How to create a grouped scatter plot in python [duplicate] - python

This question already has answers here:
Color by Column Values in Matplotlib
(6 answers)
Closed 1 year ago.
I am trying to make a simple scatter plot in pyplot using a Pandas DataFrame object, but want an efficient way of plotting two variables but have the symbols dictated by a third column (key). I have tried various ways using df.groupby, but not successfully. A sample df script is below. This colours the markers according to 'key1', but Id like to see a legend with 'key1' categories. Am I close? Thanks.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3), index = pd.date_range('2010-01-01', freq = 'M', periods = 10), columns = ('one', 'two', 'three'))
df['key1'] = (4,4,4,6,6,6,8,8,8,8)
fig1 = plt.figure(1)
ax1 = fig1.add_subplot(111)
ax1.scatter(df['one'], df['two'], marker = 'o', c = df['key1'], alpha = 0.8)
plt.show()

You can use scatter for this, but that requires having numerical values for your key1, and you won't have a legend, as you noticed.
It's better to just use plot for discrete categories like this. For example:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
np.random.seed(1974)
# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))
groups = df.groupby('label')
# Plot
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for name, group in groups:
ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=name)
ax.legend()
plt.show()
If you'd like things to look like the default pandas style, then just update the rcParams with the pandas stylesheet and use its color generator. (I'm also tweaking the legend slightly):
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
np.random.seed(1974)
# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))
groups = df.groupby('label')
# Plot
plt.rcParams.update(pd.tools.plotting.mpl_stylesheet)
colors = pd.tools.plotting._get_standard_colors(len(groups), color_type='random')
fig, ax = plt.subplots()
ax.set_color_cycle(colors)
ax.margins(0.05)
for name, group in groups:
ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=name)
ax.legend(numpoints=1, loc='upper left')
plt.show()

This is simple to do with Seaborn (pip install seaborn) as a oneliner
sns.scatterplot(x_vars="one", y_vars="two", data=df, hue="key1")
:
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(1974)
df = pd.DataFrame(
np.random.normal(10, 1, 30).reshape(10, 3),
index=pd.date_range('2010-01-01', freq='M', periods=10),
columns=('one', 'two', 'three'))
df['key1'] = (4, 4, 4, 6, 6, 6, 8, 8, 8, 8)
sns.scatterplot(x="one", y="two", data=df, hue="key1")
Here is the dataframe for reference:
Since you have three variable columns in your data, you may want to plot all pairwise dimensions with:
sns.pairplot(vars=["one","two","three"], data=df, hue="key1")
https://rasbt.github.io/mlxtend/user_guide/plotting/category_scatter/ is another option.

With plt.scatter, I can only think of one: to use a proxy artist:
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3), index = pd.date_range('2010-01-01', freq = 'M', periods = 10), columns = ('one', 'two', 'three'))
df['key1'] = (4,4,4,6,6,6,8,8,8,8)
fig1 = plt.figure(1)
ax1 = fig1.add_subplot(111)
x=ax1.scatter(df['one'], df['two'], marker = 'o', c = df['key1'], alpha = 0.8)
ccm=x.get_cmap()
circles=[Line2D(range(1), range(1), color='w', marker='o', markersize=10, markerfacecolor=item) for item in ccm((array([4,6,8])-4.0)/4)]
leg = plt.legend(circles, ['4','6','8'], loc = "center left", bbox_to_anchor = (1, 0.5), numpoints = 1)
And the result is:

You can use df.plot.scatter, and pass an array to c= argument defining the color of each point:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3), index = pd.date_range('2010-01-01', freq = 'M', periods = 10), columns = ('one', 'two', 'three'))
df['key1'] = (4,4,4,6,6,6,8,8,8,8)
colors = np.where(df["key1"]==4,'r','-')
colors[df["key1"]==6] = 'g'
colors[df["key1"]==8] = 'b'
print(colors)
df.plot.scatter(x="one",y="two",c=colors)
plt.show()

From matplotlib 3.1 onwards you can use .legend_elements(). An example is shown in Automated legend creation. The advantage is that a single scatter call can be used.
In this case:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3),
index = pd.date_range('2010-01-01', freq = 'M', periods = 10),
columns = ('one', 'two', 'three'))
df['key1'] = (4,4,4,6,6,6,8,8,8,8)
fig, ax = plt.subplots()
sc = ax.scatter(df['one'], df['two'], marker = 'o', c = df['key1'], alpha = 0.8)
ax.legend(*sc.legend_elements())
plt.show()
In case the keys were not directly given as numbers, it would look as
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3),
index = pd.date_range('2010-01-01', freq = 'M', periods = 10),
columns = ('one', 'two', 'three'))
df['key1'] = list("AAABBBCCCC")
labels, index = np.unique(df["key1"], return_inverse=True)
fig, ax = plt.subplots()
sc = ax.scatter(df['one'], df['two'], marker = 'o', c = index, alpha = 0.8)
ax.legend(sc.legend_elements()[0], labels)
plt.show()

You can also try Altair or ggpot which are focused on declarative visualisations.
import numpy as np
import pandas as pd
np.random.seed(1974)
# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))
Altair code
from altair import Chart
c = Chart(df)
c.mark_circle().encode(x='x', y='y', color='label')
ggplot code
from ggplot import *
ggplot(aes(x='x', y='y', color='label'), data=df) +\
geom_point(size=50) +\
theme_bw()

It's rather hacky, but you could use one1 as a Float64Index to do everything in one go:
df.set_index('one').sort_index().groupby('key1')['two'].plot(style='--o', legend=True)
Note that as of 0.20.3, sorting the index is necessary, and the legend is a bit wonky.

seaborn has a wrapper function scatterplot that does it more efficiently.
sns.scatterplot(data = df, x = 'one', y = 'two', data = 'key1'])

Related

Line chart to surface chart

[UPDATE: Sorry for not providing the piece where the author of the codes create example data. I have updated the codes]
I found an example of a 3D mesh line chart that satisfied what I need (colouring change with level on z dimension). However, instead of line, I want surface plot. How can I change the codes to have the 3d surface plot?
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import animation, rc
from matplotlib.cm import get_cmap
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.font_manager import FontProperties
from matplotlib.collections import LineCollection
from matplotlib.colors import ListedColormap
from mpl_toolkits.mplot3d.art3d import Line3DCollection
index_returns = np.random.normal(loc=1e-4, scale=5e-3, size=(783, 9))
index_returns = np.vstack((np.zeros(shape=(1, 9)) + 100, index_returns))
index_prices = np.cumprod(1 + index_returns, axis=0)
window = 261
df = np.zeros(shape=(index_prices.shape[0]-window, 9))
for i in range(window, index_prices.shape[0], 1):
df[i-window] = (index_prices[i]/index_prices[i-window]) - 1
index = pd.date_range('2019-01-01', periods=index_prices.shape[0]-window, freq='B')
columns = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
df = pd.DataFrame(df, index=index, columns=columns)
# create the figure
fig = plt.figure(figsize=(14.4, 9))
ax = fig.add_subplot(111, projection='3d')
fig.patch.set_alpha(1)
# get the cmap to use
cmap = get_cmap('RdYlGn')
# get the slice based on data frame
current_slice = df.values[:261, :]
index_names = df.columns
index_dates = df.index
# list holding the lines
lines = []
# for each index...
for i in range(current_slice.shape[1]):
# get the coordinates
x = np.array(np.arange(current_slice.shape[0]))
y = np.tile(i, current_slice.shape[0])
z = np.array(current_slice[:, i])
# crete points and segments to color
points = np.array([x, y, z]).T.reshape(-1, 1, 3)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
# Create a continuous norm to map from data points to colors
norm = plt.Normalize(-0.19, 0.19)
lc = Line3DCollection(segments, cmap=cmap, norm=norm, zorder=current_slice.shape[1]-i)
# Set the values used for colormapping
lc.set_array(z)
lc.set_linewidth(2)
lc.set_color(cmap(z[-1] * 2.5 + 0.5))
lc.set_label(index_names[i])
lines.append(ax.add_collection(lc))
# add the grids
ax.legend(loc='center right', bbox_to_anchor=(1.1, 0.46), fancybox=True, facecolor=(.95,.95,.95,1), framealpha=1, shadow=False, frameon=True, ncol=1, columnspacing=0, prop={'family': 'DejaVu Sans Mono'})
ax.set_zlabel('Rolling Equity 1Y', labelpad=10)
ax.set_zlim(-0.39, 0.39)
ax.set_zticklabels([' '* 3 + '{:.0%}'.format(val) for val in ax.get_zticks()], fontdict={'verticalalignment': 'center', 'horizontalalignment': 'center'})
ax.set_xlabel('Date', labelpad=30)
ax.set_xlim(0, current_slice.shape[0]-1)
ax.set_xticklabels([index_dates[int(val)].strftime('%m/%y') for val in ax.get_xticks()[:-1]] + [''], rotation=0, fontdict={'verticalalignment': 'top', 'horizontalalignment': 'center'})
ax.set_yticks(np.arange(current_slice.shape[1]))
ax.set_yticklabels([index_names[i] for i in range(current_slice.shape[1])], rotation=-15, fontdict={'verticalalignment': 'center', 'horizontalalignment': 'left'})
# show the plot
plt.show()

boxplot show max and min fliers results in TypeError: 'AxesSubplot' object is not subscriptable

I am preparing box plots with a whisker interval of [2,98]. The issue is that I am working with air quality data and have a large range of data points, so the outliers take up the entire figure and overshadow the boxplots. I would like to plot the max and min outliers only and have tried the method from Matplotlib boxplot show only max and min fliers, however, I get an error message that says TypeError: 'AxesSubplot' object is not subscriptable.
Here is my code:
fig,ax = plt.subplots(1, figsize=(8,6))
g = sns.boxplot(data=mda8, orient='v', width = 0.7, whis = (2,98))
fliers = g['fliers']
for fly in fliers:
fdata=fly.get_data
fly.set_data([fdata[0][0],fdata[0][-1],fdata[1][0],fdata[1][-1]])
xvalues = ['Niland', 'El Centro', 'Calexico']
plt.xticks(np.arange(3), xvalues, fontsize=12)
ax.set_ylabel('Ozone MDA8 (ppb)',fontsize=15)
ax.set_ylim(0,105)
plt.show()
Here's some sample data:
mda8 = pd.DataFrame({
'T1':[35.000000, 32.125000, 32.000000, 35.250000, 28.875000, 28.500000, 29.375000, 25.125000, 34.166667, 35.250000],
'T2':[28.375, 30.750, 33.250, 34.000, 32.875, 30.250, 29.875, 100.409, 29.625, 1.232],
'T3':[34.250, 102.232, 28.250, 33.000, 27.625, 21.500, 28.375, 30.250, 3.454, 33.750]})
I need help with plotting the max and min outliers only and am open to doing another method besides the one that I tried here.
EDIT here's the link to my csv file https://drive.google.com/file/d/1E3A0UAYCbSN53JXtfsbrA4i_Phci_JWf/view?usp=sharing
A possible approach could be:
hide the outliers plotted by seaborn.boxplot by passing showfliers = False parameter:
sns.boxplot(data=mda8, orient='v', width = 0.7, whis = (2,98), showfliers = False)
get the list of outliers for each column, find maximum and minimum and plot only them:
outliers = {col: list(stat['fliers']) for col in mda8.columns for stat in boxplot_stats(mda8[col])}
min_max_outliers = {key: [np.min(value), np.max(value)] if value != [] else [] for key, value in outliers.items()}
i = 0
for key, value in min_max_outliers.items():
if value != []:
ax.scatter([i, i], value, marker = 'd', facecolor = 'black')
i += 1
Complete Code
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from matplotlib.cbook import boxplot_stats
mda8 = pd.DataFrame({'T1': [35.000000, 32.125000, 32.000000, 35.250000, 28.875000, 28.500000, 29.375000, 25.125000, 34.166667, 35.250000],
'T2': [28.375, 30.750, 33.250, 34.000, 32.875, 30.250, 29.875, 100.409, 29.625, 1.232],
'T3': [34.250, 102.232, 28.250, 33.000, 27.625, 21.500, 28.375, 30.250, 3.454, 33.750]})
fig,ax = plt.subplots(1, figsize=(8,6))
sns.boxplot(data=mda8, orient='v', width = 0.7, whis = (2,98), showfliers = False)
outliers = {col: list(stat['fliers']) for col in mda8.columns for stat in boxplot_stats(mda8[col])}
min_max_outliers = {key: [np.min(value), np.max(value)] if value != [] else [] for key, value in outliers.items()}
i = 0
for key, value in min_max_outliers.items():
if value != []:
ax.scatter([i, i], value, marker = 'd', facecolor = 'black')
i += 1
xvalues = ['Niland', 'El Centro', 'Calexico']
plt.xticks(np.arange(3), xvalues, fontsize=12)
ax.set_ylabel('Ozone MDA8 (ppb)',fontsize=15)
ax.set_ylim(0,105)
plt.show()
EDIT
Working on the data your provided, if I plot them as they are:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
mda8 = pd.read_csv(r'data/MDA8_allregions.csv')
mda8 = mda8.drop(['date', 'date.1', 'date.2'], axis = 1)
fig, ax = plt.subplots(1, figsize = (8, 6))
sns.boxplot(data = mda8, orient = 'v', width = 0.7, whis = (2, 98), showfliers = True)
plt.show()
I get:
In the code above I change the parameter showfliers = False, in order to hide outliers.
Then, as suggested by JohanC in the comment, a simpler way to plot outliers is to plot min and max for each column:
for i, col in enumerate(mda8.columns, 0):
ax.scatter([i, i], [mda8[col].min(), mda8[col].max()], marker = 'd', facecolor = 'black')
Complete Code
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
mda8 = pd.read_csv(r'data/MDA8_allregions.csv')
mda8 = mda8.drop(['date', 'date.1', 'date.2'], axis = 1)
fig, ax = plt.subplots(1, figsize = (8, 6))
sns.boxplot(data = mda8, orient = 'v', width = 0.7, whis = (2, 98), showfliers = False)
for i, col in enumerate(mda8.columns, 0):
ax.scatter([i, i], [mda8[col].min(), mda8[col].max()], marker = 'd', facecolor = 'black')
plt.show()

Plot colormap to unique labels - Matplotlib

I'm hoping to map varying colours to a quiver plot determined by the associated label. Using below, unique items are defined by the col Label. I'm hoping to plot the same color for each unique item in Label.
Note: The amount of unique items may vary across df's so I don't want to hardcode colors. I'm hoping to take any amount of unique labels and pass a colormap.
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import random
import seaborn as sns
df = pd.DataFrame(np.random.randint(0,20,size=(100, 4)), columns=list('XYUV'))
labels = df['X'].apply(lambda x: random.choice(['A', 'B', 'C', 'D']))
df['Label'] = labels
X = df['X']
Y = df['Y']
U = df['U']
V = df['V']
fig,ax = plt.subplots()
ax.set_xlim(-10, 30)
ax.set_ylim(-10, 30)
color_labels = df['Label'].unique()
col_values = sns.color_palette('Set2')
color_map = dict(zip(color_labels, col_values))
ax.quiver(X, Y, (U-X), (V-Y), angles = 'xy', scale_units = 'xy', scale = 1, color = color_map)
You can create a list of colors for each vector with
colors = [color_map[label] for label in df['Label'].values]
With the colors,
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import random
import seaborn as sns
import matplotlib.patches as mpatches
data = np.vstack((np.random.randint(0,10,size=(25, 4)),
np.random.randint(10,20,size=(25, 4)),
np.random.randint(20,30,size=(25, 4)),
np.random.randint(30,40,size=(25, 4))))
df = pd.DataFrame(data, columns=list('XYUV'))
df['Label'] = np.repeat(np.array(['A','B','C','D'])[:,None],25)
X = df['X']
Y = df['Y']
U = df['U']
V = df['V']
fig,ax = plt.subplots()
ax.set_xlim(-10, 40)
ax.set_ylim(-10, 40)
color_labels = df['Label'].unique()
col_values = sns.color_palette('Set2')
color_map = dict(zip(color_labels, col_values))
colors = [color_map[label] for label in df['Label'].values]
ax.quiver(X, Y, (U-X), (V-Y), angles = 'xy', scale_units = 'xy', scale = 1, color = colors,)
ax.legend(handles=[mpatches.Patch(color=v,label=k) for k,v in color_map.items()])

How to use a column as the color dimension when drawing with plotly.graph_objects.Scatter?

I've been able to easily use a column as the color variable when drawing with plotly express, but struggled to do the same thing with plotly.graph_objects.Scatter. Also, all the lines are connected, how to separate them?
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import pandas as pd
x_values = range(1, 11)
y_values = ['a', 'b', 'c']
xs, ys, zs = [], [], []
for y in y_values:
for x in x_values:
#print(x, y)
xs.append(x)
ys.append(y)
zs.append(np.random.rand())
d = pd.DataFrame({'x': xs, 'y': ys, 'z': zs})
px.line(d, x='x', y='z', color='y')
fig = go.Figure(data=go.Scatter(
x=d['x'],
y=d['y'],
mode='lines'
))
fig.show()
EDIT:
I understand we can use different traces for the lines, but I'm really looking to replicate what Plotly Express can do.
Here you should transform your df long to wide, as example with pd.pivot_table and add a trace for every column you need.
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import pandas as pd
x_values = list(range(1, 11))
y_values = ['a', 'b', 'c']
df = pd.DataFrame({"x":x_values*len(y_values),
"y":np.repeat(y_values,len(x_values)),
"z":np.random.rand(len(x_values)*len(y_values))})
# px.line(df, x='x', y='z', color='y')
# long 2 wide
pv = pd.pivot_table(df,
index = "x",
columns="y",
values = "z")\
.reset_index()
fig = go.Figure()
for col in pv.columns[1:]:
fig.add_trace(go.Scatter(
x=pv['x'],
y=pv[col],
mode='lines',
name=col
))
fig.show()

Scatter plots in Pandas/Pyplot: How to plot by category [duplicate]

This question already has answers here:
Color by Column Values in Matplotlib
(6 answers)
Closed 1 year ago.
I am trying to make a simple scatter plot in pyplot using a Pandas DataFrame object, but want an efficient way of plotting two variables but have the symbols dictated by a third column (key). I have tried various ways using df.groupby, but not successfully. A sample df script is below. This colours the markers according to 'key1', but Id like to see a legend with 'key1' categories. Am I close? Thanks.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3), index = pd.date_range('2010-01-01', freq = 'M', periods = 10), columns = ('one', 'two', 'three'))
df['key1'] = (4,4,4,6,6,6,8,8,8,8)
fig1 = plt.figure(1)
ax1 = fig1.add_subplot(111)
ax1.scatter(df['one'], df['two'], marker = 'o', c = df['key1'], alpha = 0.8)
plt.show()
You can use scatter for this, but that requires having numerical values for your key1, and you won't have a legend, as you noticed.
It's better to just use plot for discrete categories like this. For example:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
np.random.seed(1974)
# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))
groups = df.groupby('label')
# Plot
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for name, group in groups:
ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=name)
ax.legend()
plt.show()
If you'd like things to look like the default pandas style, then just update the rcParams with the pandas stylesheet and use its color generator. (I'm also tweaking the legend slightly):
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
np.random.seed(1974)
# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))
groups = df.groupby('label')
# Plot
plt.rcParams.update(pd.tools.plotting.mpl_stylesheet)
colors = pd.tools.plotting._get_standard_colors(len(groups), color_type='random')
fig, ax = plt.subplots()
ax.set_color_cycle(colors)
ax.margins(0.05)
for name, group in groups:
ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=name)
ax.legend(numpoints=1, loc='upper left')
plt.show()
This is simple to do with Seaborn (pip install seaborn) as a oneliner
sns.scatterplot(x_vars="one", y_vars="two", data=df, hue="key1")
:
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(1974)
df = pd.DataFrame(
np.random.normal(10, 1, 30).reshape(10, 3),
index=pd.date_range('2010-01-01', freq='M', periods=10),
columns=('one', 'two', 'three'))
df['key1'] = (4, 4, 4, 6, 6, 6, 8, 8, 8, 8)
sns.scatterplot(x="one", y="two", data=df, hue="key1")
Here is the dataframe for reference:
Since you have three variable columns in your data, you may want to plot all pairwise dimensions with:
sns.pairplot(vars=["one","two","three"], data=df, hue="key1")
https://rasbt.github.io/mlxtend/user_guide/plotting/category_scatter/ is another option.
With plt.scatter, I can only think of one: to use a proxy artist:
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3), index = pd.date_range('2010-01-01', freq = 'M', periods = 10), columns = ('one', 'two', 'three'))
df['key1'] = (4,4,4,6,6,6,8,8,8,8)
fig1 = plt.figure(1)
ax1 = fig1.add_subplot(111)
x=ax1.scatter(df['one'], df['two'], marker = 'o', c = df['key1'], alpha = 0.8)
ccm=x.get_cmap()
circles=[Line2D(range(1), range(1), color='w', marker='o', markersize=10, markerfacecolor=item) for item in ccm((array([4,6,8])-4.0)/4)]
leg = plt.legend(circles, ['4','6','8'], loc = "center left", bbox_to_anchor = (1, 0.5), numpoints = 1)
And the result is:
You can use df.plot.scatter, and pass an array to c= argument defining the color of each point:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3), index = pd.date_range('2010-01-01', freq = 'M', periods = 10), columns = ('one', 'two', 'three'))
df['key1'] = (4,4,4,6,6,6,8,8,8,8)
colors = np.where(df["key1"]==4,'r','-')
colors[df["key1"]==6] = 'g'
colors[df["key1"]==8] = 'b'
print(colors)
df.plot.scatter(x="one",y="two",c=colors)
plt.show()
From matplotlib 3.1 onwards you can use .legend_elements(). An example is shown in Automated legend creation. The advantage is that a single scatter call can be used.
In this case:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3),
index = pd.date_range('2010-01-01', freq = 'M', periods = 10),
columns = ('one', 'two', 'three'))
df['key1'] = (4,4,4,6,6,6,8,8,8,8)
fig, ax = plt.subplots()
sc = ax.scatter(df['one'], df['two'], marker = 'o', c = df['key1'], alpha = 0.8)
ax.legend(*sc.legend_elements())
plt.show()
In case the keys were not directly given as numbers, it would look as
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3),
index = pd.date_range('2010-01-01', freq = 'M', periods = 10),
columns = ('one', 'two', 'three'))
df['key1'] = list("AAABBBCCCC")
labels, index = np.unique(df["key1"], return_inverse=True)
fig, ax = plt.subplots()
sc = ax.scatter(df['one'], df['two'], marker = 'o', c = index, alpha = 0.8)
ax.legend(sc.legend_elements()[0], labels)
plt.show()
You can also try Altair or ggpot which are focused on declarative visualisations.
import numpy as np
import pandas as pd
np.random.seed(1974)
# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))
Altair code
from altair import Chart
c = Chart(df)
c.mark_circle().encode(x='x', y='y', color='label')
ggplot code
from ggplot import *
ggplot(aes(x='x', y='y', color='label'), data=df) +\
geom_point(size=50) +\
theme_bw()
It's rather hacky, but you could use one1 as a Float64Index to do everything in one go:
df.set_index('one').sort_index().groupby('key1')['two'].plot(style='--o', legend=True)
Note that as of 0.20.3, sorting the index is necessary, and the legend is a bit wonky.
seaborn has a wrapper function scatterplot that does it more efficiently.
sns.scatterplot(data = df, x = 'one', y = 'two', data = 'key1'])

Categories