I want to convert csv file to json file.
I have large data in csv file.
CSV Column Structure
This is my column structure in csv file . I has 200+ records.
id.oid libId personalinfo.Name personalinfo.Roll_NO personalinfo.addr personalinfo.marks.maths personalinfo.marks.physic clginfo.clgName clginfo.clgAddr clginfo.haveCert clginfo.certNo clginfo.certificates.cert_name_1 clginfo.certificates.cert_no_1 clginfo.certificates.cert_exp_1 clginfo.certificates.cert_name_2 clginfo.certificates.cert_no_2 clginfo.certificates.cert_exp_2 clginfo.isDept clginfo.NoofDept clginfo.DeptDetails.DeptName_1 clginfo.DeptDetails.location_1 clginfo.DeptDetails.establish_date_1 _v updatedAt.date
Expected Json
[{
"id":
{
"$oid": "00001"
},
"libId":11111,
"personalinfo":
{
"Name":"xyz",
"Roll_NO":101,
"addr":"aa bb cc ddd",
"marks":
[
"maths":80,
"physic":90
.....
]
},
"clginfo"
{
"clgName":"pqr",
"clgAddr":"qwerty",
"haveCert":true, //this is boolean true or false
"certNo":1, //this could be 1-10
"certificates":
[
{
"cert_name_1":"xxx",
"cert_no_1":12345,
"cert_exp.1":"20/2/20202"
},
{
"cert_name_2":"xxx",
"cert_no_2":12345,
"cert_exp_2":"20/2/20202"
},
......//could be up to 10
],
"isDept":true, //this is boolean true or false
"NoofDept":1 , //this could be 1-10
"DeptDetails":
[
{
"DeptName_1":"yyy",
"location_1":"zzz",
"establish_date_1":"1/1/1919"
},
......//up to 10 records
]
},
"__v": 1,
"updatedAt":
{
"$date": "2022-02-02T13:35:59.843Z"
}
}]
I have tried using pandas but I'm getting output as
My output
[{
"id.$oid": "00001",
"libId":11111,
"personalinfo.Name":"xyz",
"personalinfo.Roll_NO":101,
"personalinfo.addr":"aa bb cc ddd",
"personalinfo.marks.maths":80,
"personalinfo.marks.physic":90,
"clginfo.clgName":"pqr",
"clginfo.clgAddr":"qwerty",
"clginfo.haveCert":true,
"clginfo.certNo":1,
"clginfo.certificates.cert_name_1":"xxx",
"clginfo.certificates.cert_no_1":12345,
"clginfo.certificates.cert_exp.1":"20/2/20202"
"clginfo.certificates.cert_name_2":"xxx",
"clginfo.certificates.cert_no_2":12345,
"clginfo.certificates.cert_exp_2":"20/2/20202"
"clginfo.isDept":true,
"clginfo.NoofDept":1 ,
"clginfo.DeptDetails.DeptName_1":"yyy",
"clginfo.DeptDetails.location_1":"zzz",
"eclginfo.DeptDetails.stablish_date_1":"1/1/1919",
"__v": 1,
"updatedAt.$date": "2022-02-02T13:35:59.843Z",
}]
I am new to python I only know the basic Please help me getting this output.
200+ records is really tiny, so even naive solution is good.
It can't be totally generic because I don't see how it can be seen from the headers that certificates is a list, unless we rely on all names under certificates having _N at the end.
Proposed solution using only basic python:
read header row - split all column names by period. Iterate over resulting list and create nested dicts with appropriate keys and dummy values (if you want to handle lists: create array if current key ends with _N and use N as an index)
for all rows:
clone dictionary with dummy values
for each column use split keys from above to put the value into the corresponding dict. same solution from above for lists.
append the dictionary to list of rows
Related
I have some dynamically generated nested json that I want to convert to a CSV file using python. I am trying to use pandas for this. My question is - is there a way to use this and flatten the json data to put in the csv without knowing the json keys that need flattened in advance? An example of my data is this:
{
"reports": [
{
"name": "report_1",
"details": {
"id": "123",
"more info": "zyx",
"people": [
"person1",
"person2"
]
}
},
{
"name": "report_2",
"details": {
"id": "123",
"more info": "zyx",
"actions": [
"action1",
"action2"
]
}
}
]
}
More nested json objects can be dynamically generated in the "details" section that I do not know about in advance but need to be represented in their own cell in the csv.
For the above example, I'd want the csv to look something like this:
Name, Id, More Info, People_1, People_2, Actions_1, Actions_2
report_1, 123, zxy, person1, person2, ,
report_2, 123, zxy , , , action1 , action2
Here's the code I have:
data = json.loads('{"reports": [{"name": "report_1","details": {"id": "123","more info": "zyx","people": ["person1","person2"]}},{"name": "report_2","details": {"id": "123","more info": "zyx","actions": ["action1","action2"]}}]}')
df = pd.json_normalize(data['reports'])
df.to_csv("test.csv")
And here is the outcome currently:
,name,details.id,details.more info,details.people,details.actions
0,report_1,123,zyx,"['person1', 'person2']",
1,report_2,123,zyx,,"['action1', 'action2']"
I think what your are lookig for is:
https://pandas.pydata.org/docs/reference/api/pandas.json_normalize.html
If using pandas doesn't work for you, here's the more canonical Python way of doing it.
You're trying to write out a CSV file, and that implicitly means you must write out a header containing all the keys.
The constraint that you don't know the keys in advance means you can't do this in a single pass.
def convert_record_to_flat_dict(record):
# You need to figure out exactly how you want to do this; everything
# should be strings.
record.update(record.pop('details'))
return record
header = {}
rows = [[]] # Leave the header row blank for now.
csv_out = csv.writer(buffer)
for record in report:
record = convert_record_to_flat_dict(record)
for key in record.keys():
if key not in header:
header[key] = len(header)
rows[0].append(key)
row = [''] * len(header)
for key, index in header.items():
row[index] = record.get(key, '')
rows.append(row)
# And you can go back to ensure all rows have the same number of keys:
for row in rows:
row.extend([''] * (len(row) - len(header)))
Now you have a list of lists that's ready to be sent to csv.csvwriter() or the like.
If memory is an issue, another technique is to write out a temporary file and then reprocess it once you know the header.
I am new to Python and I am trying to convert the following JSON into a panda frame.
The format of json is as follows. I have reduced the columns and rows. There are around 8 columns and each json has around 20000 rows
{
"DataFeed":[
{
"Columns":[
{
"Name":"customerID",
"Category":"Dimension",
"Type":"String"
},
{
"Name":"InvoiceID",
"Category":"Dimension",
"Type":"String"
},
{
"Name":"storeloc",
"Category":"Dimension",
"Type":"String"
}
],
"Rows":[
{
"customerID":"id128404805",
"InvoiceID":"IN3956",
"storeloc":"TX359"
},
{
"customerID":"id128404806",
"InvoiceID":"IN0054",
"storeloc":"CA235"
},
{
"customerID":"id128404807",
"InvoiceID":"IN7439",
"storeloc":"AZ2309"
}
]
}
]
}
i am trying to load it into a pandas dataframe. The number of columns are the same in json file. The number of rows are around 10000.
I am trying to get into the rows and insert into a table after certain calculations.
I am trying to use json_normalize but I am struggling with navigating to the Rows level and normalizing after that. I know it must be an issue solution but I am new to working with Json. Thanks
try pd.json_normalize() with the record_path argument.
Note, you'll need pandas 0.25 or higher.
assuming your json object is j
df = pd.json_normalize(j,record_path=['DataFeed','Rows'])
print(df)
customerID InvoiceID storeloc
0 id128404805 IN3956 TX359
1 id128404806 IN0054 CA235
2 id128404807 IN7439 AZ2309
I have one json payload which is used for one service request. After processing that payload(JSON) will be stored in S3 and through Athena we can download those data in CSV format. Now in the actual scenario, there are more than 100 fields. I want to verify their value through some automated script instead of manual.
say my sample payload is similar to the following:
{
"BOOK": {
"serialno": "123",
"author": "xyz",
"yearofpublish": "2015",
"price": "16"
}, "Author": [
{
"isbn": "xxxxx", "title": "first", "publisher": "xyz", "year": "2020"
}, {
"isbn": "yyyy", "title": "second", "publisher": "zmy", "year": "2019"
}
]
}
the sample csv will be like following:
Can anyone please help me how exactly I can do it on Python? Maybe the library or dictionary?
it looks like you just want to flatten out the JSON structure. It'll be easiest to loop over the "Author" list. Since the CSV has renamed the columns you'll need some way to represent that mapping. Based only on example, this works:
import json
fin=open(some_json_file, 'r')
j=json.load(fin)
result=[]
for author in j['Author']:
val = {'book_serialno': j['BOOK']['serialno'],
'book_author': j['BOOK']['author'],
'book_yearofpublish': j['BOOK']['yearofpublish'],
'book_price': j['BOOK']['price'],
'author_isbn': author['isbn'],
'author_title': author['title'],
'author_publisher': author['publisher'],
'author_year': author['year']}
result.append(val)
This is using a dictionary to show the mapping of data points to the new column names. You might be able to get away with using a list as well. Depends how you want to use it later on. To write to a CSV:
import csv
fout=open(some_csv_file, 'w')
writer=csv.writer(fout)
writer.writerow(result[0].keys())
writer.writerows(r.values() for r in result)
This writes the column names in the first row, then the data. If you don't want the column names, just leave out the writerow(...) line.
I'm pulling data from a json endpoint, which returns a list.
Some of the elements in this list, I want to throw out. I'm only interested in certain elements.
I'm pulling the data as such:
# Pull the data
url = "https://my-endpoint.com"
user = 'user1'
pwd = 'password1'
response = requests.get(url, auth=(user, pwd))
data = json.loads(response.text)
The payload looks similar to:
[{
"apples": {
"value": 0.0
},
"oranges": {
"value": 0.0
},
"name": "testing123"
},
{
"apples": {
"value": 0.0
},
"oranges": {
"value": 0.0
},
"name": "foobar"
},
{
"apples": {
"value": 0.0
},
"oranges": {
"value": 0.0
},
"name": "testing456"
}]
Assume that the above continues on with many other elements, but with a different name. How can I pull all of the data, but exclude what I want?
From the example above, I would like to pull all data for names "testing123" and "testing456", but exclude the data from "foobar".
The new list is what I would iterate over to pull the data I need for my purposes.
There's a good deal of mismatched braces in your question, but I think I've figured it out. You have 3 (+ many more) dictionaries in a list, each with it's own apples, oranges (or other) keys, and then a name key. You want a list of dictionaries with the same structure as this one, just only the dictionaries where name in set_of_preapproved_names. For the sake of brevity I'll assume you have such a list of names called OK_NAMES:
new_data = [Dict for Dict in data if Dict ["name"] in OK_NAMES]
There you go!
If instead you wanted to eliminate all names with a specific pattern:
new_data = [Dict for Dict in data if not Dict ["name"].startswith ("foobar")]
That should work
Btw I know it's almost never a good idea to name variables after a type, I was just doing it for clarity here.
I'm trying to format a column of numbers in Google Sheets using the API (Sheets API v.4 and Python 3.6.1, specifically). A portion of my non-functional code is below. I know it's executing, as the background color of the column gets set, but the numbers still show as text, not numbers.
Put another way, I'm trying to get the equivalent of clicking on a column header (A, B, C, or whatever) then choosing the Format -> Number -> Number menu item in the GUI.
def sheets_batch_update(SHEET_ID,data):
print ( ("Sheets: Batch update"))
service.spreadsheets().batchUpdate(spreadsheetId=SHEET_ID,body=data).execute() #,valueInputOption='RAW'
data={
"requests": [
{
"repeatCell": {
"range": {
"sheetId": all_sheets['Users'],
"startColumnIndex": 19,
"endColumnIndex": 20
},
"cell": {
"userEnteredFormat": {
"numberFormat": {
"type": "NUMBER",
"pattern": "#,##0",
},
"backgroundColor": {
"red": 0.0,
"green": 0.4,
"blue": 0.4
},
}
},
"fields": "userEnteredFormat(numberFormat,backgroundColor)"
}
},
]
}
sheets_batch_update(SHEET_ID, data)
The problem is likely that your data is currently stored as strings and therefore not affected by the number format.
"userEnteredValue": {
"stringValue": "1000"
},
"formattedValue": "1000",
"userEnteredFormat": {
"numberFormat": {
"type": "NUMBER",
"pattern": "#,##0"
}
},
When you set a number format via the UI (Format > Number > ...) it's actually doing two things at once:
Setting the number format.
Converting string values to number values, if possible.
Your API call is only doing #1, so any cells that are currently set with a string value will remain a string value and will therefore be unaffected by the number format. One solution would be to go through the affected values and move the stringValue to a numberValue if the cell contains a number.
To flesh out the answer from Eric Koleda a bit more, I ended up solving this two ways, depending on how I was getting the data for the Sheet:
First, if I was appending cells to the sheet, I used a function:
def set_cell_type(cell_contents):
current_cell_contents=str(cell_contents).replace(',', '')
float_cell=re.compile("^\d+\.\d+$")
int_cell=re.compile("^\d+$")
if int_cell.search(current_cell_contents):
data = {"userEnteredValue": {"numberValue": int(current_cell_contents)}}
elif float_cell.search(current_cell_contents):
data = {"userEnteredValue": {"numberValue": float(current_cell_contents)}}
else:
data = {"userEnteredValue": {"stringValue": str(cell_contents)}}
return data
To format the cells properly. Here's the call that actually did the appending:
rows = [{"values": [set_cell_type(cell) for cell in row]} for row in daily_data_output]
data = { "requests": [ { "appendCells": { "sheetId": all_sheets['Daily record'], "rows": rows, "fields": "*", } } ], }
sheets_batch_update(SHEET_ID,data)
Second, if I was replacing a whole sheet, I did:
#convert the ints to ints and floats to floats
float_cell=re.compile("^\d+\.\d+$")
int_cell=re.compile("^\d+$")
row_list=error_message.split("\t")
i=0
while i < len(row_list):
current_cell=row_list[i].replace(',', '') #remove the commas from any numbers
if int_cell.search(current_cell):
row_list[i]=int(current_cell)
elif float_cell.search(current_cell):
row_list[i]=float(current_cell)
i+=1
error_output.append(row_list)
then the following to actually save error_output to the sheet:
data = {'values': [row for row in error_output]}
sheets_update(SHEET_ID,data,'Errors!A1')
those two techniques, coupled with the formatting calls I had already figured out in my initial question, did the trick.