I am trying to use GridSearchCV to select the best imputer strategy but I am having trouble doing that.
First, I have a data preparation pipeline for numerical and categorical columns-
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.pipeline import Pipeline, make_pipeline
num_pipe = make_pipeline(SimpleImputer(strategy='median'), StandardScaler())
cat_pipe = make_pipeline(SimpleImputer(strategy='constant', fill_value='NA'),
OneHotEncoder(sparse=False, handle_unknown='ignore'))
preprocessing = ColumnTransformer([
("num", num_pipe, num_cols),
("cat", cat_pipe, cat_cols)
])
Next, I have created a pipeline to train a support vector machine model with feature selection.
from sklearn.feature_selection import SelectFromModel
model = Pipeline([
("preprocess", preprocessing),
("feature_select", SelectFromModel(RandomForestRegressor(random_state=42))),
("regressor", SVR(kernel='rbf', C=30000.0, gamma=0.3))
])
Now, I am trying to see which imputer strategy is best for imputing missing values for numerical columns using a GridSearchCV
grid = {"model.named_steps.preprocess.transformers[0][1].named_steps['simpleimputer'].strategy":
['mean','median','most_frequent']}
grid_search = GridSearchCV(model, param_grid = grid, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)
This is where I am getting the error. The full pipeline looks like this -
Pipeline(steps=[('preprocess',
ColumnTransformer(transformers=[('num',
Pipeline(steps=[('simpleimputer',
SimpleImputer(strategy='median')),
('standardscaler',
StandardScaler())]),
['longitude', 'latitude',
'housing_median_age',
'total_rooms',
'total_bedrooms',
'population', 'households',
'median_income']),
('cat',
Pipeline(steps=[('simpleimputer',
SimpleImputer(fill_value='NA',
strategy='constant')),
('onehotencoder',
OneHotEncoder(handle_unknown='ignore',
sparse=False))]),
['ocean_proximity'])])),
('feature_select',
SelectFromModel(estimator=RandomForestRegressor(random_state=42))),
('regressor', SVR(C=30000.0, gamma=0.3))])
Can anyone tell me what I need to change in the grid search to make it work?
The way you specify the parameter is via a dictionary that maps the name of the estimator/transformer and name of the parameter you want to change to the parameters you want to try. If you have a pipeline or a pipeline of pipelines, the name is the names of all its parents combined with a double underscore. So for your case, it looks like
gird = {
"preprocess__num__simpleimputer__strategy":['median']
}
simpleimputer is simply the name that was automatically assigned by make_pipeline.
However, I think there are other issues in your code like fill_value='NA' being incorrect and actually not needed as it is not the falues to be filled but the value needed to filling missing values.
Related
i am trying make pipeline with scaler, onhotencoder, polynomialfeature, and finally linear regression model
from sklearn.pipeline import Pipeline
pipeline = Pipeline([
('scaler', StandardScaler(), num_cols),
('polynom', PolynomialFeatures(3), num_cols),
('encoder', OneHotEncoder(), cat_cols),
('linear_regression', LinearRegression() )
])
but when i fit the pipeline i have ValueError: too many values to unpack (expected 2)
pipeline.fit(x_train,y_train)
pipeline.score(x_test, y_test)
If I understand correctly, you want to apply some steps of the pipeline to specific columns. Instead of doing it by adding the column names ad the end of the pipeline stage (which is incorrect and causes the error), you have to use a ColumnTransformer. Here you can find another similar example.
In your case, you could do something like this:
import pandas as pd
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import OneHotEncoder
from sklearn.linear_model import LinearRegression
from sklearn.compose import ColumnTransformer
# Fake data.
train_data = pd.DataFrame({'n1': range(10), 'n2': range(10)})
train_data['c1'] = 0
train_data['c1'][5:] = 1
y_train = [0]*10
y_train[5:] = [1]*5
# Here I assumed you are using a DataFrame. If not, use integer indices instead of column names.
num_cols = ['n1', 'n2']
cat_cols = ['c1']
# Pipeline to transform the numerical features.
numerical_transformer = Pipeline([('scaler', StandardScaler()),
('polynom', PolynomialFeatures(3))
])
# Apply the numerical transformer only on the numerical columns.
# Spearately, apply the OneHotEncoder.
ct = ColumnTransformer([('num_transformer', numerical_transformer, num_cols),
('encoder', OneHotEncoder(), cat_cols)])
# Main pipeline for fitting.
pipeline = Pipeline([
('column_transformer', ct),
('linear_regression', LinearRegression() )
])
pipeline.fit(train_data, y_train)
Schematically, the layout of your pipeline would be like this:
I am using sklearn and mlxtend.regressor.StackingRegressor to build a stacked regression model.
For example, say I want the following small pipeline:
A Stacking Regressor with two regressors:
A pipeline which:
Performs data imputation
1-hot encodes categorical features
Performs linear regression
A pipeline which:
Performs data imputation
Performs regression using a Decision Tree
Unfortunately this is not possible, because StackingRegressor doesn't accept NaN in its input data.
This is even if its regressors know how to handle NaN, as it would be in my case where the regressors are actually pipelines which perform data imputation.
However, this is not a problem: I can just move data imputation outside the stacked regressor.
Now my pipeline looks like this:
Perform data imputation
Apply a Stacking Regressor with two regressors:
A pipeline which:
1-hot encodes categorical features
Standardises numerical features
Performs linear regression
An sklearn.tree.DecisionTreeRegressor.
One might try to implement it as follows (the entire minimal working example in this gist, with comments):
sr_linear = Pipeline(steps=[
('preprocessing', ColumnTransformer(transformers=[
('categorical',
make_pipeline(OneHotEncoder(), StandardScaler()),
make_column_selector(dtype_include='category')),
('numerical',
StandardScaler(),
make_column_selector(dtype_include=np.number))
])),
('model', LinearRegression())
])
sr_tree = DecisionTreeRegressor()
ct_imputation = ColumnTransformer(transformers=[
('categorical',
SimpleImputer(strategy='constant', fill_value='None'),
make_column_selector(dtype_include='category')),
('numerical',
SimpleImputer(strategy='median'),
make_column_selector(dtype_include=np.number))
])
stacked_regressor = Pipeline(steps=[
('imputation', ct_imputation),
('back_to_pandas', FunctionTransformer(
func=lambda values: pd.DataFrame(values, columns=ct_imputation.get_feature_names_out())
)),
('model', StackingRegressor(
regressors=[sr_linear, sr_tree],
meta_regressor=DecisionTreeRegressor(),
use_features_in_secondary=True
))
])
Note that the "outer" ColumnTransformer (in stacked_regressor) returns a numpy matrix.
But the "inner" ColumnTransformer (in sr_linear) expects a pandas.DataFrame, so I had to convert the matrix back to a data frame using step back_to_pandas.
(To use get_feature_names_out I had to use the nightly version of sklearn, because the current stable 1.0.2 version does not support it yet. Fortunately it can be installed with one simple command.)
The above code fails when calling stacked_regressor.fit(), with the following error (the entire stacktrace is again in the gist):
ValueError: make_column_selector can only be applied to pandas dataframes
However, because I added the back_to_pandas step to my outer pipeline, the inner pipelines should be getting a pandas data frame!
In fact, if I only fit_transform() my ct_imputation object, I clearly obtain a pandas data frame.
I cannot understand where and when exactly the data which gets passed around ceases to be a data frame.
Why is my code failing?
Imo the issue has to be ascribed to StackingRegressor. Actually, I am not an expert on its usage and still I have not explored its source code, but I've found this sklearn issue - #16473 which seems implying that << the concatenation [of regressors and meta_regressors] does not preserve dataframe >> (though this is referred to sklearn StackingRegressor instance, rather than on mlxtend one).
Indeed, have a look at what happens once you replace it with your sr_linear pipeline:
from sklearn.datasets import fetch_openml
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.compose import ColumnTransformer, make_column_selector
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder, FunctionTransformer
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split
from mlxtend.regressor import StackingRegressor
import numpy as np
import pandas as pd
# We use the Ames house prices dataset for this example
d = fetch_openml('house_prices', as_frame=True).frame
# Small data preprocessing:
for column in d.columns:
if d[column].dtype == object or column == 'MSSubClass':
d[column] = pd.Categorical(d[column])
d.drop(columns='Id', inplace=True)
# Prepare the data for training
label = 'SalePrice'
features = [col for col in d.columns if col != label]
X, y = d[features], d[label]
# Train the stacked regressor
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True)
sr_linear = Pipeline(steps=[
('preprocessing', ColumnTransformer(transformers=[
('categorical',
make_pipeline(OneHotEncoder(), StandardScaler(with_mean=False)),
make_column_selector(dtype_include='category')),
('numerical',
StandardScaler(),
make_column_selector(dtype_include=np.number))
])),
('model', LinearRegression())
])
ct_imputation = ColumnTransformer(transformers=[
('categorical',
SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='None'),
make_column_selector(dtype_include='category')),
('numerical',
SimpleImputer(strategy='median'),
make_column_selector(dtype_include=np.number))
])
stacked_regressor = Pipeline(steps=[
('imputation', ct_imputation),
('back_to_pandas', FunctionTransformer(
func=lambda values: pd.DataFrame(values, columns=ct_imputation.get_feature_names_out()).astype(types)
)),
('mdl', sr_linear)
])
stacked_regressor.fit(X_train, y_train)
Observe that I had to slightly modify the 'back_to_pandas' step because for some reason pd.DataFrame was changing the dtypes of the columns to 'object' only (from 'category' and 'float64'), therefore clashing with the imputation performed in sr_linear. For this reason, I've applied .astype(types) to the pd.DataFrame constructor, where types is defined as follows (based on the implementation of .get_feature_names_out() method of the SimpleImputer from the dev version of sklearn):
types = {}
for col in d.columns[:-1]:
if d[col].dtype == 'category':
types['categorical__' + col] = str(d[col].dtype)
else:
types['numerical__' + col] = str(d[col].dtype)
The correct thing to do was:
Move from mlxtend's to sklearn's StackingRegressor. I believe the former was creater when sklearn still didn't have a stacking regressor. Now there is no need to use more 'obscure' solutions. sklearn's stacking regressor works pretty well.
Move the 1-hot-encoding step to the outer pipeline, because (surprisingly!) sklearn's DecisionTreeRegressor cannot handle categorical data among the features.
A working version of the code is given below:
from sklearn.datasets import fetch_openml
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.compose import ColumnTransformer, make_column_selector
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split
from sklearn.ensemble import StackingRegressor
import numpy as np
import pandas as pd
def set_correct_categories(df: pd.DataFrame) -> pd.DataFrame:
for column in df.columns:
if df[column].dtype == object or 'MSSubClass' in column:
df[column] = pd.Categorical(df[column])
return df
d = fetch_openml('house_prices', as_frame=True).frame
d = set_correct_categories(d).drop(columns='Id')
sr_linear = Pipeline(steps=[
('preprocessing', StandardScaler()),
('model', LinearRegression())
])
ct_preprocessing = ColumnTransformer(transformers=[
('categorical',
make_pipeline(
SimpleImputer(strategy='constant', fill_value='None'),
OneHotEncoder(sparse=False, handle_unknown='ignore')
),
make_column_selector(dtype_include='category')),
('numerical',
SimpleImputer(strategy='median'),
make_column_selector(dtype_include=np.number))
])
stacking_regressor = Pipeline(steps=[
('preprocessing', ct_preprocessing),
('model', StackingRegressor(
estimators=[('linear_regression', sr_linear), ('regression_tree', DecisionTreeRegressor())],
final_estimator=DecisionTreeRegressor(),
passthrough=True
))
])
label = 'SalePrice'
features = [col for col in d.columns if col != label]
X, y = d[features], d[label]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True)
stacking_regressor.fit(X_train, y_train)
Thanks to user amiola for his answer putting me on the right track.
I want to know the names of the features within my RF model. I read here that the output from gs.best_estimator_.named_steps["stepname"].feature_importances_ would mirror my columns from my data. However, the length of gs.best_estimator_.... is 10 and I have 13 columns. Some columns were not important. From other answers around (answer1, answer2), I would have to declare something within my pipeline. But I am confused as to what to declare because both answers deal with PCA, not RF.
Here is what I have so far.
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn import datasets
# use iris as example
iris = datasets.load_iris()
X = iris.drop(['sepal_length'],axis=1)
y = iris.sepal_length
cats_feats = ['species']
X_train, X_test, y_train, y_test = \
train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=13)
# Pipeline
categorical_transformer = Pipeline(steps=[
('onehot', OneHotEncoder(handle_unknown='ignore',sparse=False))
])
# Bundle any preprocessing
preprocessor = ColumnTransformer(
transformers=[
('cat', categorical_transformer, cat_feats)
])
rf = RandomForestRegressor(random_state = 13)
mymodel = Pipeline(steps = [('preprocessor', preprocessor),
('model', rf)
])
# For this example, I used default values. In reality I do use a dictionary of parameters
gs = GridSearchCV(mymodel
,n_jobs = -1
,cv = 5
)
gs.fit(X_train,y_train)
Why the length of the feature list does not match
The length of your features does not match because all non-categorical columns are being discarded when you are using your ColumnTransformer. By default, it only keeps columns for which a transformation was specified. As a result, if you do not want this to happen, you need to do this
preprocessor = ColumnTransformer(transformers=[('cat', OneHotEncoder(), cat_feats)],
remainder='passthrough')
(I removed your categorical pipeline, which is not necessary here)
Also keep in mind that applying the OHE will add features and so the total number of features is going to be larger than what you had in the beginning.
How to get the feature names
Once you have fitted everything, you need to retrieve the feature names for the result of the OHE and the remaining numerical columns.
For the OHE columns:
cat_features = gs.best_estimator_["preprocessor"].named_transformers_["cat"].get_feature_names()
For the numerical columns, you need to declare num_feats where all numerical features are in the same order as in your original dataframe.
Then just do:
feature_names = np.concatenate((cat_features, num_feats))
PS: this is a bit cumbersome, and this might be improved in later sklearn versions, but as of now, this is the procedure
I have trouble understanding how pipelines are supposed to work in Sklearn. Following is an example using the titanic dataset.
data = pd.read_csv('datasets/train.csv')
cat_attribs = ["Embarked", "Cabin", "Ticket", "Name"]
num_pipeline = Pipeline([
('imputer', SimpleImputer(strategy="median")),
])
str_pipeline = Pipeline([
('imputer', SimpleImputer(strategy="most_frequent")),
])
full_pipeline = ColumnTransformer([
("num", num_pipeline, ["Pclass", "Age", "SibSp", "Parch", "Fare"]),
("str", str_pipeline, ["Cabin", "Sex"]),
("cat", OneHotEncoder(), ["Cabin"]),
])
full_pipeline.fit_transform(data)
I'd expect this to fill all missing NaN values (both in numeric and string) attributes, and then finally transform the Cabin attribute into a numerical one.
Instead the code ends up with the following error:
ValueError: Input contains NaN. If I remove the line calling the
OneHotEncoder and printing the transformed array, there is no NaN
value.
Hence I wonder. How am I supposed to call OneHotEncoder in this situation.
I would recommend applying OneHotEncoder to all categorical variables. Hence make that as a seperate pipeline.
As it's a single step process for numerical columns, you can use the ColumnTransformer directly.
Try this!
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer, make_column_transformer
from sklearn.preprocessing import OneHotEncoder
from sklearn.pipeline import Pipeline, make_pipeline
cat_preprocess = make_pipeline(SimpleImputer(strategy="most_frequent"), OneHotEncoder())
ct = make_column_transformer([
("num", SimpleImputer(strategy="median"), ["Pclass", "Age", "SibSp", "Parch", "Fare"]),
("str", cat_preprocess, ["Cabin", "Sex"]),
])
pipeline = Pipeline([('preprocess', ct)])
I am pretty new to pipelines in sklearn and I am running into this problem: I have a dataset that has a mixture of text and numbers i.e. certain columns have text only and rest have integers (or floating point numbers).
I was wondering if it was possible to build a pipeline where I can for example call LabelEncoder() on the text features and MinMaxScaler() on the numbers columns. The examples I have seen on the web mostly point towards using LabelEncoder() on the entire dataset and not on select columns. Is this possible? If so any pointers would be greatly appreciated.
The way I usually do it is with a FeatureUnion, using a FunctionTransformer to pull out the relevant columns.
Important notes:
You have to define your functions with def since annoyingly you can't use lambda or partial in FunctionTransformer if you want to pickle your model
You need to initialize FunctionTransformer with validate=False
Something like this:
from sklearn.pipeline import make_union, make_pipeline
from sklearn.preprocessing import FunctionTransformer
def get_text_cols(df):
return df[['name', 'fruit']]
def get_num_cols(df):
return df[['height','age']]
vec = make_union(*[
make_pipeline(FunctionTransformer(get_text_cols, validate=False), LabelEncoder()))),
make_pipeline(FunctionTransformer(get_num_cols, validate=False), MinMaxScaler())))
])
Since v0.20, you can use ColumnTransformer to accomplish this.
An Example of ColumnTransformer might help you:
# FOREGOING TRANSFORMATIONS ON 'data' ...
# filter data
data = data[data['county'].isin(COUNTIES_OF_INTEREST)]
# define the feature encoding of the data
impute_and_one_hot_encode = Pipeline([
('impute', SimpleImputer(strategy='most_frequent')),
('encode', OneHotEncoder(sparse=False, handle_unknown='ignore'))
])
featurisation = ColumnTransformer(transformers=[
("impute_and_one_hot_encode", impute_and_one_hot_encode, ['smoker', 'county', 'race']),
('word2vec', MyW2VTransformer(min_count=2), ['last_name']),
('numeric', StandardScaler(), ['num_children', 'income'])
])
# define the training pipeline for the model
neural_net = KerasClassifier(build_fn=create_model, epochs=10, batch_size=1, verbose=0, input_dim=109)
pipeline = Pipeline([
('features', featurisation),
('learner', neural_net)])
# train-test split
train_data, test_data = train_test_split(data, random_state=0)
# model training
model = pipeline.fit(train_data, train_data['label'])
You can find the entire code under: https://github.com/stefan-grafberger/mlinspect/blob/19ca0d6ae8672249891835190c9e2d9d3c14f28f/example_pipelines/healthcare/healthcare.py