Linear regression using Pytorch - python

I have classification problem. I am using Pytorch, My input is sequence of length 341 and output one of three classes {0,1,2}, I want to train linear regression model using pytorch, I created the following class but during the training, the loss values start to have numbers then inf then NAN. I do not know how to fix that . Also I tried to initialize the weights for linear model but it is the same thing. Any suggestions.
class regression(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.input_dim = input_dim
# One layer
self.linear = nn.Linear(input_dim, 1)
def forward(self, x):
y_pred = self.linear(x)
return y_pred
criterion = torch.nn.MSELoss()
def fit(model, data_loader, optim, epochs):
for epoch in range(epochs):
for i, (X, y) in enumerate(data_loader):
X = X.float()
y = y.unsqueeze(1).float()
X = Variable(X, requires_grad=True)
y = Variable(y, requires_grad=True)
# Make a prediction for the input X
pred = model(X)
#loss = (y-pred).pow(2).mean()
loss = criterion(y, pred)
optim.zero_grad()
loss.backward()
optim.step()
print(loss)
print(type(loss))
# Give some feedback after each 5th pass through the data
if epoch % 5 == 0:
print("Epoch", epoch, f"loss: {loss}")
return None
regnet = regression(input_dim=341)
optim = SGD(regnet.parameters(), lr=0.01)
fit(regnet, data_loader, optim=optim, epochs=5)
pred = regnet(torch.Tensor(test_set.data_info).float())
pred = pred.detach().numpy()

I would additionally suggest to replace MSE with CrossEntropy Loss as it is better suited for multi-class classificiation problems.
import random
import torch
from torch import nn, optim
from matplotlib import pyplot as plt
# Generate random dataset with your shape to test
# Replace this with your own dataset
data = []
for label in [0, 1, 2]:
for i in range(1000):
data.append((torch.rand(341), label))
# train test split
random.shuffle(data)
train, val = data[:1500], data[1500:]
def run_gradient_descent(model, data_train, data_val, batch_size=64, learning_rate=0.01, weight_decay=0, num_epochs=10):
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
iters, losses = [], []
iters_sub, train_acc, val_acc = [], [] ,[]
train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True)
# training
n = 0 # the number of iterations
for epoch in range(num_epochs):
for xs, ts in iter(train_loader):
if len(ts) != batch_size:
continue
zs = model(xs)
loss = criterion(zs, ts) # compute the total loss
loss.backward() # compute updates for each parameter
optimizer.step() # make the updates for each parameter
optimizer.zero_grad() # a clean up step for PyTorch
# save the current training information
iters.append(n)
losses.append(float(loss)/batch_size) # compute *average* loss
if n % 10 == 0:
iters_sub.append(n)
train_acc.append(get_accuracy(model, data_train))
val_acc.append(get_accuracy(model, data_val))
# increment the iteration number
n += 1
# plotting
plt.title("Training Curve (batch_size={}, lr={})".format(batch_size, learning_rate))
plt.plot(iters, losses, label="Train")
plt.xlabel("Iterations")
plt.ylabel("Loss")
plt.show()
plt.title("Training Curve (batch_size={}, lr={})".format(batch_size, learning_rate))
plt.plot(iters_sub, train_acc, label="Train")
plt.plot(iters_sub, val_acc, label="Validation")
plt.xlabel("Iterations")
plt.ylabel("Accuracy")
plt.legend(loc='best')
plt.show()
return model
def get_accuracy(model, data):
loader = torch.utils.data.DataLoader(data, batch_size=500)
correct, total = 0, 0
for xs, ts in loader:
zs = model(xs)
pred = zs.max(1, keepdim=True)[1] # get the index of the max logit
correct += pred.eq(ts.view_as(pred)).sum().item()
total += int(ts.shape[0])
return correct / total
class MyRegression(nn.Module):
def __init__(self, input_dim, output_dim):
super(MyRegression, self).__init__()
# One layer
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
model = MyRegression(341, 3)
run_gradient_descent(model, train, val, batch_size=64, learning_rate=0.01, num_epochs=10)

cause of my reputation number I can't comment.so if I was you. I'm gonna build like this: I think there is something wrong with your method of making a Module.
class regression(nn.Module):
def __init__(self,input_dim,output_dim):
super(regression,self).__init__()
#function
self.linear=nn.Linear(input_dim,output_dim)
def forward(self,x):
return self.linear(x)
#define the model
input_dim=341
output_dim=3
model=LinearRegression(input_dim,output_dim)
# Mean square error
mse=nn.MSELoss()
#Optimization
learning_rate=0.01
optimizer=torch.optim.SGD(model.parameters(),lr=learning_rate)
#train the model
loss_list=[]
iteration_number=X
for iteration in range(iteration_number):
#optimiziation
optimizer.zero_grad()
#forward to get output
results=model("input_datas_tensor")
#loss calculate
loss=mse(results,"outputs_datas_tensor")
#backward propagation
loss.backward()
#updating parameters
optimizer.step()
#store loss
loss_list.append(loss.data)
if(iteration %5==0):
print("epoch{} ,loss{}".format(iteration,loss.data))

Related

Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead BUT i'm not using numpy here

I get this error in the training loop for this neural network:
class YourModel(torch.nn.Module):
def __init__(self):
super(YourModel, self).__init__()
self.fc1 = nn.Linear(50, 128)
self.sigmoid = nn.Sigmoid()
self.fc2 = nn.Linear(128, 1)
def forward(self, x1, x2):
x = torch.cat((x1, x2), dim=1)
out = self.fc1(x)
out = self.sigmoid(out)
out = self.fc2(out)
return out
model = YourModel().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
loss_fn = nn.BCELoss()
My dataloader contains 3 datasets, 1 with 25 features for 8000 documents, other with 25 features of 8000 queries and the last one with the relation between both (0 or 1). So that's why I'm using a neural network for binary classification. (However if you know an alternative neural network I'm open to options)
My batch_size is 1 right now and here is my training loop:
def train(dataloader, model, loss_fn, optimizer):
model.train()
train_loss = 0
num_batches = len(dataloader)
all_pred = []
all_real = []
for batch, i in enumerate(train_dataloader): #access to each batch
i_1 = i[0]
i_2 = i[1]
y = i[2].float().view(1, 1) #find relevance
#y = torch.clamp(y, min=0, max=1)
#x = np.hstack((i_1, i_2))
#x = torch.Tensor(x)
#x = torch.clamp(x, min=0, max=1)
# Zero the gradients
optimizer.zero_grad()
# Forward pass
y_pred = model(i_1, i_2).float()
y_pred = torch.clamp(y_pred, min=0, max=1)
loss = loss_fn(y_pred, y)
# Backward pass
loss.backward()
# Update the parameters
optimizer.step()
train_loss += loss.item() #sum the loss
all_pred.append(y_pred)
all_real.append(y)
if batch > 0 and batch%1000 == 0:
print(f"Partial loss: {train_loss/batch}, F1: {f1_score(all_real, all_pred)}")
train_loss /= num_batches
print(f"Total loss: {train_loss}") #print loss of every epoch
return train_loss
I'm getting this error: "Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead." but as far as I know I'm not calling numpy on any tensors. And if I use the detach method then I get the an error saying that the loss can not be computed because the tensor of 0 doesn't need grad. So it is pretty much a loop.

Can't backward pass two losses in Classification Transformer Model

For my model I'm using a roberta transformer model and the Trainer from the Huggingface transformer library.
I calculate two losses:
lloss is a Cross Entropy Loss and dloss calculates the loss inbetween hierarchy layers.
The total loss is the sum of lloss and dloss. (Based on this)
When calling total_loss.backwards() however, I get the error:
RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed
Any idea why that happens? Can I force it to only call backwards once? Here is the loss calculation part:
dloss = calculate_dloss(prediction, labels, 3)
lloss = calculate_lloss(predeiction, labels, 3)
total_loss = lloss + dloss
total_loss.backward()
def calculate_lloss(predictions, true_labels, total_level):
'''Calculates the layer loss.
'''
loss_fct = nn.CrossEntropyLoss()
lloss = 0
for l in range(total_level):
lloss += loss_fct(predictions[l], true_labels[l])
return self.alpha * lloss
def calculate_dloss(predictions, true_labels, total_level):
'''Calculate the dependence loss.
'''
dloss = 0
for l in range(1, total_level):
current_lvl_pred = torch.argmax(nn.Softmax(dim=1)(predictions[l]), dim=1)
prev_lvl_pred = torch.argmax(nn.Softmax(dim=1)(predictions[l-1]), dim=1)
D_l = self.check_hierarchy(current_lvl_pred, prev_lvl_pred, l) #just a boolean tensor
l_prev = torch.where(prev_lvl_pred == true_labels[l-1], torch.FloatTensor([0]).to(self.device), torch.FloatTensor([1]).to(self.device))
l_curr = torch.where(current_lvl_pred == true_labels[l], torch.FloatTensor([0]).to(self.device), torch.FloatTensor([1]).to(self.device))
dloss += torch.sum(torch.pow(self.p_loss, D_l*l_prev)*torch.pow(self.p_loss, D_l*l_curr) - 1)
return self.beta * dloss
There is nothing wrong with having a loss that is the sum of two individual losses, here is a small proof of principle adapted from the docs:
import torch
import numpy
from sklearn.datasets import make_blobs
class Feedforward(torch.nn.Module):
def __init__(self, input_size, hidden_size):
super(Feedforward, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.fc1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(self.hidden_size, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
hidden = self.fc1(x)
relu = self.relu(hidden)
output = self.fc2(relu)
output = self.sigmoid(output)
return output
def blob_label(y, label, loc): # assign labels
target = numpy.copy(y)
for l in loc:
target[y == l] = label
return target
x_train, y_train = make_blobs(n_samples=40, n_features=2, cluster_std=1.5, shuffle=True)
x_train = torch.FloatTensor(x_train)
y_train = torch.FloatTensor(blob_label(y_train, 0, [0]))
y_train = torch.FloatTensor(blob_label(y_train, 1, [1,2,3]))
x_test, y_test = make_blobs(n_samples=10, n_features=2, cluster_std=1.5, shuffle=True)
x_test = torch.FloatTensor(x_test)
y_test = torch.FloatTensor(blob_label(y_test, 0, [0]))
y_test = torch.FloatTensor(blob_label(y_test, 1, [1,2,3]))
model = Feedforward(2, 10)
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
model.eval()
y_pred = model(x_test)
before_train = criterion(y_pred.squeeze(), y_test)
print('Test loss before training' , before_train.item())
model.train()
epoch = 20
for epoch in range(epoch):
optimizer.zero_grad() # Forward pass
y_pred = model(x_train) # Compute Loss
lossCE= criterion(y_pred.squeeze(), y_train)
lossSQD = (y_pred.squeeze()-y_train).pow(2).mean()
loss=lossCE+lossSQD
print('Epoch {}: train loss: {}'.format(epoch, loss.item())) # Backward pass
loss.backward()
optimizer.step()
There must be a real second time that you call directly or indirectly backward on some varaible that then traverses through your graph. It is a bit too much to ask for the complete code here, only you can check this or at least reduce it to a minimal example (while doing so, you might already find the issue). Apart from that, I would start checking:
Does it already occur in the first iteration of training? If not: are you reusing any calculation results for the second iteration without a detach?
When you do backward on your losses individually lloss.backward() followed by dloss.backward() (this has the same effect as adding them together first as gradients are accumulated): what happens? This will let you track down for which of the two losses the error occurs.
After backward() your comp. graph is freed so for the second backward you need to create a new graph by providing inputs again. If you want to reiterate the same graph after backward (for some reason) you need to specify retain_graph flag in backward as True. see retain_graph here.
P.S. As the summation of Tensors is automatically differentiable, summing the losses would not cause any issue in the backward.

Create a neural network to classify mnist dataset without using keras. Error: tape is required when a Tensor loss is passed

Here is the code. I have done the forward pass but I receive an error anytime I run it and I don't know what the problem is. I first of all create a batch with the features and labels, do the forward pass and try to use keras SGD optimizer.
This is the error I get:
And this is my code:
import tensorflow as tf
from tensorflow.keras.utils import to_categorical
import numpy as np
def batches(batch_size, features, labels):
"""
Create batches of features and labels
:param batch_size: The batch size
:param features: List of features
:param labels: List of labels
:return: Batches of (Features, Labels)
"""
assert len(features) == len(labels)
outout_batches = []
sample_size = len(features)
features = tf.Variable(features, dtype='float32')
for start_i in range(0, sample_size, batch_size):
end_i = start_i + batch_size
batch = (features[start_i:end_i], labels[start_i:end_i])
outout_batches.append(batch)
return outout_batches
def get_logits(features, weights, biases):
# network's forward pass, multiply inputs with weight
return tf.add(tf.matmul(features, weights), biases)
def get_cost(logits, labels):
# returns the cost of the pass
return tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels))
def vectorize(features):
# reshapes the features to a vector for input
return features.reshape(features.shape[0], features.shape[1] * features.shape[2])
(train_x, train_y), (test_x, test_y) = tf.keras.datasets.mnist.load_data()
train_x, test_x = train_x.astype('float32'), test_x.astype('float32')
train_x, test_y = train_x.astype('float32'), test_y.astype('float32')
train_y, test_y = to_categorical(train_y, 10), to_categorical(test_y, 10)
train_x = vectorize(train_x)
n_inputs = 28 * 28
n_classes = 10
weights = tf.Variable(tf.random.normal([n_inputs, n_classes]), dtype='float32', name='weights')
biases = tf.Variable(tf.random.normal([n_classes]), dtype='float32', name='biases')
batch_list = batches(32, train_x, train_y)
for x, y in batch_list:
logits = get_logits(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
opt = tf.keras.optimizers.SGD(learning_rate=0.001)
optimizer = opt.minimize(loss=cost)
This is because your loss is a Tensor. In the optimizer.minimize() the loss argument can be a Tensor or callable. If a callable, loss should take no arguments and return the value to minimize. If loss is a Tensor, the tape argument must be passed.
So the modified code could be like this:
for x, y in batch_list:
with tf.GradientTape() as tape:
logits = get_logits(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
opt = tf.keras.optimizers.SGD(learning_rate=0.001)
optimizer = opt.minimize(loss=cost, var_list=[weights,biases], tape=tape)
Hi i made a little change towards your code, not sure if it fits your situation but i would normally do it like this
optimizer = tf.keras.optimizers.SGD(learning_rate=0.001)
for x, y in batch_list:
with tf.GradientTape() as tape:
logits = get_logits(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
grads = tape.gradient(loss, [weights, biases])
optimizer.apply_gradients(zip(grads, [weights, biases]))

Training Graph Neural Network (GNN) to create Embeddings using spektral

I am working to create a Graph Neural Network (GNN) which can create embeddings of the input graph for its usage in other applications like Reinforcement Learning.
I have started with example from the spektral library TUDataset classification with GIN and modified it to divide the network into two parts. The first part to produce embeddings and second part to produce classification. My goal is to train this network using supervised learning on dataset with graph labels e.g. TUDataset and use the first part (embedding generation) once trained in other applications.
I am getting different results from my approach in two different datasets. The TUDataset shows improved loss and accuracy with this new approach whereas the other other local dataset shows significant increase in the loss.
Can I get any feedback if my approach to create embedding is appropriate or any suggestions for further improvement?
here is my code used to generate graph embeddings:
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.losses import CategoricalCrossentropy
from tensorflow.keras.metrics import categorical_accuracy
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam
from spektral.data import DisjointLoader
from spektral.datasets import TUDataset
from spektral.layers import GINConv, GlobalAvgPool
################################################################################
# PARAMETERS
################################################################################
learning_rate = 1e-3 # Learning rate
channels = 128 # Hidden units
layers = 3 # GIN layers
epochs = 300 # Number of training epochs
batch_size = 32 # Batch size
################################################################################
# LOAD DATA
################################################################################
dataset = TUDataset("PROTEINS", clean=True)
# Parameters
F = dataset.n_node_features # Dimension of node features
n_out = dataset.n_labels # Dimension of the target
# Train/test split
idxs = np.random.permutation(len(dataset))
split = int(0.9 * len(dataset))
idx_tr, idx_te = np.split(idxs, [split])
dataset_tr, dataset_te = dataset[idx_tr], dataset[idx_te]
loader_tr = DisjointLoader(dataset_tr, batch_size=batch_size, epochs=epochs)
loader_te = DisjointLoader(dataset_te, batch_size=batch_size, epochs=1)
################################################################################
# BUILD MODEL
################################################################################
class GIN0(Model):
def __init__(self, channels, n_layers):
super().__init__()
self.conv1 = GINConv(channels, epsilon=0, mlp_hidden=[channels, channels])
self.convs = []
for _ in range(1, n_layers):
self.convs.append(
GINConv(channels, epsilon=0, mlp_hidden=[channels, channels])
)
self.pool = GlobalAvgPool()
self.dense1 = Dense(channels, activation="relu")
def call(self, inputs):
x, a, i = inputs
x = self.conv1([x, a])
for conv in self.convs:
x = conv([x, a])
x = self.pool([x, i])
return self.dense1(x)
# Build model
model = GIN0(channels, layers)
model_op = Sequential()
model_op.add(Dropout(0.5, input_shape=(channels,)))
model_op.add(Dense(n_out, activation="softmax"))
opt = Adam(lr=learning_rate)
loss_fn = CategoricalCrossentropy()
################################################################################
# FIT MODEL
################################################################################
#tf.function(input_signature=loader_tr.tf_signature(), experimental_relax_shapes=True)
def train_step(inputs, target):
with tf.GradientTape(persistent=True) as tape:
node2vec = model(inputs, training=True)
predictions = model_op(node2vec, training=True)
loss = loss_fn(target, predictions)
loss += sum(model.losses)
gradients = tape.gradient(loss, model.trainable_variables)
opt.apply_gradients(zip(gradients, model.trainable_variables))
gradients2 = tape.gradient(loss, model_op.trainable_variables)
opt.apply_gradients(zip(gradients2, model_op.trainable_variables))
acc = tf.reduce_mean(categorical_accuracy(target, predictions))
return loss, acc
print("Fitting model")
current_batch = 0
model_lss = model_acc = 0
for batch in loader_tr:
lss, acc = train_step(*batch)
model_lss += lss.numpy()
model_acc += acc.numpy()
current_batch += 1
if current_batch == loader_tr.steps_per_epoch:
model_lss /= loader_tr.steps_per_epoch
model_acc /= loader_tr.steps_per_epoch
print("Loss: {}. Acc: {}".format(model_lss, model_acc))
model_lss = model_acc = 0
current_batch = 0
################################################################################
# EVALUATE MODEL
################################################################################
def tolist(predictions):
result = []
for item in predictions:
result.append((float(item[0]), float(item[1])))
return result
loss_data = []
print("Testing model")
model_lss = model_acc = 0
for batch in loader_te:
inputs, target = batch
node2vec = model(inputs, training=False)
predictions = model_op(node2vec, training=False)
predictions_list = tolist(predictions)
loss_data.append(zip(target,predictions_list))
model_lss += loss_fn(target, predictions)
model_acc += tf.reduce_mean(categorical_accuracy(target, predictions))
model_lss /= loader_te.steps_per_epoch
model_acc /= loader_te.steps_per_epoch
print("Done. Test loss: {}. Test acc: {}".format(model_lss, model_acc))
for batchi in loss_data:
for item in batchi:
print(list(item),'\n')
Your approach to generate graph embeddings is correct, the GIN0 model will return a vector given a graph.
This code here, however, seems weird:
gradients = tape.gradient(loss, model.trainable_variables)
opt.apply_gradients(zip(gradients, model.trainable_variables))
gradients2 = tape.gradient(loss, model_op.trainable_variables)
opt.apply_gradients(zip(gradients2, model_op.trainable_variables))
What you're doing here is that you're updating the weights of model twice, and the weights of model_op once.
When you compute the loss in the context of a tf.GradientTape, all computations that went into computing the final value are tracked. This means that if you call loss = foo(bar(x)) and then compute the training step using that loss, the weights of both foo and bar will be updated.
Besides this, I don't see issues with the code so it will mostly depend on the local dataset that you are using.
Cheers

logistic regression model with L1 regularisations

I am trying to apply L1 regularization on a logistic model
class LogisticRegression(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(input_size, num_classes)
def forward(self, x):
x = x.reshape(-1, 784)
output = self.linear(x)
return output
def training_step(self, batch):
images, labels = batch
output = self(images)
loss = F.cross_entropy(output, labels)
acc = accuracy(output, labels)
return {'Training_loss': loss, 'Training_acc': acc}
def training_epoch_end(self, outputs):
batch_losses = [x['Training_loss'] for x in outputs]
epoch_loss = torch.stack(batch_losses).mean()
batch_accs = [x['Training_acc'] for x in outputs]
epoch_acc = torch.stack(batch_accs).mean()
return {'Training_loss': epoch_loss.item(), 'Training_acc': epoch_acc.item()}
def epoch_end(self, epoch, result):
print("Epoch [{}], Training_loss: {:.4f}, Training_acc: {:.4f}".format(epoch, result['Training_loss'], result['Training_acc']))
model = LogisticRegression()
But I think I am doing it wrong the accuracy did not change.
L1=0.2
def evaluate(model_b, trainloader):
outputs = [model_b.training_step(batch) for batch in trainloader]
return model_b.training_epoch_end(outputs)
def fit(epochs, lr, model_b, trainloader, opt_func=torch.optim.SGD):
history = []
optimizer = opt_func(model_b.parameters(), lr)
for epoch in range(epochs):
##### Training Phase
for batch in trainloader:
loss = model_b.training_step(batch)['Training_loss']
loss_Lasso = loss + 0.5 * L1 # L1 reg
loss_Lasso.backward()
optimizer.step()
optimizer.zero_grad()
result = evaluate_b(model_b, trainloader)
model_b.epoch_end(epoch, result)
history.append(result)
return history
Can anyone help me with what I am missing and how I can really apply L1 regularization?
Also, is L1 regularization called lasso?
I believe the l1-norm is a type of Lasso regularization, yes, but there are others.
In your snippet L1 is set as a constant, instead you should measure the l1-norm of your model's parameters. Then sum it with your network's loss, as you did. In your example there is a single layer, so you will only need self.linear's parameters. First gather all parameters then measure the total norm with torch.norm. You could also use nn.L1Loss.
params = torch.cat([x.view(-1) for x in model.linear.parameters()])
L1 = lamb*torch.norm(params, p=1)
Where lamb is your lambda regularization parameter and model is initialized from the LogisticRegression class.

Categories