OpenCV Contouring hierarchy - python

How do I return the contours of the the inner square. Here is my code: I need the contours of the inner square so that I can use the corner points to image warp that area.I have used black tape to help detects the edges. enter image description here
def getBase(img, minarea=100, filter=0, draw=False):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
mask = cv2.inRange(gray, 0, 50)
result = cv2.bitwise_not(gray, gray, mask=mask)
cv2.imshow("result", result)
_, contours, hierarchy = cv2.findContours(
mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
finalContours = []
for i in contours:
area = cv2.contourArea(i)
if area > minarea:
peri = cv2.arcLength(i, True)
approx = cv2.approxPolyDP(i, 0.02 * peri, True)
bbox = cv2.boundingRect(approx)
if filter > 0:
if len(approx) == filter:
finalContours.append((len(approx), area, approx, bbox, i))
else:
finalContours.append((len(approx), area, approx, bbox, i))
finalContours = sorted(finalContours, key=lambda x: x[1], reverse=True)
if draw:
for con in finalContours:
cv2.drawContours(img, con[4], -1, (0, 0, 255), 3)
return img, finalContours

Here is the solution to detect inner rectangle and extract its left corner point, height and width.
import cv2
import numpy as np
def is_rect_contour(contour):
peri = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.01 * peri, True)
if len(approx) == 4:
return True
else:
return False
image = cv2.imread("./rect.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (7, 7), 0)
thresh = cv2.threshold(blurred, 40, 255, cv2.THRESH_BINARY_INV)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0]
refined_contours = []
for cnt in cnts:
if is_rect_contour(cnt):
refined_contours.append(cnt)
inner_rect_cnt = min(refined_contours, key=cv2.contourArea)
(x, y, w, h) = cv2.boundingRect(inner_rect_cnt)
print("x: {}, y:{}, widhth:{}, height:{}".format(x, y, w, h))
cv2.drawContours(image, [inner_rect_cnt], -1, (0, 255, 0), 2)
cv2.imshow('Contours', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
Output:
x: 425, y:126, widhth:1104, height:720

Related

Load multiple images with a time interval to overlay an object in a webcam feed

I'm trying to load several images from a folder so that they are processed in an exact same manner. The code below detects a blue object in webcam feed and overlays it with the template image img where the webcam frame is im0
hsv = cv2.cvtColor(im0, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, (0, 120, 120), (180, 255, 255))#<- blue # RED: (0, 120, 120), (10, 255, 255))
thresh = cv2.dilate(mask, None, iterations=2)
contours = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0]
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
height = 480
width = 640
if y + h < height and x + w < width:
logo = cv2.resize(img, (w, h))
img2gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
_, logo_mask = cv2.threshold(img2gray, 1, 255, cv2.THRESH_BINARY)
roi = im0[y:y+h, x:x+w]
roi[np.where(logo_mask)] = 0
roi += logo
cv2.imshow(str(p), im0)#im0 2
cv2.waitKey(1) # 1 millisecond
I am wondering how should I create a timer here so that the exact same processing happens to the img2, img3 and so on?

OpenCV: Remove doubled contours on outlines of shapes without using RETR_EXTERNAL

Open CV will register both an inner and an outer contour for an outline of a polygon.
Running with the test code below
import cv2
import numpy as np
def extract_contours():
path = 'test.png'
blank = np.zeros((184,184,3), np.uint8)
blank[:] = (255,255,255)
raw = cv2.imread(path, cv2.IMREAD_UNCHANGED)
raw = 255-raw
img = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY)
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print(len(contours))
for cnt in contours:
area = cv2.contourArea(cnt)
if area > 400:
approx = cv2.approxPolyDP(cnt, 0.009 * cv2.arcLength(cnt, True), True)
cv2.drawContours(blank, [approx], 0, (0, 0, 255), 1)
cv2.imwrite('contours.png', blank)
extract_contours()
On the image
will yield two sets of contours on the outer and inner edge as shown in
Is there any fast way to collapse the two sets of contours into a single contour, preferably the average of the two? Using I am fairly new to CV2 and computer vision in general so I don't know a lot of the tricks. I would rather not use RETR_EXTERNAL since I do not want to miss out on any nested shapes.
You can use the hierarchy variable you defined (when calling the cv2.findContours method) to determine whether a contour is on the exterior of the outline or the interior:
import cv2
import numpy as np
def extract_contours():
path = 'test.png'
blank = np.zeros((184, 184, 3), np.uint8)
blank[:] = (255, 255, 255)
raw = cv2.imread(path, cv2.IMREAD_UNCHANGED)
raw = 255 - raw
img = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY)
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for cnt, hrc in zip(contours, hierarchy[0]):
area = cv2.contourArea(cnt)
if area > 400:
approx = cv2.approxPolyDP(cnt, 0.009 * cv2.arcLength(cnt, True), True)
if hrc[2] < 0:
cv2.drawContours(blank, [approx], 0, (0, 0, 255), 1)
elif hrc[3] < 0:
cv2.drawContours(blank, [approx], 0, (0, 255, 0), 1)
cv2.imwrite('contours.png', blank)
extract_contours()
Resulting image:
Drawing the contour in between the exterior and interior contours:
import cv2
import numpy as np
def extract_contours():
path = 'test.png'
blank = np.zeros((184, 184, 3), np.uint8)
blank[:] = (255, 255, 255)
raw = cv2.imread(path, cv2.IMREAD_UNCHANGED)
raw = 255 - raw
img = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY)
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
exte = None
inte = None
for cnt, hrc in zip(contours, hierarchy[0]):
area = cv2.contourArea(cnt)
if area > 400:
approx = cv2.approxPolyDP(cnt, 0.009 * cv2.arcLength(cnt, True), True)
if hrc[2] < 0:
exte = approx.squeeze()
elif hrc[3] < 0:
inte = approx.squeeze()
exte = exte[np.lexsort(exte.T)]
inte = inte[np.lexsort(inte.T)]
box = cv2.convexHull((exte[exte[:, 0].argsort()] + inte[inte[:, 0].argsort()]) // 2)
cv2.drawContours(blank, [box], -1, (0, 0, 255), 1)
cv2.imwrite('contours.png', blank)
extract_contours()
Resulting image:

How to remove shadow of moving object from image using opencv (python)?

I am trying to do background subtraction using MOG2, It was working fine, but when there is deep shadow of a moving object then the shadow is considered as foreground object and I don't want that shadow as foreground object (I'm running MOG2 for 13 images). How can I remove these shadow so that it does not come in foreground?
Here is a sample image...
original img
image after applying MOG2
here is my sample code...
import os
import numpy as np
import cv2
import glob
import imutils
i=0
bg_flag = 0
image_list = []
bgs_list = []
#bgsfinal function
def detection(image_list):
global i
global bg_flag
bgs3_img = None
backsub = cv2.createBackgroundSubtractorMOG2(128, cv2.THRESH_BINARY, 1)
print("start2")
for k in range(len(image_list)):
frame = image_list[k]
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imwrite('./gray/'+str(k)+'.jpg', frame)
#blur = cv2.medianBlur(frame, 21)
blur = frame
bgs_list.append(blur)
for bg in range(len(bgs_list)):
rects = []
#start_time = time.time()
frame_blur = bgs_list[bg]
img = image_list[bg].copy()
s_frame = image_list[bg]
new_frame = s_frame.copy()
fgmask = backsub.apply(frame_blur)
cv2.imwrite("./bgs/"+str(i)+".jpg", fgmask)
fgmask[fgmask==127] = 0
cv2.imwrite("./dilate/"+str(i)+".jpg", fgmask)
thresh = cv2.threshold(fgmask, 128, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.erode(thresh, None, iterations = 1)
thresh = cv2.dilate(thresh, None, iterations=1)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
for c in cnts:
#M = cv2.moments(c)
A = cv2.contourArea(c)
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(new_frame, (x, y), (x + w, y + h), (0,0, 255), 1)
cv2.putText(new_frame, str(A), (x - 10, y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
cv2.imwrite("./area/"+str(i)+".jpg", new_frame)
cv2.rectangle(thresh, (x, y), (x + w, y + h), (255,255, 255), 1)
cv2.putText(thresh, str(A), (x - 10, y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.imwrite("./area_bgs/"+str(i)+".jpg", thresh)
i+=1
print("Done!")
#this folder contains 13 continuous images
images = glob.glob('./inci4/*.jpg')
for j in range(len(images)):
img = cv2.imread(images[j])
img = cv2.resize(img, (360, 640))
image_list.append(img)
detection(image_list)

Unable to clip and save the ROI/bounding box in opencv python

Im trying to save only the rectangular ROI region from a video file into images. But the entire image is getting saved with the RED rectangular ROI box on it. What am I doing wrong here ?
I tried saving rect_img but thats giving error "!_img.empty() in function 'imwrite'" ,
and not saving any images at all.
The upper_left and bottom_right coordinates are for a 1920 X 1080p video, you wil have to adjust is as per your video resolution.
import cv2
from matplotlib import pyplot as plt
import imutils
import numpy as np
import pytesseract
cam_capture = cv2.VideoCapture('1080_EDIT.webm')
upper_left = (1400, 700)
bottom_right = (700, 1000)
ctr=1 #filename counter
while True:
_, image_frame = cam_capture.read()
ctr+=1
#Rectangle marker
r = cv2.rectangle(image_frame, upper_left, bottom_right, (100, 50, 200), 5)
rect_img = image_frame[upper_left[1] : bottom_right[1], upper_left[0] : bottom_right[0]]
cv2.imwrite("rect"+str(ctr)+".jpg",r)
#print (rect_img)
#img=cv2.imread(rect_img)
gray = cv2.cvtColor(r, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 13, 15, 15)
edged = cv2.Canny(gray, 30, 200)
contours = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
contours = sorted(contours, key = cv2.contourArea, reverse = True)[:10]
screenCnt = None
for c in contours:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.018 * peri, True)
if len(approx) == 4:
screenCnt = approx
break
if screenCnt is None:
detected = 0
print ("No contour detected")
else:
detected = 1
if detected == 1:
cv2.drawContours(r, [screenCnt], -1, (0, 0, 255), 3)
cv2.imshow("image", image_frame)
if cv2.waitKey(1) % 256 == 27 :
break
cam_capture.release()
cv2.destroyAllWindows()
Solved it by
roi=r[700:1000,700:1400]
cv2.imwrite("rect"+str(ctr)+".jpg",roi)

Opencv Python - Shape detection

How to split the two rectangles in the image. Also to extract the coordinates of the rectangle with removing the extra projections. Contour detection gives the full image as a circle, instead of splitting it into two rectangles.
Please find the input image,
detect_shapes.py
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
sd = ShapeDetector()
for c in cnts:
M = cv2.moments(c)
cX = int((M["m10"] / M["m00"]))
cY = int((M["m01"] / M["m00"]))
shape = sd.detect(c)
c = c.astype("float")
#c *= ratio
c = c.astype("int")
cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
cv2.putText(image, shape, (cX, cY), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (255, 0, 0), 2)
cv2.imshow("Image", image)
cv2.waitKey(0)
shapedetector.py
class ShapeDetector:
def __init__(self):
pass
def detect(self, c):
shape = "unidentified"
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
if len(approx) == 3:
shape = "triangle"
elif len(approx) == 4:
print("value of approx", approx)
(x, y, w, h) = cv2.boundingRect(approx)
ar = w / float(h)
print("value of ar",ar)
if (ar >= 0.95 and ar <= 1.05): shape = "Square"
elif (ar <= 5 and ar >= 3): shape = "Obround"
else: shape = "rectangle"
elif len(approx) == 5:
shape = "pentagon"
elif len(approx) == 2:
shape = "line"
print("value of approx", approx)
else:
shape = "circle"
print("value of approx", approx)
return shape
My required output is the below.
As Akhilesh suggested, a morphology OPEN operation will remove the line connecting the two rectangles. An excellent Python tutorial is here: https://docs.opencv.org/3.0.0/d9/d61/tutorial_py_morphological_ops.html. Use the smallest kernel size that will work for your application to prevent too much distortion. For your test image, I used a kernel size of 5.
detect_shapes.py:
import cv2
from shapedetector import ShapeDetector
image = cv2.imread('rectangles.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY)[1]
ksize = 5
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (ksize,ksize))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# ~ cnts = cnts[0] if imutils.is_cv2() else cnts[1]
cnts = cnts[1]
sd = ShapeDetector()
for c in cnts:
M = cv2.moments(c)
if M["m00"] != 0: # prevent divide by zero
cX = int((M["m10"] / M["m00"]))
cY = int((M["m01"] / M["m00"]))
shape = sd.detect(c)
c = c.astype("float")
#c *= ratio
c = c.astype("int")
cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
cv2.putText(image, shape, (cX, cY), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (255, 0, 0), 2)
cv2.imshow("Image", image)
cv2.waitKey(0)
shapedetector.py:
import cv2
class ShapeDetector:
def __init__(self):
pass
def detect(self, c):
shape = "unidentified"
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
if len(approx) == 3:
shape = "triangle"
elif len(approx) == 4:
print("value of approx", approx)
(x, y, w, h) = cv2.boundingRect(approx)
ar = w / float(h)
print("value of ar",ar)
if (ar >= 0.95 and ar <= 1.05): shape = "Square"
elif (ar <= 5 and ar >= 3): shape = "Obround"
else: shape = "rectangle"
elif len(approx) == 5:
shape = "pentagon"
elif len(approx) == 2:
shape = "line"
print("value of approx", approx)
else:
shape = "circle"
print("value of approx", approx)
return shape
Output image:

Categories