I want to test a a weighted SDP problem in cvxpy, namely min_{X > 0} | P * X - B |^2, where * is the Hadamard product. I started with the simple case with P being the identity matrix. This is the code I wrote for the problem.
import cvxpy as cp
import numpy as np
import random
##parameters
random.seed(1)
n = 50
CN = 10
#generate real A
D = np.diag(1000 * np.logspace(-np.log(CN), 0, n))
Q, R = np.linalg.qr(np.random.normal(size = (n,n)))
A = Q # D # Q
P = np.ones((n,n))
PA = np.multiply(P, A)
X = cp.Variable((n,n), symmetric=True)
X.value = np.identity(n)
constraints = [X >> 0]
prob = cp.Problem(cp.Minimize(0.5 * cp.norm(P # A - PA, 'fro')),
constraints)
prob.solve()
X.value
I used # in place of * because matrix multiplication with identity is equal to that with Hardamard product ( I also can't find the atom function for element-wise multiplication in cvxpy; if someone knows it, it would be really helpful if you can inform me).
After testing out, I consistently get the optimal value for X as the zero matrix. I think there must be some error in my implementation but I cannot tell which is wrong. Any help will be much appreciated.
Related
I'm trying to do a particle in a box simulation with no potential field. Took me some time to find out that simple explicit and implicit methods break unitary time evolution so I resorted to crank-nicolson, which is supposed to be unitary. But when I try it I find that it still is not so. I'm not sure what I'm missing.. The formulation I used is this:
where T is the tridiagonal Toeplitz matrix for the second derivative wrt x and
The system simplifies to
The A and B matrices are:
I just solve this linear system for using the sparse module. The math makes sense and I found the same numeric scheme in some papers so that led me to believe my code is where the problem is.
Here's my code so far:
import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import toeplitz
from scipy.sparse.linalg import spsolve
from scipy import sparse
# Spatial discretisation
N = 100
x = np.linspace(0, 1, N)
dx = x[1] - x[0]
# Time discretisation
K = 10000
t = np.linspace(0, 10, K)
dt = t[1] - t[0]
alpha = (1j * dt) / (2 * (dx ** 2))
A = sparse.csc_matrix(toeplitz([1 + 2 * alpha, -alpha, *np.zeros(N-4)]), dtype=np.cfloat) # 2 less for both boundaries
B = sparse.csc_matrix(toeplitz([1 - 2 * alpha, alpha, *np.zeros(N-4)]), dtype=np.cfloat)
# Initial and boundary conditions (localized gaussian)
psi = np.exp((1j * 50 * x) - (200 * (x - .5) ** 2))
b = B.dot(psi[1:-1])
psi[0], psi[-1] = 0, 0
for index, step in enumerate(t):
# Within the domain
psi[1:-1] = spsolve(A, b)
# Enforce boundaries
# psi[0], psi[N - 1] = 0, 0
b = B.dot(psi[1:-1])
# Square integration to show if it's unitary
print(np.trapz(np.abs(psi) ** 2, dx))
You are relying on the Toeplitz constructor to produce a symmetric matrix, so that the entries below the diagonal are the same as above the diagonal. However, the documentation for scipy.linalg.toeplitz(c, r=None) says not "transpose", but
*"If r is not given, r == conjugate(c) is assumed."
so that the resulting matrix is self-adjoint. In this case this means that the entries above the diagonal have their sign switched.
It makes no sense to first construct a dense matrix and then extract a sparse representation. Construct it as sparse tridiagonal matrix from the start, using scipy.sparse.diags
A = sparse.diags([ (N-3)*[-alpha], (N-2)*[1+2*alpha], (N-3)*[-alpha]], [-1,0,1], format="csc");
B = sparse.diags([ (N-3)*[ alpha], (N-2)*[1-2*alpha], (N-3)*[ alpha]], [-1,0,1], format="csc");
I am trying to find the minimum of a natural cubic spline. I have written the following code to find the natural cubic spline. (I have been given test data and have confirmed this method is correct.) Now I can not figure out how to find the minimum of this function.
This is the data
xdata = np.linspace(0.25, 2, 8)
ydata = 10**(-12) * np.array([1,2,1,2,3,1,1,2])
This is the function
import scipy as sp
import numpy as np
import math
from numpy.linalg import inv
from scipy.optimize import fmin_slsqp
from scipy.optimize import minimize, rosen, rosen_der
def phi(x, xd,yd):
n = len(xd)
h = np.array(xd[1:n] - xd[0:n-1])
f = np.divide(yd[1:n] - yd[0:(n-1)],h)
q = [0]*(n-2)
for i in range(n-2):
q[i] = 3*(f[i+1] - f[i])
A = np.zeros(((n-2),(n-2)))
#define A for j=0
A[0,0] = 2*(h[0] + h[1])
A[0,1] = h[1]
#define A for j = n-2
A[-1,-2] = h[-2]
A[-1,-1] = 2*(h[-2] + h[-1])
#define A for in the middle
for j in range(1,(n-3)):
A[j,j-1] = h[j]
A[j,j] = 2*(h[j] + h[j+1])
A[j,j+1] = h[j+1]
Ainv = inv(A)
B = Ainv.dot(q)
b = (n)*[0]
b[1:(n-1)] = B
# now we find a, b, c and d
a = [0]*(n-1)
c = [0]*(n-1)
d = [0]*(n-1)
s = [0]*(n-1)
for r in range(n-1):
a[r] = 1/(3*h[r]) * (b[r + 1] - b[r])
c[r] = f[r] - h[r]*((2*b[r] + b[r+1])/3)
d[r] = yd[r]
#solution 1 start
for m in range(n-1):
if xd[m] <= x <= xd[m+1]:
s = a[m]*(x - xd[m])**3 + b[m]*(x-xd[m])**2 + c[m]*(x-xd[m]) + d[m]
return(s)
#solution 1 end
I want to find the minimum on the domain of my xdata, so a fmin didn't work as you can not define bounds there. I tried both fmin_slsqp and minimize. They are not compatible with the phi function I wrote so I rewrote phi(x, xd,yd) and added an extra variable such that phi is phi(x, xd,yd, m). M indicates in which subfunction of the spline we are calculating a solution (from x_m to x_m+1). In the code we replaced #solution 1 by the following
# solution 2 start
return(a[m]*(x - xd[m])**3 + b[m]*(x-xd[m])**2 + c[m]*(x-xd[m]) + d[m])
# solution 2 end
To find the minimum in a domain x_m to x_(m+1) we use the following code: (we use an instance where m=0, so x from 0.25 to 0.5. The initial guess is 0.3)
fmin_slsqp(phi, x0 = 0.3, bounds=([(0.25,0.5)]), args=(xdata, ydata, 0))
What I would then do (I know it's crude), is iterate this with a for loop to find the minimum on all subdomains and then take the overall minimum. However, the function fmin_slsqp constantly returns the initial guess as the minimum. So there is something wrong, which I do not know how to fix. If you could help me this would be greatly appreciated. Thanks for reading this far.
When I plot your function phi and the data you feed in, I see that its range is of the order of 1e-12. However, fmin_slsqp is unable to handle that level of precision and fails to find any change in your objective.
The solution I propose is scaling the return of your objective by the same order of precision like so:
return(s*1e12)
Then you get good results.
>>> sol = fmin_slsqp(phi, x0=0.3, bounds=([(0.25, 0.5)]), args=(xdata, ydata))
>>> print(sol)
Optimization terminated successfully. (Exit mode 0)
Current function value: 1.0
Iterations: 2
Function evaluations: 6
Gradient evaluations: 2
[ 0.25]
I want to maximize Ax = b where A is an m-by-n matrix and x is an n-vector. The constraints on x are that its entries sum to 1 and that A x >= 0.
Using CVXPY instead:
from cvxpy import *
import numpy as np
m = 30
n = 10
# generate random data
np.random.seed(1)
A = np.random.randn(m,n)
b = np.random.randn(m)
# optimization variable
x = Variable(n)
# build optimization problem
prob = Problem( Maximize(sum(A*x)), [ sum(x) == 1, A*x >= 0 ])
# solve optimization problem and prints results
result = prob.solve()
print x.value
This optimization problem is unbounded and, thus, there is no optimal solution.
I am trying to solve the following problem via a Finite Difference Approximation in Python using NumPy:
$u_t = k \, u_{xx}$, on $0 < x < L$ and $t > 0$;
$u(0,t) = u(L,t) = 0$;
$u(x,0) = f(x)$.
I take $u(x,0) = f(x) = x^2$ for my problem.
Programming is not my forte so I need help with the implementation of my code. Here is my code (I'm sorry it is a bit messy, but not too bad I hope):
## This program is to implement a Finite Difference method approximation
## to solve the Heat Equation, u_t = k * u_xx,
## in 1D w/out sources & on a finite interval 0 < x < L. The PDE
## is subject to B.C: u(0,t) = u(L,t) = 0,
## and the I.C: u(x,0) = f(x).
import numpy as np
import matplotlib.pyplot as plt
# definition of initial condition function
def f(x):
return x^2
# parameters
L = 1
T = 10
N = 10
M = 100
s = 0.25
# uniform mesh
x_init = 0
x_end = L
dx = float(x_end - x_init) / N
#x = np.zeros(N+1)
x = np.arange(x_init, x_end, dx)
x[0] = x_init
# time discretization
t_init = 0
t_end = T
dt = float(t_end - t_init) / M
#t = np.zeros(M+1)
t = np.arange(t_init, t_end, dt)
t[0] = t_init
# Boundary Conditions
for m in xrange(0, M):
t[m] = m * dt
# Initial Conditions
for j in xrange(0, N):
x[j] = j * dx
# definition of solution to u_t = k * u_xx
u = np.zeros((N+1, M+1)) # NxM array to store values of the solution
# finite difference scheme
for j in xrange(0, N-1):
u[j][0] = x**2 #initial condition
for m in xrange(0, M):
for j in xrange(1, N-1):
if j == 1:
u[j-1][m] = 0 # Boundary condition
else:
u[j][m+1] = u[j][m] + s * ( u[j+1][m] - #FDM scheme
2 * u[j][m] + u[j-1][m] )
else:
if j == N-1:
u[j+1][m] = 0 # Boundary Condition
print u, t, x
#plt.plot(t, u)
#plt.show()
So the first issue I am having is I am trying to create an array/matrix to store values for the solution. I wanted it to be an NxM matrix, but in my code I made the matrix (N+1)x(M+1) because I kept getting an error that the index was going out of bounds. Anyways how can I make such a matrix using numpy.array so as not to needlessly take up memory by creating a (N+1)x(M+1) matrix filled with zeros?
Second, how can I "access" such an array? The real solution u(x,t) is approximated by u(x[j], t[m]) were j is the jth spatial value, and m is the mth time value. The finite difference scheme is given by:
u(x[j],t[m+1]) = u(x[j],t[m]) + s * ( u(x[j+1],t[m]) - 2 * u(x[j],t[m]) + u(x[j-1],t[m]) )
(See here for the formulation)
I want to be able to implement the Initial Condition u(x[j],t[0]) = x**2 for all values of j = 0,...,N-1. I also need to implement Boundary Conditions u(x[0],t[m]) = 0 = u(x[N],t[m]) for all values of t = 0,...,M. Is the nested loop I created the best way to do this? Originally I tried implementing the I.C. and B.C. under two different for loops which I used to calculate values of the matrices x and t (in my code I still have comments placed where I tried to do this)
I think I am just not using the right notation but I cannot find anywhere in the documentation for NumPy how to "call" such an array so at to iterate through each value in the proposed scheme. Can anyone shed some light on what I am doing wrong?
Any help is very greatly appreciated. This is not homework but rather to understand how to program FDM for Heat Equation because later I will use similar methods to solve the Black-Scholes PDE.
EDIT: So when I run my code on line 60 (the last "else" that I use) I get an error that says invalid syntax, and on line 51 (u[j][0] = x**2 #initial condition) I get an error that reads "setting an array element with a sequence." What does that mean?
I have a system of equations in the form of A*x = B where [A] is a tridiagonal coefficient matrix. Using the Numpy solver numpy.linalg.solve I can solve the system of equations for x.
See example below of how I develop the tridiagonal [A] martix. the {B} vector, and solve for x:
# Solve system of equations with a tridiagonal coefficient matrix
# uses numpy.linalg.solve
# use Python 3 print function
from __future__ import print_function
from __future__ import division
# modules
import numpy as np
import time
ti = time.clock()
#---- Build [A] array and {B} column vector
m = 1000 # size of array, make this 8000 to see time benefits
A = np.zeros((m, m)) # pre-allocate [A] array
B = np.zeros((m, 1)) # pre-allocate {B} column vector
A[0, 0] = 1
A[0, 1] = 2
B[0, 0] = 1
for i in range(1, m-1):
A[i, i-1] = 7 # node-1
A[i, i] = 8 # node
A[i, i+1] = 9 # node+1
B[i, 0] = 2
A[m-1, m-2] = 3
A[m-1, m-1] = 4
B[m-1, 0] = 3
print('A \n', A)
print('B \n', B)
#---- Solve using numpy.linalg.solve
x = np.linalg.solve(A, B) # solve A*x = B for x
print('x \n', x)
#---- Elapsed time for each approach
print('NUMPY time', time.clock()-ti, 'seconds')
So my question relates to two sections of the above example:
Since I am dealing with a tridiagonal matrix for [A], also called a banded matrix, is there a more efficient way to solve the system of equations instead of using numpy.linalg.solve?
Also, is there a better way to create the tridiagonal matrix instead of using a for-loop?
The above example runs on Linux in about 0.08 seconds according to the time.clock() function.
The numpy.linalg.solve function works fine, but I'm trying to find an approach that takes advantage of the tridiagonal form of [A] in hopes of speeding up the solution even further and then apply that approach to a more complicated example.
There are two immediate performance improvements (1) do not use a loop, (2) use scipy.linalg.solve_banded().
I would write the code something more like
import scipy.linalg as la
# Create arrays and set values
ab = np.zeros((3,m))
b = 2*ones(m)
ab[0] = 9
ab[1] = 8
ab[2] = 7
# Fix end points
ab[0,1] = 2
ab[1,0] = 1
ab[1,-1] = 4
ab[2,-2] = 3
b[0] = 1
b[-1] = 3
return la.solve_banded ((1,1),ab,b)
There may be more elegant ways to construct the matrix, but this works.
Using %timeit in ipython the original code took 112 ms for m=1000. This code takes 2.94 ms for m=10,000, an order of magnitude larger problem yet still almost two orders of magnitude faster! I did not have the patience to wait on the original code for m=10,000. Most of the time in the original may be in constructing the array, I did not test this. Regardless, for large arrays it is much more efficient to only store the non-zero values of the matrix.
There is a scipy.sparse matrix type called scipy.sparse.dia_matrix which captures the structure of your matrix well (it will store 3 arrays, in "positions" 0 (diagonal), 1 (above) and -1 (below)). Using this type of matrix you can try scipy.sparse.linalg.lsqr for solving. If your problem has an exact solution, it will be found, otherwise it will find the solution in least squares sense.
from scipy import sparse
A_sparse = sparse.dia_matrix(A)
ret_values = sparse.linalg.lsqr(A_sparse, C)
x = ret_values[0]
However, this may not be completely optimal in terms of exploiting the triadiagonal structure, there may be a theoretical way of making this faster. What this conversion does do for you is cut down the matrix multiplication expenses to the essential: Only the 3 bands are used. This, in combination with the iterative solver lsqr should already yield a speedup.
Note: I am not proposing scipy.sparse.linalg.spsolve, because it converts your matrix to csr format. However, replacing lsqr with spsolve is worth a try, especially because spsolve can bind UMFPACK, see relevant doc on spsolve. Also, it may be of interest to take a look at this stackoverflow question and answer relating to UMFPACK
You could use scipy.linalg.solveh_banded.
EDIT: You CANNOT used the above as your matrix is not symmetric and I thought it was. However, as was mentioned above in the comment, the Thomas algorithm is great for this
a = [7] * ( m - 2 ) + [3]
b = [1] + [8] * ( m - 2 ) + [4]
c = [2] + [9] * ( m - 2 )
d = [1] + [2] * ( m - 2 ) + [3]
# This is taken directly from the Wikipedia page also cited above
# this overwrites b and d
def TDMASolve(a, b, c, d):
n = len(d) # n is the numbers of rows, a and c has length n-1
for i in xrange(n-1):
d[i+1] -= 1. * d[i] * a[i] / b[i]
b[i+1] -= 1. * c[i] * a[i] / b[i]
for i in reversed(xrange(n-1)):
d[i] -= d[i+1] * c[i] / b[i+1]
return [d[i] / b[i] for i in xrange(n)]
This code is not optimize nor does it use np, but if I (or any of the other fine folks here) have time, I will edit it so that it does those thing. It currently times at ~10 ms for m=10000.
This probably will help
There is a function creates_tridiagonal which will create tridiagonal matrix. There is another function which converts a matrix into diagonal ordered form as requested by SciPy solve_banded function.
import numpy as np
def lu_decomp3(a):
"""
c,d,e = lu_decomp3(a).
LU decomposition of tridiagonal matrix a = [c\d\e]. On output
{c},{d} and {e} are the diagonals of the decomposed matrix a.
"""
n = np.diagonal(a).size
assert(np.all(a.shape ==(n,n))) # check if square matrix
d = np.copy(np.diagonal(a)) # without copy (assignment destination is read-only) error is raised
e = np.copy(np.diagonal(a, 1))
c = np.copy(np.diagonal(a, -1))
for k in range(1,n):
lam = c[k-1]/d[k-1]
d[k] = d[k] - lam*e[k-1]
c[k-1] = lam
return c,d,e
def lu_solve3(c,d,e,b):
"""
x = lu_solve(c,d,e,b).
Solves [c\d\e]{x} = {b}, where {c}, {d} and {e} are the
vectors returned from lu_decomp3.
"""
n = len(d)
y = np.zeros_like(b)
y[0] = b[0]
for k in range(1,n):
y[k] = b[k] - c[k-1]*y[k-1]
x = np.zeros_like(b)
x[n-1] = y[n-1]/d[n-1] # there is no x[n] out of range
for k in range(n-2,-1,-1):
x[k] = (y[k] - e[k]*x[k+1])/d[k]
return x
from scipy.sparse import diags
def create_tridiagonal(size = 4):
diag = np.random.randn(size)*100
diag_pos1 = np.random.randn(size-1)*10
diag_neg1 = np.random.randn(size-1)*10
a = diags([diag_neg1, diag, diag_pos1], offsets=[-1, 0, 1],shape=(size,size)).todense()
return a
a = create_tridiagonal(4)
b = np.random.randn(4)*10
print('matrix a is\n = {} \n\n and vector b is \n {}'.format(a, b))
c, d, e = lu_decomp3(a)
x = lu_solve3(c, d, e, b)
print("x from our function is {}".format(x))
print("check is answer correct ({})".format(np.allclose(np.dot(a, x), b)))
## Test Scipy
from scipy.linalg import solve_banded
def diagonal_form(a, upper = 1, lower= 1):
"""
a is a numpy square matrix
this function converts a square matrix to diagonal ordered form
returned matrix in ab shape which can be used directly for scipy.linalg.solve_banded
"""
n = a.shape[1]
assert(np.all(a.shape ==(n,n)))
ab = np.zeros((2*n-1, n))
for i in range(n):
ab[i,(n-1)-i:] = np.diagonal(a,(n-1)-i)
for i in range(n-1):
ab[(2*n-2)-i,:i+1] = np.diagonal(a,i-(n-1))
mid_row_inx = int(ab.shape[0]/2)
upper_rows = [mid_row_inx - i for i in range(1, upper+1)]
upper_rows.reverse()
upper_rows.append(mid_row_inx)
lower_rows = [mid_row_inx + i for i in range(1, lower+1)]
keep_rows = upper_rows+lower_rows
ab = ab[keep_rows,:]
return ab
ab = diagonal_form(a, upper=1, lower=1) # for tridiagonal matrix upper and lower = 1
x_sp = solve_banded((1,1), ab, b)
print("is our answer the same as scipy answer ({})".format(np.allclose(x, x_sp)))