As you can see, the result is correct now.
new buffer 322
new buffer 323
new buffer 315
new buffer 320
new buffer 549
Duration (189459000000L, <enum GST_FORMAT_TIME of type GstFormat>)
So, my question is - how to get correct duration of audio stream data from appsrc?
Thanks.
Unfortunately with appsrc it is not possible to get the exact duration of the stream, although with some formats that have fixed bitrate it is possible to estimate it based on file length, but other formats that use variable bitrates report an unknown length.
Because appsrc works on the incoming buffers (either push or pull model), by it receiving a chunk of data, consuming it and then either it requests or is supplied next chunk of data and therefore making the estimation of media duration almost impossible. Also, in push model it is not possible to seek media.

Categories