I found this weird behaviour where I don't know if I am the problem or if this is a python / dataclass / callable bug.
Here is a minimal working example
from dataclasses import dataclass
from typing import Callable
import numpy as np
def my_dummy_callable(my_array, my_bool):
return 1.0
#dataclass()
class MyDataClassDummy:
my_data: int = 1
my_callable: Callable[[np.ndarray, bool], float] = my_dummy_callable
def __init__(self):
print("I initialized my Class!")
#classmethod
def my_factory_with_callable_setting(cls):
my_dummy = MyDataClassDummy()
my_dummy.my_callable = my_dummy_callable
return my_dummy
#classmethod
def my_factory_without_callable_setting(cls):
my_dummy = MyDataClassDummy()
return my_dummy
def do_something(self):
print("This is my data", self.my_data)
print("This is the name of my callable", str(self.my_callable))
return self.my_callable(np.empty(shape=(42, 42)), True) + self.my_data
#dataclass()
class MySecondDataClassDummy:
my_data: int = 4
my_callable: Callable[[np.ndarray, bool], float] = my_dummy_callable
#classmethod
def my_factory(cls):
my_dummy = MySecondDataClassDummy()
return my_dummy
def do_something(self):
print("This is my data", self.my_data)
print("This is the name of my callable", str(self.my_callable))
return self.my_callable(np.empty(shape=(42, 42)), True) - self.my_data
if __name__ == '__main__':
# this works
my_first_dummy = MyDataClassDummy.my_factory_with_callable_setting()
my_first_dummy.do_something()
# this also works
my_second_dummy = MySecondDataClassDummy.my_factory()
my_second_dummy.do_something()
# this does not work
my_other_dummy = MyDataClassDummy.my_factory_without_callable_setting()
my_other_dummy.do_something()
case1: initialize with factory, initialize with my own init and then set the callable explicitly after initialization (allthough there is a default value) - works
case2: initialize with factory but don't explicitly code the init() myself - works
case3: initialize with factory, initialize with my own init and not set the callable explicitly after initialization (because this is why I have default values, isn't it?!) - doesn't work but throws the error:
Traceback (most recent call last):
File "my_path/dataclass_dummy.py", line 63, in <module>
my_other_dummy.do_something()
File "my_path/dataclass_dummy.py", line 33, in do_something
return self.my_callable(np.empty(shape=(42, 42)), True) + self.my_data
TypeError: my_dummy_callable() takes 2 positional arguments but 3 were given
So now I am wondering, what I am doing wrong in the third case.
I am using Python 3.8 and numpy 1.20.2
The #dataclass decorator by default supplies an __init__() method to a class. This method turns type annotated class variables into attributes of instances of the class. This mechanism is used in the case of the class MySecondDataClassDummy. In effect, every instance of this class has an attribute my_callable. Since this attribute is a function, you can call it as you do in Case 2, and everything works.
The class MyDataClassDummy has its own __init__() method, which overrides __init__() provided by #dataclass. Instances of this class are then initialized more or less as they would be without the #dataclass decorator. In particular, class variables that are functions become bound methods of class instances. As a result, my_callable becomes such a bound method, and when in Case 3 you execute
self.my_callable(np.empty(shape=(42, 42)), True)
then self is used as the first argument of my_callable. Since this function takes only two arguments, it generates an error.
The same problem does not occur in Case 1, since in this case you modify
my_dummy.my_callable making it an attribute of my_dummy whose value is a function. After this modification, it is not a bound method anymore.
Related
I'm trying to write a Build Pattern project. I'm not sure why I have this error:
TypeError: setSubregion_id() missing 1 required positional argument: 'subregion_id'
from enum import Enum, unique
#unique
class Subregions(Enum):
PL002 = 1
PL002 = 2
class InstanceBuilder(object):
def __init__(self):
self.subregion_id = Subregions()
def getSubregion_id(self):
return self.subregion_id
def setSubregion_id(self, subregion_id):
subregion_id = Subregions()
return subregion_id
class Instance():
def __init__(self, subregion_id ):
self.subregion_id = subregion_id
from Builder.InstanceBuilder import InstanceBuilder
from Builder.Subregions import Subregions
def main():
instance = InstanceBuilder.setSubregion_id(Subregions.PL001).build
if __name__ == "__main__":
main()
Code:
def main():
instanceBuilder = InstanceBuilder()
instance = instanceBuilder.setSubregion_id(Subregions.PL001).build
When you call InstanceBuilder.setSubregion_id, you using it as an unbound method, so it will not be able to access the attributes defined in the __init__ function, unless you already have a class object defined so you can pass it in as the self parameter.
But that wouldn't make sense, because if you already have the class object defined, you can simple do
class_object = InstanceBuilde()
class_object.setSubregion_id(Subregions.PL001).build`
instead of
class_object = InstanceBuilde()
InstanceBuilder.setSubregion_id(class_object, Subregions.PL001).build
So basically, because you are using the function as an unbound method, python takes the Subregions.PL001 you passed into the brackets as the self argument, hence it thinks that it's the subregion_id argument that's missing.
def main():
instance = InstanceBuilder.setSubregion_id(Subregions.PL001).build
to
def main():
instance = InstanceBuilder().setSubregion_id(Subregions.PL001).build
Read the differences between an unbound method and a bound method here:
Objects vs instance in python
I have a python module
helpers.py
def str_to_num(s: str):
'''Converts to int if possible else converts to float if possible
Returns back the string if not possible to convert to a number.
'''
# NOTE: These are not really funcs, but classes.
funcs = [int, float]
for func in funcs:
try:
res = func(s)
break
except ValueError:
continue
else:
res = s
return(res)
I have another module string_number.py
from helpers import str_to_num
class StringNumber:
def __init__(self, s):
self.s = s
str_to_num = str_to_num
#property
def value(self):
return(self.str_to_num(self.s))
def __repr__(self):
return(f'{self.__class__.__name__}({repr(self.s)})')
>>> from string_number import StringNumber
>>> sn = StringNumber(1)
>>> sn.value
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "string_number.py", line 19, in value
return(self.str_to_num(self.s))
TypeError: str_to_num() takes 1 positional argument but 2 were given
However this works when accessing the function from the class:
>>> StringNumber.str_to_num(1)
1
Q.1: Why does the str_to_num attribute require two arguments when accessing it from the instance? Is self being passed to it? If so, why?
Now, I know I can add modify the __init__ method to make it an attribute of the instance
def __init__(self, s):
self.s = s
self.str_to_num = str_to_num
Further, I can resolve this by making a class of Helper functions and then inheriting from it.
from helpers import str_to_num
class Helper:
#staticmethod
def str_to_num(s):
return(str_to_num(s))
class StringNumber(Helper):
def __init__(self, s):
self.s = s
#property
def value(self):
return(self.str_to_num(self.s))
def __repr__(self):
return(f'{self.__class__.__name__}({repr(self.s)})')
Q: 2 Is there a way to make module functions, staticmethods of a class, without using inheritance? Or is this a really bad practice?
Q: 3 Assuming I had a helpers.py module, with a large amount of module functions. To incorporate them as staticmethods into my class, what would be the best way, without making a separate Helper class?
Q.1: Why does the str_to_num attribute require two arguments when accessing it from the instance? Is self being passed to it? If so, why?
You wrote "However this works when accessing the function from the class: StringNumber.str_to_num(1)". It works because you declared your method as a static method by defining it under your class definition.
As contrary to static method, instance method does pass the instance as a first argument when it's called. So when you called instance.str_to_num(1) your str_to_num(s: str) - no matter your type hinted it as a string - received instance as s argument and complained that value 1 hasn't got variable to hold it.
If I have a class ...
class MyClass:
def method(arg):
print(arg)
... which I use to create an object ...
my_object = MyClass()
... on which I call method("foo") like so ...
>>> my_object.method("foo")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: method() takes exactly 1 positional argument (2 given)
... why does Python tell me I gave it two arguments, when I only gave one?
In Python, this:
my_object.method("foo")
... is syntactic sugar, which the interpreter translates behind the scenes into:
MyClass.method(my_object, "foo")
... which, as you can see, does indeed have two arguments - it's just that the first one is implicit, from the point of view of the caller.
This is because most methods do some work with the object they're called on, so there needs to be some way for that object to be referred to inside the method. By convention, this first argument is called self inside the method definition:
class MyNewClass:
def method(self, arg):
print(self)
print(arg)
If you call method("foo") on an instance of MyNewClass, it works as expected:
>>> my_new_object = MyNewClass()
>>> my_new_object.method("foo")
<__main__.MyNewClass object at 0x29045d0>
foo
Occasionally (but not often), you really don't care about the object that your method is bound to, and in that circumstance, you can decorate the method with the builtin staticmethod() function to say so:
class MyOtherClass:
#staticmethod
def method(arg):
print(arg)
... in which case you don't need to add a self argument to the method definition, and it still works:
>>> my_other_object = MyOtherClass()
>>> my_other_object.method("foo")
foo
In simple words
In Python you should add self as the first parameter to all defined methods in classes:
class MyClass:
def method(self, arg):
print(arg)
Then you can use your method according to your intuition:
>>> my_object = MyClass()
>>> my_object.method("foo")
foo
For a better understanding, you can also read the answers to this question: What is the purpose of self?
Something else to consider when this type of error is encountered:
I was running into this error message and found this post helpful. Turns out in my case I had overridden an __init__() where there was object inheritance.
The inherited example is rather long, so I'll skip to a more simple example that doesn't use inheritance:
class MyBadInitClass:
def ___init__(self, name):
self.name = name
def name_foo(self, arg):
print(self)
print(arg)
print("My name is", self.name)
class MyNewClass:
def new_foo(self, arg):
print(self)
print(arg)
my_new_object = MyNewClass()
my_new_object.new_foo("NewFoo")
my_bad_init_object = MyBadInitClass(name="Test Name")
my_bad_init_object.name_foo("name foo")
Result is:
<__main__.MyNewClass object at 0x033C48D0>
NewFoo
Traceback (most recent call last):
File "C:/Users/Orange/PycharmProjects/Chapter9/bad_init_example.py", line 41, in <module>
my_bad_init_object = MyBadInitClass(name="Test Name")
TypeError: object() takes no parameters
PyCharm didn't catch this typo. Nor did Notepad++ (other editors/IDE's might).
Granted, this is a "takes no parameters" TypeError, it isn't much different than "got two" when expecting one, in terms of object initialization in Python.
Addressing the topic: An overloading initializer will be used if syntactically correct, but if not it will be ignored and the built-in used instead. The object won't expect/handle this and the error is thrown.
In the case of the sytax error: The fix is simple, just edit the custom init statement:
def __init__(self, name):
self.name = name
Newcomer to Python, I had this issue when I was using the Python's ** feature in a wrong way. Trying to call this definition from somewhere:
def create_properties_frame(self, parent, **kwargs):
using a call without a double star was causing the problem:
self.create_properties_frame(frame, kw_gsp)
TypeError: create_properties_frame() takes 2 positional arguments but 3 were given
The solution is to add ** to the argument:
self.create_properties_frame(frame, **kw_gsp)
As mentioned in other answers - when you use an instance method you need to pass self as the first argument - this is the source of the error.
With addition to that,it is important to understand that only instance methods take self as the first argument in order to refer to the instance.
In case the method is Static you don't pass self, but a cls argument instead (or class_).
Please see an example below.
class City:
country = "USA" # This is a class level attribute which will be shared across all instances (and not created PER instance)
def __init__(self, name, location, population):
self.name = name
self.location = location
self.population = population
# This is an instance method which takes self as the first argument to refer to the instance
def print_population(self, some_nice_sentence_prefix):
print(some_nice_sentence_prefix +" In " +self.name + " lives " +self.population + " people!")
# This is a static (class) method which is marked with the #classmethod attribute
# All class methods must take a class argument as first param. The convention is to name is "cls" but class_ is also ok
#classmethod
def change_country(cls, new_country):
cls.country = new_country
Some tests just to make things more clear:
# Populate objects
city1 = City("New York", "East", "18,804,000")
city2 = City("Los Angeles", "West", "10,118,800")
#1) Use the instance method: No need to pass "self" - it is passed as the city1 instance
city1.print_population("Did You Know?") # Prints: Did You Know? In New York lives 18,804,000 people!
#2.A) Use the static method in the object
city2.change_country("Canada")
#2.B) Will be reflected in all objects
print("city1.country=",city1.country) # Prints Canada
print("city2.country=",city2.country) # Prints Canada
It occurs when you don't specify the no of parameters the __init__() or any other method looking for.
For example:
class Dog:
def __init__(self):
print("IN INIT METHOD")
def __unicode__(self,):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
When you run the above programme, it gives you an error like that:
TypeError: __init__() takes 1 positional argument but 6 were given
How we can get rid of this thing?
Just pass the parameters, what __init__() method looking for
class Dog:
def __init__(self, dogname, dob_d, dob_m, dob_y, dogSpeakText):
self.name_of_dog = dogname
self.date_of_birth = dob_d
self.month_of_birth = dob_m
self.year_of_birth = dob_y
self.sound_it_make = dogSpeakText
def __unicode__(self, ):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
print(id(obj))
If you want to call method without creating object, you can change method to static method.
class MyClass:
#staticmethod
def method(arg):
print(arg)
MyClass.method("i am a static method")
I get this error when I'm sleep-deprived, and create a class using def instead of class:
def MyClass():
def __init__(self, x):
self.x = x
a = MyClass(3)
-> TypeError: MyClass() takes 0 positional arguments but 1 was given
You should actually create a class:
class accum:
def __init__(self):
self.acc = 0
def accumulator(self, var2add, end):
if not end:
self.acc+=var2add
return self.acc
In my case, I forgot to add the ()
I was calling the method like this
obj = className.myMethod
But it should be is like this
obj = className.myMethod()
If I have a class ...
class MyClass:
def method(arg):
print(arg)
... which I use to create an object ...
my_object = MyClass()
... on which I call method("foo") like so ...
>>> my_object.method("foo")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: method() takes exactly 1 positional argument (2 given)
... why does Python tell me I gave it two arguments, when I only gave one?
In Python, this:
my_object.method("foo")
... is syntactic sugar, which the interpreter translates behind the scenes into:
MyClass.method(my_object, "foo")
... which, as you can see, does indeed have two arguments - it's just that the first one is implicit, from the point of view of the caller.
This is because most methods do some work with the object they're called on, so there needs to be some way for that object to be referred to inside the method. By convention, this first argument is called self inside the method definition:
class MyNewClass:
def method(self, arg):
print(self)
print(arg)
If you call method("foo") on an instance of MyNewClass, it works as expected:
>>> my_new_object = MyNewClass()
>>> my_new_object.method("foo")
<__main__.MyNewClass object at 0x29045d0>
foo
Occasionally (but not often), you really don't care about the object that your method is bound to, and in that circumstance, you can decorate the method with the builtin staticmethod() function to say so:
class MyOtherClass:
#staticmethod
def method(arg):
print(arg)
... in which case you don't need to add a self argument to the method definition, and it still works:
>>> my_other_object = MyOtherClass()
>>> my_other_object.method("foo")
foo
In simple words
In Python you should add self as the first parameter to all defined methods in classes:
class MyClass:
def method(self, arg):
print(arg)
Then you can use your method according to your intuition:
>>> my_object = MyClass()
>>> my_object.method("foo")
foo
For a better understanding, you can also read the answers to this question: What is the purpose of self?
Something else to consider when this type of error is encountered:
I was running into this error message and found this post helpful. Turns out in my case I had overridden an __init__() where there was object inheritance.
The inherited example is rather long, so I'll skip to a more simple example that doesn't use inheritance:
class MyBadInitClass:
def ___init__(self, name):
self.name = name
def name_foo(self, arg):
print(self)
print(arg)
print("My name is", self.name)
class MyNewClass:
def new_foo(self, arg):
print(self)
print(arg)
my_new_object = MyNewClass()
my_new_object.new_foo("NewFoo")
my_bad_init_object = MyBadInitClass(name="Test Name")
my_bad_init_object.name_foo("name foo")
Result is:
<__main__.MyNewClass object at 0x033C48D0>
NewFoo
Traceback (most recent call last):
File "C:/Users/Orange/PycharmProjects/Chapter9/bad_init_example.py", line 41, in <module>
my_bad_init_object = MyBadInitClass(name="Test Name")
TypeError: object() takes no parameters
PyCharm didn't catch this typo. Nor did Notepad++ (other editors/IDE's might).
Granted, this is a "takes no parameters" TypeError, it isn't much different than "got two" when expecting one, in terms of object initialization in Python.
Addressing the topic: An overloading initializer will be used if syntactically correct, but if not it will be ignored and the built-in used instead. The object won't expect/handle this and the error is thrown.
In the case of the sytax error: The fix is simple, just edit the custom init statement:
def __init__(self, name):
self.name = name
Newcomer to Python, I had this issue when I was using the Python's ** feature in a wrong way. Trying to call this definition from somewhere:
def create_properties_frame(self, parent, **kwargs):
using a call without a double star was causing the problem:
self.create_properties_frame(frame, kw_gsp)
TypeError: create_properties_frame() takes 2 positional arguments but 3 were given
The solution is to add ** to the argument:
self.create_properties_frame(frame, **kw_gsp)
As mentioned in other answers - when you use an instance method you need to pass self as the first argument - this is the source of the error.
With addition to that,it is important to understand that only instance methods take self as the first argument in order to refer to the instance.
In case the method is Static you don't pass self, but a cls argument instead (or class_).
Please see an example below.
class City:
country = "USA" # This is a class level attribute which will be shared across all instances (and not created PER instance)
def __init__(self, name, location, population):
self.name = name
self.location = location
self.population = population
# This is an instance method which takes self as the first argument to refer to the instance
def print_population(self, some_nice_sentence_prefix):
print(some_nice_sentence_prefix +" In " +self.name + " lives " +self.population + " people!")
# This is a static (class) method which is marked with the #classmethod attribute
# All class methods must take a class argument as first param. The convention is to name is "cls" but class_ is also ok
#classmethod
def change_country(cls, new_country):
cls.country = new_country
Some tests just to make things more clear:
# Populate objects
city1 = City("New York", "East", "18,804,000")
city2 = City("Los Angeles", "West", "10,118,800")
#1) Use the instance method: No need to pass "self" - it is passed as the city1 instance
city1.print_population("Did You Know?") # Prints: Did You Know? In New York lives 18,804,000 people!
#2.A) Use the static method in the object
city2.change_country("Canada")
#2.B) Will be reflected in all objects
print("city1.country=",city1.country) # Prints Canada
print("city2.country=",city2.country) # Prints Canada
It occurs when you don't specify the no of parameters the __init__() or any other method looking for.
For example:
class Dog:
def __init__(self):
print("IN INIT METHOD")
def __unicode__(self,):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
When you run the above programme, it gives you an error like that:
TypeError: __init__() takes 1 positional argument but 6 were given
How we can get rid of this thing?
Just pass the parameters, what __init__() method looking for
class Dog:
def __init__(self, dogname, dob_d, dob_m, dob_y, dogSpeakText):
self.name_of_dog = dogname
self.date_of_birth = dob_d
self.month_of_birth = dob_m
self.year_of_birth = dob_y
self.sound_it_make = dogSpeakText
def __unicode__(self, ):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
print(id(obj))
If you want to call method without creating object, you can change method to static method.
class MyClass:
#staticmethod
def method(arg):
print(arg)
MyClass.method("i am a static method")
I get this error when I'm sleep-deprived, and create a class using def instead of class:
def MyClass():
def __init__(self, x):
self.x = x
a = MyClass(3)
-> TypeError: MyClass() takes 0 positional arguments but 1 was given
You should actually create a class:
class accum:
def __init__(self):
self.acc = 0
def accumulator(self, var2add, end):
if not end:
self.acc+=var2add
return self.acc
In my case, I forgot to add the ()
I was calling the method like this
obj = className.myMethod
But it should be is like this
obj = className.myMethod()
If I have a class ...
class MyClass:
def method(arg):
print(arg)
... which I use to create an object ...
my_object = MyClass()
... on which I call method("foo") like so ...
>>> my_object.method("foo")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: method() takes exactly 1 positional argument (2 given)
... why does Python tell me I gave it two arguments, when I only gave one?
In Python, this:
my_object.method("foo")
... is syntactic sugar, which the interpreter translates behind the scenes into:
MyClass.method(my_object, "foo")
... which, as you can see, does indeed have two arguments - it's just that the first one is implicit, from the point of view of the caller.
This is because most methods do some work with the object they're called on, so there needs to be some way for that object to be referred to inside the method. By convention, this first argument is called self inside the method definition:
class MyNewClass:
def method(self, arg):
print(self)
print(arg)
If you call method("foo") on an instance of MyNewClass, it works as expected:
>>> my_new_object = MyNewClass()
>>> my_new_object.method("foo")
<__main__.MyNewClass object at 0x29045d0>
foo
Occasionally (but not often), you really don't care about the object that your method is bound to, and in that circumstance, you can decorate the method with the builtin staticmethod() function to say so:
class MyOtherClass:
#staticmethod
def method(arg):
print(arg)
... in which case you don't need to add a self argument to the method definition, and it still works:
>>> my_other_object = MyOtherClass()
>>> my_other_object.method("foo")
foo
In simple words
In Python you should add self as the first parameter to all defined methods in classes:
class MyClass:
def method(self, arg):
print(arg)
Then you can use your method according to your intuition:
>>> my_object = MyClass()
>>> my_object.method("foo")
foo
For a better understanding, you can also read the answers to this question: What is the purpose of self?
Something else to consider when this type of error is encountered:
I was running into this error message and found this post helpful. Turns out in my case I had overridden an __init__() where there was object inheritance.
The inherited example is rather long, so I'll skip to a more simple example that doesn't use inheritance:
class MyBadInitClass:
def ___init__(self, name):
self.name = name
def name_foo(self, arg):
print(self)
print(arg)
print("My name is", self.name)
class MyNewClass:
def new_foo(self, arg):
print(self)
print(arg)
my_new_object = MyNewClass()
my_new_object.new_foo("NewFoo")
my_bad_init_object = MyBadInitClass(name="Test Name")
my_bad_init_object.name_foo("name foo")
Result is:
<__main__.MyNewClass object at 0x033C48D0>
NewFoo
Traceback (most recent call last):
File "C:/Users/Orange/PycharmProjects/Chapter9/bad_init_example.py", line 41, in <module>
my_bad_init_object = MyBadInitClass(name="Test Name")
TypeError: object() takes no parameters
PyCharm didn't catch this typo. Nor did Notepad++ (other editors/IDE's might).
Granted, this is a "takes no parameters" TypeError, it isn't much different than "got two" when expecting one, in terms of object initialization in Python.
Addressing the topic: An overloading initializer will be used if syntactically correct, but if not it will be ignored and the built-in used instead. The object won't expect/handle this and the error is thrown.
In the case of the sytax error: The fix is simple, just edit the custom init statement:
def __init__(self, name):
self.name = name
This issue can also be caused by failing to pass keyword arguments to a function properly.
For example, given a method defined like:
def create_properties_frame(self, parent, **kwargs):
a call like this:
self.create_properties_frame(frame, kw_gsp)
will cause TypeError: create_properties_frame() takes 2 positional arguments but 3 were given, because the kw_gsp dictionary is treated as a positional argument instead of being unpacked into separate keyword arguments.
The solution is to add ** to the argument:
self.create_properties_frame(frame, **kw_gsp)
As mentioned in other answers - when you use an instance method you need to pass self as the first argument - this is the source of the error.
With addition to that,it is important to understand that only instance methods take self as the first argument in order to refer to the instance.
In case the method is Static you don't pass self, but a cls argument instead (or class_).
Please see an example below.
class City:
country = "USA" # This is a class level attribute which will be shared across all instances (and not created PER instance)
def __init__(self, name, location, population):
self.name = name
self.location = location
self.population = population
# This is an instance method which takes self as the first argument to refer to the instance
def print_population(self, some_nice_sentence_prefix):
print(some_nice_sentence_prefix +" In " +self.name + " lives " +self.population + " people!")
# This is a static (class) method which is marked with the #classmethod attribute
# All class methods must take a class argument as first param. The convention is to name is "cls" but class_ is also ok
#classmethod
def change_country(cls, new_country):
cls.country = new_country
Some tests just to make things more clear:
# Populate objects
city1 = City("New York", "East", "18,804,000")
city2 = City("Los Angeles", "West", "10,118,800")
#1) Use the instance method: No need to pass "self" - it is passed as the city1 instance
city1.print_population("Did You Know?") # Prints: Did You Know? In New York lives 18,804,000 people!
#2.A) Use the static method in the object
city2.change_country("Canada")
#2.B) Will be reflected in all objects
print("city1.country=",city1.country) # Prints Canada
print("city2.country=",city2.country) # Prints Canada
It occurs when you don't specify the no of parameters the __init__() or any other method looking for.
For example:
class Dog:
def __init__(self):
print("IN INIT METHOD")
def __unicode__(self,):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
When you run the above programme, it gives you an error like that:
TypeError: __init__() takes 1 positional argument but 6 were given
How we can get rid of this thing?
Just pass the parameters, what __init__() method looking for
class Dog:
def __init__(self, dogname, dob_d, dob_m, dob_y, dogSpeakText):
self.name_of_dog = dogname
self.date_of_birth = dob_d
self.month_of_birth = dob_m
self.year_of_birth = dob_y
self.sound_it_make = dogSpeakText
def __unicode__(self, ):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
print(id(obj))
If you want to call method without creating object, you can change method to static method.
class MyClass:
#staticmethod
def method(arg):
print(arg)
MyClass.method("i am a static method")
I get this error when I'm sleep-deprived, and create a class using def instead of class:
def MyClass():
def __init__(self, x):
self.x = x
a = MyClass(3)
-> TypeError: MyClass() takes 0 positional arguments but 1 was given
You should actually create a class:
class accum:
def __init__(self):
self.acc = 0
def accumulator(self, var2add, end):
if not end:
self.acc+=var2add
return self.acc
In my case, I forgot to add the ()
I was calling the method like this
obj = className.myMethod
But it should be is like this
obj = className.myMethod()