How to: safely call super constructors with different arguments - python

I have seen super().__init__(*args) used to call the super constructor safely (in a way that does not fail to diamond inheritence). However I cannot find a way to call different super constructors with different arguments in this way.
Here is an example illustraiting the problem.
from typing import TypeVar, Generic
X = TypeVar("X")
Y = TypeVar("Y")
class Base:
def __init__(self):
pass
class Left(Base, Generic[X]):
def __init__(self, x:X):
super().__init__()
self.lft = x
class TopRight(Base, Generic[Y]):
def __init__(self, y:Y):
super().__init__()
self.rgh = y
class BottomRight(TopRight[Y], Generic[Y]):
def __init__(self, y:Y):
super().__init__(y + y)
class Root(Left[X], BottomRight[Y], Generic[X, Y]):
def __init__(self, x:X, y:Y):
pass #issue here
#does not work
#super().__init__(x)
#super().__init__(y)
#calls base twice
#Left[X].__init__(x)
#BottomRight[Y].__init__(y)
How do I call Left.__init__(x) and BottomRight.__init__(y) seperately and safely?

The thing is that to be use in cooperative form, the intermediate classes have to accept the arguments that are not "aimed" at them, and pass those on on their own super call, in a way that becomes transparent.
You them do not place multiple calls to your ancestor classes: you let the language runtime do that for you.
Your code should be written:
from typing import Generic, TypeVar
X = TypeVar("X")
Y = TypeVar("Y")
class Base:
def __init__(self):
pass
class Left(Base, Generic[X]):
def __init__(self, x:X, **kwargs):
super().__init__(**kwargs)
self.lft = x
class TopRight(Base, Generic[Y]):
def __init__(self, y:Y, **kwargs):
super().__init__(**kwargs)
self.rgh = y
class BottomRight(TopRight[Y], Generic[Y]):
def __init__(self, y:Y, **kwargs): # <- when this is executed, "y" is extracted from kwargs
super().__init__(y=y + y, **kwargs) # <- "x" remains in kwargs, but this class does not have to care about it.
class Root(Left[X], BottomRight[Y], Generic[X, Y]):
def __init__(self, x:X, y:Y):
super().__init__(x=x, y=y) # <- will traverse all superclasses, "Generic" being last
Also, note that depending on your project's ends, and final complexity, these type annotations may gain you nothing, and instead, add complexity to a code otherwise trivial. They are not always a gain in Python projects, although due to circunstances the tooling (i.e. IDEs), might recommend them.
Also, check this similar answer from a few days ago, were I detail a bit more of Python method resolution order mechanisms, and point to the official documentation on them: In multiple inheritance in Python, init of parent class A and B is done at the same time?

Related

Function overload errors [duplicate]

I know that Python does not support method overloading, but I've run into a problem that I can't seem to solve in a nice Pythonic way.
I am making a game where a character needs to shoot a variety of bullets, but how do I write different functions for creating these bullets? For example suppose I have a function that creates a bullet travelling from point A to B with a given speed. I would write a function like this:
def add_bullet(sprite, start, headto, speed):
# Code ...
But I want to write other functions for creating bullets like:
def add_bullet(sprite, start, direction, speed):
def add_bullet(sprite, start, headto, spead, acceleration):
def add_bullet(sprite, script): # For bullets that are controlled by a script
def add_bullet(sprite, curve, speed): # for bullets with curved paths
# And so on ...
And so on with many variations. Is there a better way to do it without using so many keyword arguments cause its getting kinda ugly fast. Renaming each function is pretty bad too because you get either add_bullet1, add_bullet2, or add_bullet_with_really_long_name.
To address some answers:
No I can't create a Bullet class hierarchy because thats too slow. The actual code for managing bullets is in C and my functions are wrappers around C API.
I know about the keyword arguments but checking for all sorts of combinations of parameters is getting annoying, but default arguments help allot like acceleration=0
What you are asking for is called multiple dispatch. See Julia language examples which demonstrates different types of dispatches.
However, before looking at that, we'll first tackle why overloading is not really what you want in Python.
Why Not Overloading?
First, one needs to understand the concept of overloading and why it's not applicable to Python.
When working with languages that can discriminate data types at
compile-time, selecting among the alternatives can occur at
compile-time. The act of creating such alternative functions for
compile-time selection is usually referred to as overloading a
function. (Wikipedia)
Python is a dynamically typed language, so the concept of overloading simply does not apply to it. However, all is not lost, since we can create such alternative functions at run-time:
In programming languages that defer data type identification until
run-time the selection among alternative
functions must occur at run-time, based on the dynamically determined
types of function arguments. Functions whose alternative
implementations are selected in this manner are referred to most
generally as multimethods. (Wikipedia)
So we should be able to do multimethods in Python—or, as it is alternatively called: multiple dispatch.
Multiple dispatch
The multimethods are also called multiple dispatch:
Multiple dispatch or multimethods is the feature of some
object-oriented programming languages in which a function or method
can be dynamically dispatched based on the run time (dynamic) type of
more than one of its arguments. (Wikipedia)
Python does not support this out of the box1, but, as it happens, there is an excellent Python package called multipledispatch that does exactly that.
Solution
Here is how we might use multipledispatch2 package to implement your methods:
>>> from multipledispatch import dispatch
>>> from collections import namedtuple
>>> from types import * # we can test for lambda type, e.g.:
>>> type(lambda a: 1) == LambdaType
True
>>> Sprite = namedtuple('Sprite', ['name'])
>>> Point = namedtuple('Point', ['x', 'y'])
>>> Curve = namedtuple('Curve', ['x', 'y', 'z'])
>>> Vector = namedtuple('Vector', ['x','y','z'])
>>> #dispatch(Sprite, Point, Vector, int)
... def add_bullet(sprite, start, direction, speed):
... print("Called Version 1")
...
>>> #dispatch(Sprite, Point, Point, int, float)
... def add_bullet(sprite, start, headto, speed, acceleration):
... print("Called version 2")
...
>>> #dispatch(Sprite, LambdaType)
... def add_bullet(sprite, script):
... print("Called version 3")
...
>>> #dispatch(Sprite, Curve, int)
... def add_bullet(sprite, curve, speed):
... print("Called version 4")
...
>>> sprite = Sprite('Turtle')
>>> start = Point(1,2)
>>> direction = Vector(1,1,1)
>>> speed = 100 #km/h
>>> acceleration = 5.0 #m/s**2
>>> script = lambda sprite: sprite.x * 2
>>> curve = Curve(3, 1, 4)
>>> headto = Point(100, 100) # somewhere far away
>>> add_bullet(sprite, start, direction, speed)
Called Version 1
>>> add_bullet(sprite, start, headto, speed, acceleration)
Called version 2
>>> add_bullet(sprite, script)
Called version 3
>>> add_bullet(sprite, curve, speed)
Called version 4
1. Python 3 currently supports single dispatch
2. Take care not to use multipledispatch in a multi-threaded environment or you will get weird behavior.
Python does support "method overloading" as you present it. In fact, what you just describe is trivial to implement in Python, in so many different ways, but I would go with:
class Character(object):
# your character __init__ and other methods go here
def add_bullet(self, sprite=default, start=default,
direction=default, speed=default, accel=default,
curve=default):
# do stuff with your arguments
In the above code, default is a plausible default value for those arguments, or None. You can then call the method with only the arguments you are interested in, and Python will use the default values.
You could also do something like this:
class Character(object):
# your character __init__ and other methods go here
def add_bullet(self, **kwargs):
# here you can unpack kwargs as (key, values) and
# do stuff with them, and use some global dictionary
# to provide default values and ensure that ``key``
# is a valid argument...
# do stuff with your arguments
Another alternative is to directly hook the desired function directly to the class or instance:
def some_implementation(self, arg1, arg2, arg3):
# implementation
my_class.add_bullet = some_implementation_of_add_bullet
Yet another way is to use an abstract factory pattern:
class Character(object):
def __init__(self, bfactory, *args, **kwargs):
self.bfactory = bfactory
def add_bullet(self):
sprite = self.bfactory.sprite()
speed = self.bfactory.speed()
# do stuff with your sprite and speed
class pretty_and_fast_factory(object):
def sprite(self):
return pretty_sprite
def speed(self):
return 10000000000.0
my_character = Character(pretty_and_fast_factory(), a1, a2, kw1=v1, kw2=v2)
my_character.add_bullet() # uses pretty_and_fast_factory
# now, if you have another factory called "ugly_and_slow_factory"
# you can change it at runtime in python by issuing
my_character.bfactory = ugly_and_slow_factory()
# In the last example you can see abstract factory and "method
# overloading" (as you call it) in action
You can use "roll-your-own" solution for function overloading. This one is copied from Guido van Rossum's article about multimethods (because there is little difference between multimethods and overloading in Python):
registry = {}
class MultiMethod(object):
def __init__(self, name):
self.name = name
self.typemap = {}
def __call__(self, *args):
types = tuple(arg.__class__ for arg in args) # a generator expression!
function = self.typemap.get(types)
if function is None:
raise TypeError("no match")
return function(*args)
def register(self, types, function):
if types in self.typemap:
raise TypeError("duplicate registration")
self.typemap[types] = function
def multimethod(*types):
def register(function):
name = function.__name__
mm = registry.get(name)
if mm is None:
mm = registry[name] = MultiMethod(name)
mm.register(types, function)
return mm
return register
The usage would be
from multimethods import multimethod
import unittest
# 'overload' makes more sense in this case
overload = multimethod
class Sprite(object):
pass
class Point(object):
pass
class Curve(object):
pass
#overload(Sprite, Point, Direction, int)
def add_bullet(sprite, start, direction, speed):
# ...
#overload(Sprite, Point, Point, int, int)
def add_bullet(sprite, start, headto, speed, acceleration):
# ...
#overload(Sprite, str)
def add_bullet(sprite, script):
# ...
#overload(Sprite, Curve, speed)
def add_bullet(sprite, curve, speed):
# ...
Most restrictive limitations at the moment are:
methods are not supported, only functions that are not class members;
inheritance is not handled;
kwargs are not supported;
registering new functions should be done at import time thing is not thread-safe
A possible option is to use the multipledispatch module as detailed here:
http://matthewrocklin.com/blog/work/2014/02/25/Multiple-Dispatch
Instead of doing this:
def add(self, other):
if isinstance(other, Foo):
...
elif isinstance(other, Bar):
...
else:
raise NotImplementedError()
You can do this:
from multipledispatch import dispatch
#dispatch(int, int)
def add(x, y):
return x + y
#dispatch(object, object)
def add(x, y):
return "%s + %s" % (x, y)
With the resulting usage:
>>> add(1, 2)
3
>>> add(1, 'hello')
'1 + hello'
In Python 3.4 PEP-0443. Single-dispatch generic functions was added.
Here is a short API description from PEP.
To define a generic function, decorate it with the #singledispatch decorator. Note that the dispatch happens on the type of the first argument. Create your function accordingly:
from functools import singledispatch
#singledispatch
def fun(arg, verbose=False):
if verbose:
print("Let me just say,", end=" ")
print(arg)
To add overloaded implementations to the function, use the register() attribute of the generic function. This is a decorator, taking a type parameter and decorating a function implementing the operation for that type:
#fun.register(int)
def _(arg, verbose=False):
if verbose:
print("Strength in numbers, eh?", end=" ")
print(arg)
#fun.register(list)
def _(arg, verbose=False):
if verbose:
print("Enumerate this:")
for i, elem in enumerate(arg):
print(i, elem)
The #overload decorator was added with type hints (PEP 484).
While this doesn't change the behaviour of Python, it does make it easier to understand what is going on, and for mypy to detect errors.
See: Type hints and PEP 484
This type of behaviour is typically solved (in OOP languages) using polymorphism. Each type of bullet would be responsible for knowing how it travels. For instance:
class Bullet(object):
def __init__(self):
self.curve = None
self.speed = None
self.acceleration = None
self.sprite_image = None
class RegularBullet(Bullet):
def __init__(self):
super(RegularBullet, self).__init__()
self.speed = 10
class Grenade(Bullet):
def __init__(self):
super(Grenade, self).__init__()
self.speed = 4
self.curve = 3.5
add_bullet(Grendade())
def add_bullet(bullet):
c_function(bullet.speed, bullet.curve, bullet.acceleration, bullet.sprite, bullet.x, bullet.y)
void c_function(double speed, double curve, double accel, char[] sprite, ...) {
if (speed != null && ...) regular_bullet(...)
else if (...) curved_bullet(...)
//..etc..
}
Pass as many arguments to the c_function that exist, and then do the job of determining which c function to call based on the values in the initial c function. So, Python should only ever be calling the one c function. That one c function looks at the arguments, and then can delegate to other c functions appropriately.
You're essentially just using each subclass as a different data container, but by defining all the potential arguments on the base class, the subclasses are free to ignore the ones they do nothing with.
When a new type of bullet comes along, you can simply define one more property on the base, change the one python function so that it passes the extra property, and the one c_function that examines the arguments and delegates appropriately. It doesn't sound too bad I guess.
It is impossible by definition to overload a function in python (read on for details), but you can achieve something similar with a simple decorator
class overload:
def __init__(self, f):
self.cases = {}
def args(self, *args):
def store_function(f):
self.cases[tuple(args)] = f
return self
return store_function
def __call__(self, *args):
function = self.cases[tuple(type(arg) for arg in args)]
return function(*args)
You can use it like this
#overload
def f():
pass
#f.args(int, int)
def f(x, y):
print('two integers')
#f.args(float)
def f(x):
print('one float')
f(5.5)
f(1, 2)
Modify it to adapt it to your use case.
A clarification of concepts
function dispatch: there are multiple functions with the same name. Which one should be called? two strategies
static/compile-time dispatch (aka. "overloading"). decide which function to call based on the compile-time type of the arguments. In all dynamic languages, there is no compile-time type, so overloading is impossible by definition
dynamic/run-time dispatch: decide which function to call based on the runtime type of the arguments. This is what all OOP languages do: multiple classes have the same methods, and the language decides which one to call based on the type of self/this argument. However, most languages only do it for the this argument only. The above decorator extends the idea to multiple parameters.
To clear up, assume that we define, in a hypothetical static language, the functions
void f(Integer x):
print('integer called')
void f(Float x):
print('float called')
void f(Number x):
print('number called')
Number x = new Integer('5')
f(x)
x = new Number('3.14')
f(x)
With static dispatch (overloading) you will see "number called" twice, because x has been declared as Number, and that's all overloading cares about. With dynamic dispatch you will see "integer called, float called", because those are the actual types of x at the time the function is called.
By passing keyword args.
def add_bullet(**kwargs):
#check for the arguments listed above and do the proper things
Python 3.8 added functools.singledispatchmethod
Transform a method into a single-dispatch generic function.
To define a generic method, decorate it with the #singledispatchmethod
decorator. Note that the dispatch happens on the type of the first
non-self or non-cls argument, create your function accordingly:
from functools import singledispatchmethod
class Negator:
#singledispatchmethod
def neg(self, arg):
raise NotImplementedError("Cannot negate a")
#neg.register
def _(self, arg: int):
return -arg
#neg.register
def _(self, arg: bool):
return not arg
negator = Negator()
for v in [42, True, "Overloading"]:
neg = negator.neg(v)
print(f"{v=}, {neg=}")
Output
v=42, neg=-42
v=True, neg=False
NotImplementedError: Cannot negate a
#singledispatchmethod supports nesting with other decorators such as
#classmethod. Note that to allow for dispatcher.register,
singledispatchmethod must be the outer most decorator. Here is the
Negator class with the neg methods being class bound:
from functools import singledispatchmethod
class Negator:
#singledispatchmethod
#staticmethod
def neg(arg):
raise NotImplementedError("Cannot negate a")
#neg.register
def _(arg: int) -> int:
return -arg
#neg.register
def _(arg: bool) -> bool:
return not arg
for v in [42, True, "Overloading"]:
neg = Negator.neg(v)
print(f"{v=}, {neg=}")
Output:
v=42, neg=-42
v=True, neg=False
NotImplementedError: Cannot negate a
The same pattern can be used for other similar decorators:
staticmethod, abstractmethod, and others.
I think your basic requirement is to have a C/C++-like syntax in Python with the least headache possible. Although I liked Alexander Poluektov's answer it doesn't work for classes.
The following should work for classes. It works by distinguishing by the number of non-keyword arguments (but it doesn't support distinguishing by type):
class TestOverloading(object):
def overloaded_function(self, *args, **kwargs):
# Call the function that has the same number of non-keyword arguments.
getattr(self, "_overloaded_function_impl_" + str(len(args)))(*args, **kwargs)
def _overloaded_function_impl_3(self, sprite, start, direction, **kwargs):
print "This is overload 3"
print "Sprite: %s" % str(sprite)
print "Start: %s" % str(start)
print "Direction: %s" % str(direction)
def _overloaded_function_impl_2(self, sprite, script):
print "This is overload 2"
print "Sprite: %s" % str(sprite)
print "Script: "
print script
And it can be used simply like this:
test = TestOverloading()
test.overloaded_function("I'm a Sprite", 0, "Right")
print
test.overloaded_function("I'm another Sprite", "while x == True: print 'hi'")
Output:
This is overload 3
Sprite: I'm a Sprite
Start: 0
Direction: Right
This is overload 2
Sprite: I'm another Sprite
Script:
while x == True: print 'hi'
You can achieve this with the following Python code:
#overload
def test(message: str):
return message
#overload
def test(number: int):
return number + 1
Either use multiple keyword arguments in the definition, or create a Bullet hierarchy whose instances are passed to the function.
I think a Bullet class hierarchy with the associated polymorphism is the way to go. You can effectively overload the base class constructor by using a metaclass so that calling the base class results in the creation of the appropriate subclass object. Below is some sample code to illustrate the essence of what I mean.
Updated
The code has been modified to run under both Python 2 and 3 to keep it relevant. This was done in a way that avoids the use Python's explicit metaclass syntax, which varies between the two versions.
To accomplish that objective, a BulletMetaBase instance of the BulletMeta class is created by explicitly calling the metaclass when creating the Bullet baseclass (rather than using the __metaclass__= class attribute or via a metaclass keyword argument depending on the Python version).
class BulletMeta(type):
def __new__(cls, classname, bases, classdict):
""" Create Bullet class or a subclass of it. """
classobj = type.__new__(cls, classname, bases, classdict)
if classname != 'BulletMetaBase':
if classname == 'Bullet': # Base class definition?
classobj.registry = {} # Initialize subclass registry.
else:
try:
alias = classdict['alias']
except KeyError:
raise TypeError("Bullet subclass %s has no 'alias'" %
classname)
if alias in Bullet.registry: # unique?
raise TypeError("Bullet subclass %s's alias attribute "
"%r already in use" % (classname, alias))
# Register subclass under the specified alias.
classobj.registry[alias] = classobj
return classobj
def __call__(cls, alias, *args, **kwargs):
""" Bullet subclasses instance factory.
Subclasses should only be instantiated by calls to the base
class with their subclass' alias as the first arg.
"""
if cls != Bullet:
raise TypeError("Bullet subclass %r objects should not to "
"be explicitly constructed." % cls.__name__)
elif alias not in cls.registry: # Bullet subclass?
raise NotImplementedError("Unknown Bullet subclass %r" %
str(alias))
# Create designated subclass object (call its __init__ method).
subclass = cls.registry[alias]
return type.__call__(subclass, *args, **kwargs)
class Bullet(BulletMeta('BulletMetaBase', (object,), {})):
# Presumably you'd define some abstract methods that all here
# that would be supported by all subclasses.
# These definitions could just raise NotImplementedError() or
# implement the functionality is some sub-optimal generic way.
# For example:
def fire(self, *args, **kwargs):
raise NotImplementedError(self.__class__.__name__ + ".fire() method")
# Abstract base class's __init__ should never be called.
# If subclasses need to call super class's __init__() for some
# reason then it would need to be implemented.
def __init__(self, *args, **kwargs):
raise NotImplementedError("Bullet is an abstract base class")
# Subclass definitions.
class Bullet1(Bullet):
alias = 'B1'
def __init__(self, sprite, start, direction, speed):
print('creating %s object' % self.__class__.__name__)
def fire(self, trajectory):
print('Bullet1 object fired with %s trajectory' % trajectory)
class Bullet2(Bullet):
alias = 'B2'
def __init__(self, sprite, start, headto, spead, acceleration):
print('creating %s object' % self.__class__.__name__)
class Bullet3(Bullet):
alias = 'B3'
def __init__(self, sprite, script): # script controlled bullets
print('creating %s object' % self.__class__.__name__)
class Bullet4(Bullet):
alias = 'B4'
def __init__(self, sprite, curve, speed): # for bullets with curved paths
print('creating %s object' % self.__class__.__name__)
class Sprite: pass
class Curve: pass
b1 = Bullet('B1', Sprite(), (10,20,30), 90, 600)
b2 = Bullet('B2', Sprite(), (-30,17,94), (1,-1,-1), 600, 10)
b3 = Bullet('B3', Sprite(), 'bullet42.script')
b4 = Bullet('B4', Sprite(), Curve(), 720)
b1.fire('uniform gravity')
b2.fire('uniform gravity')
Output:
creating Bullet1 object
creating Bullet2 object
creating Bullet3 object
creating Bullet4 object
Bullet1 object fired with uniform gravity trajectory
Traceback (most recent call last):
File "python-function-overloading.py", line 93, in <module>
b2.fire('uniform gravity') # NotImplementedError: Bullet2.fire() method
File "python-function-overloading.py", line 49, in fire
raise NotImplementedError(self.__class__.__name__ + ".fire() method")
NotImplementedError: Bullet2.fire() method
You can easily implement function overloading in Python. Here is an example using floats and integers:
class OverloadedFunction:
def __init__(self):
self.router = {int : self.f_int ,
float: self.f_float}
def __call__(self, x):
return self.router[type(x)](x)
def f_int(self, x):
print('Integer Function')
return x**2
def f_float(self, x):
print('Float Function (Overloaded)')
return x**3
# f is our overloaded function
f = OverloadedFunction()
print(f(3 ))
print(f(3.))
# Output:
# Integer Function
# 9
# Float Function (Overloaded)
# 27.0
The main idea behind the code is that a class holds the different (overloaded) functions that you would like to implement, and a Dictionary works as a router, directing your code towards the right function depending on the input type(x).
PS1. In case of custom classes, like Bullet1, you can initialize the internal dictionary following a similar pattern, such as self.D = {Bullet1: self.f_Bullet1, ...}. The rest of the code is the same.
PS2. The time/space complexity of the proposed solution is fairly good as well, with an average cost of O(1) per operation.
Use keyword arguments with defaults. E.g.
def add_bullet(sprite, start=default, direction=default, script=default, speed=default):
In the case of a straight bullet versus a curved bullet, I'd add two functions: add_bullet_straight and add_bullet_curved.
Overloading methods is tricky in Python. However, there could be usage of passing the dict, list or primitive variables.
I have tried something for my use cases, and this could help here to understand people to overload the methods.
Let's take your example:
A class overload method with call the methods from different class.
def add_bullet(sprite=None, start=None, headto=None, spead=None, acceleration=None):
Pass the arguments from the remote class:
add_bullet(sprite = 'test', start=Yes,headto={'lat':10.6666,'long':10.6666},accelaration=10.6}
Or
add_bullet(sprite = 'test', start=Yes, headto={'lat':10.6666,'long':10.6666},speed=['10','20,'30']}
So, handling is being achieved for list, Dictionary or primitive variables from method overloading.
Try it out for your code.
Plum supports it in a straightforward pythonic way. Copying an example from the README below.
from plum import dispatch
#dispatch
def f(x: str):
return "This is a string!"
#dispatch
def f(x: int):
return "This is an integer!"
>>> f("1")
'This is a string!'
>>> f(1)
'This is an integer!'
You can also try this code. We can try any number of arguments
# Finding the average of given number of arguments
def avg(*args): # args is the argument name we give
sum = 0
for i in args:
sum += i
average = sum/len(args) # Will find length of arguments we given
print("Avg: ", average)
# call function with different number of arguments
avg(1,2)
avg(5,6,4,7)
avg(11,23,54,111,76)

How to write factory functions for subclasses?

Suppose there is a class A and a factory function make_A
class A():
...
def make_A(*args, **kwars):
# returns an object of type A
both defined in some_package.
Suppose also that I want to expand the functionality of A, by subclassing it,
without overriding the constructor:
from some_package import A, make_A
class B(A):
def extra_method(self, ...):
# adds extra functionality
What I also need is to write a new factory function make_B for subclass B.
The solution I have found so far is
def make_B(*args, **kwargs):
"""
same as make_A except that it returns an object of type B
"""
out = make_A(*args, **kwargs)
out.__class__ = B
return out
This seems to work, but I am a bit worried about directly modifying the
__class__ attribute, as it feels to me like a hack. I am also worried about
unexpected side-effects this modification may have. Is this the recommended
solution or is there a "cleaner" pattern to achieve the same result?
I guess I finally found something not verbose yet still working. For this you need to replace inheritance with composition, this will allow to consume an object A by doing self.a = ....
To mimic the methods of A you can use __getattr__ overload to delegate those methods (and fields) to self.a
The next snippet works for me
class A:
def __init__(self, val):
self.val = val
def method(self):
print(f"A={self.val}")
def make_A():
return A(42)
class B:
def __init__(self, *args, consume_A = None, **kwargs):
if consume_A is None:
self.a = A(*args, **kwargs)
else:
self.a = consume_A
def __getattr__(self, name):
return getattr(self.a, name)
def my_extension(self):
print(f"B={self.val * 100}")
def make_B(*args, **kwargs):
return B(consume_A=make_A(*args, **kwargs))
b = make_B()
b.method() # A=42
b.my_extension() # B=4200
What makes this approach superior to yours is that modifying __class__ is probably not harmless. On the other hand __getattr__ and __getattribute__ are specifically provided as the mechanisms to resolve attributes search in an object. For more details, see this tutorial.
Make your original factory function more general by accepting a class as parameter: remember, everything is an object in Python, even classes.
def make(class_type, *args, **kwargs):
return class_type(*args, **kwargs)
a = make(A)
b = make(B)
Since B has the same parameters as A, you don't need to make an A and then turn it into B: B inherits from A, so it "is an A" and will have the same functionality, plus the extra method that you added.

If you store optional functionality of a base class in a secondary class, should the secondary class subclass the base class?

I know the title is probably a bit confusing, so let me give you an example. Suppose you have a base class Base which is intended to be subclassed to create more complex objects. But you also have optional functionality that you don't need for every subclass, so you put it in a secondary class OptionalStuffA that is always intended to be subclassed together with the base class. Should you also make that secondary class a subclass of Base?
This is of course only relevant if you have more than one OptionalStuff class and you want to combine them in different ways, because otherwise you don't need to subclass both Base and OptionalStuffA (and just have OptionalStuffA be a subclass of Base so you only need to subclass OptionalStuffA). I understand that it shouldn't make a difference for the MRO if Base is inherited from more than once, but I'm not sure if there are any drawbacks to making all the secondary classes inherit from Base.
Below is an example scenario. I've also thrown in the QObject class as a 'third party' token class whose functionality is necessary for one of the secondary classes to work. Where do I subclass it? The example below shows how I've done it so far, but I doubt this is the way to go.
from PyQt5.QtCore import QObject
class Base:
def __init__(self):
self._basic_stuff = None
def reset(self):
self._basic_stuff = None
class OptionalStuffA:
def __init__(self):
super().__init__()
self._optional_stuff_a = None
def reset(self):
if hasattr(super(), 'reset'):
super().reset()
self._optional_stuff_a = None
def do_stuff_that_only_works_if_my_children_also_inherited_from_Base(self):
self._basic_stuff = not None
class OptionalStuffB:
def __init__(self):
super().__init__()
self._optional_stuff_b = None
def reset(self):
if hasattr(super(), 'reset'):
super().reset()
self._optional_stuff_b = None
def do_stuff_that_only_works_if_my_children_also_inherited_from_QObject(self):
print(self.objectName())
class ClassThatIsActuallyUsed(Base, OptionalStuffA, OptionalStuffB, QObject):
def __init__(self):
super().__init__()
self._unique_stuff = None
def reset(self):
if hasattr(super(), 'reset'):
super().reset()
self._unique_stuff = None
What I can get from your problem is that you want to have different functions and properties based on different condition, that sounds like good reason to use MetaClass.
It all depends how complex your each class is, and what are you building, if it is for some library or API then MetaClass can do magic if used rightly.
MetaClass is perfect to add functions and property to the class based on some sort of condition, you just have to add all your subclass function into one meta class and add that MetaClass to your main class
From Where to start
you can read about MetaClass here, or you can watch it here.
After you have better understanding about MetaClass see the source code of Django ModelForm from here and here, but before that take a brief look on how the Django Form works from outside this will give You an idea on how to implement it.
This is how I would implement it.
#You can also inherit it from other MetaClass but type has to be top of inheritance
class meta_class(type):
# create class based on condition
"""
msc: meta_class, behaves much like self (not exactly sure).
name: name of the new class (ClassThatIsActuallyUsed).
base: base of the new class (Base).
attrs: attrs of the new class (Meta,...).
"""
def __new__(mcs, name, bases, attrs):
meta = attrs.get('Meta')
if(meta.optionA){
attrs['reset'] = resetA
}if(meta.optionB){
attrs['reset'] = resetB
}if(meta.optionC){
attrs['reset'] = resetC
}
if("QObject" in bases){
attrs['do_stuff_that_only_works_if_my_children_also_inherited_from_QObject'] = functionA
}
return type(name, bases, attrs)
class Base(metaclass=meta_class): #you can also pass kwargs to metaclass here
#define some common functions here
class Meta:
# Set default values here for the class
optionA = False
optionB = False
optionC = False
class ClassThatIsActuallyUsed(Base):
class Meta:
optionA = True
# optionB is False by default
optionC = True
EDIT: Elaborated on how to implement MetaClass.
Let me start with another alternative. In the example below the Base.foo method is a plain identity function, but options can override that.
class Base:
def foo(self, x):
return x
class OptionDouble:
def foo(self, x):
x *= 2 # preprocess example
return super().foo(x)
class OptionHex:
def foo(self, x):
result = super().foo(x)
return hex(result) # postprocess example
class Combined(OptionDouble, OptionHex, Base):
pass
b = Base()
print(b.foo(10)) # 10
c = Combined()
print(c.foo(10)) # 2x10 = 20, as hex string: "0x14"
The key is that in the definition of the Combined's bases are Options specified before the Base:
class Combined(OptionDouble, OptionHex, Base):
Read the class names left-to right and in this simple case
this is the order in which foo() implementations are ordered.
It is called the method resolution order (MRO).
It also defines what exactly super() means in particular classes and that is important, because Options are written as wrappers around the super() implementation
If you do it the other way around, it won't work:
class Combined(Base, OptionDouble, OptionHex):
pass
c = Combined()
print(Combined.__mro__)
print(c.foo(10)) # 10, options not effective!
In this case the Base implementation is called first and it directly returns the result.
You could take care of the correct base order manually or you could write a function that checks it. It walks through the MRO list and once it sees the Base it will not allow an Option after it.
class Base:
def __init_subclass__(cls, *args, **kwargs):
super().__init_subclass__(*args, **kwargs)
base_seen = False
for mr in cls.__mro__:
if base_seen:
if issubclass(mr, Option):
raise TypeError( f"The order of {cls.__name__} base classes is incorrect")
elif mr is Base:
base_seen = True
def foo(self, x):
return x
class Option:
pass
class OptionDouble(Option):
...
class OptionHex(Option):
...
Now to answer your comment. I wrote that #wettler's approach could be simplified. I meant something like this:
class Base:
def __init_subclass__(cls, *args, **kwargs):
super().__init_subclass__(*args, **kwargs)
print("options for the class", cls.__name__)
print('A', cls.optionA)
print('B', cls.optionB)
print('C', cls.optionC)
# ... modify the class according to the options ...
bases = cls.__bases__
# ... check if QObject is present in bases ...
# defaults
optionA = False
optionB = False
optionC = False
class ClassThatIsActuallyUsed(Base):
optionA = True
optionC = True
This demo will print:
options for the class ClassThatIsActuallyUsed
A True
B False
C True

How to instantiate a subclass type variable from an existing superclass type object in Python

I have a situation where I extend a class with several attributes:
class SuperClass:
def __init__(self, tediously, many, attributes):
# assign the attributes like "self.attr = attr"
class SubClass:
def __init__(self, id, **kwargs):
self.id = id
super().__init__(**kwargs)
And then I want to create instances, but I understand that this leads to a situation where a subclass can only be instantiated like this:
super_instance = SuperClass(tediously, many, attributes)
sub_instance = SubClass(id, tediously=super_instance.tediously, many=super_instance.many, attributes=super_instance.attributes)
My question is if anything prettier / cleaner can be done to instantiate a subclass by copying a superclass instance's attributes, without having to write a piece of sausage code to manually do it (either in the constructor call, or a constructor function's body)... Something like:
utopic_sub_instance = SubClass(id, **super_instance)
Maybe you want some concrete ideas of how to not write so much code?
So one way to do it would be like this:
class A:
def __init___(self, a, b, c):
self.a = a
self.b = b
self.c = c
class B:
def __init__(self, x, a, b, c):
self.x = x
super().__init__(a, b, c)
a = A(1, 2, 3)
b = B('x', 1, 2, 3)
# so your problem is that you want to avoid passing 1,2,3 manually, right?
# So as a comment suggests, you should use alternative constructors here.
# Alternative constructors are good because people not very familiar with
# Python could also understand them.
# Alternatively, you could use this syntax, but it is a little dangerous and prone to producing
# bugs in the future that are hard to spot
class BDangerous:
def __init__(self, x, a, b, c):
self.x = x
kwargs = dict(locals())
kwargs.pop('x')
kwargs.pop('self')
# This is dangerous because if in the future someone adds a variable in this
# scope, you need to remember to pop that also
# Also, if in the future, the super constructor acquires the same parameter that
# someone else adds as a variable here... maybe you will end up passing an argument
# unwillingly. That might cause a bug
# kwargs.pop(...pop all variable names you don't want to pass)
super().__init__(**kwargs)
class BSafe:
def __init__(self, x, a, b, c):
self.x = x
bad_kwargs = dict(locals())
# This is safer: you are explicit about which arguments you're passing
good_kwargs = {}
for name in 'a,b,c'.split(','):
good_kwargs[name] = bad_kwargs[name]
# but really, this solution is not that much better compared to simply passing all
# parameters explicitly
super().__init__(**good_kwargs)
Alternatively, let's go a little crazier. We'll use introspection to dynamically build the dict to pass as arguments. I have not included in my example the case where there are keyword-only arguments, defaults, *args or **kwargs
class A:
def __init__(self, a,b,c):
self.a = a
self.b = b
self.c = c
class B(A):
def __init__(self, x,y,z, super_instance):
import inspect
spec = inspect.getfullargspec(A.__init__)
positional_args = []
super_vars = vars(super_instance)
for arg_name in spec.args[1:]: # to exclude 'self'
positional_args.append(super_vars[arg_name])
# ...but of course, you must have the guarantee that constructor
# arguments will be set as instance attributes with the same names
super().__init__(*positional_args)
I managed to finally do it using a combination of an alt constructor and the __dict__ property of the super_instance.
class SuperClass:
def __init__(self, tediously, many, attributes):
self.tediously = tediously
self.many = many
self.attributes = attributes
class SubClass(SuperClass):
def __init__(self, additional_attribute, tediously, many, attributes):
self.additional_attribute = additional_attribute
super().__init__(tediously, many, attributes)
#classmethod
def from_super_instance(cls, additional_attribute, super_instance):
return cls(additional_attribute=additional_attribute, **super_instance.__dict__)
super_instance = SuperClass("tediously", "many", "attributes")
sub_instance = SubClass.from_super_instance("additional_attribute", super_instance)
NOTE: Bear in mind that python executes statements sequentially, so if you want to override the value of an inherited attribute, put super().__init__() before the other assignment statements in SubClass.__init__.
NOTE 2: pydantic has this very nice feature where their BaseModel class auto generates an .__init__() method, helps with attribute type validation and offers a .dict() method for such models (it's basically the same as .__dict__ though).
Kinda ran into the same question and just figured one could simply do:
class SubClass(SuperClass):
def __init__(self, additional_attribute, **args):
self.additional_attribute = additional_attribute
super().__init__(**args)
super_class = SuperClass("tediously", "many", "attributes")
sub_instance = SuperClass("additional_attribute", **super_class.__dict__)

Declaring Subclass without passing self

I have an abstract base class Bicycle:
from abc import ABC, abstractmethod
class Bicycle(ABC):
def __init__(self, cadence = 10, gear = 10, speed = 10):
self._cadence = cadence
self._gear = gear
self._speed = speed
#abstractmethod
def ride(self):
pass
def __str__(self):
return "Cadence: {0} Gear: {1} Speed: {2}".format(self._cadence,
self._gear, self._speed)
and a subclass MountainBike:
from Bicycle import Bicycle
class MountainBike(Bicycle):
def __init__(self):
super().__init__(self)
def ride(self):
return "Riding my Bike"
The following code will cause a recursion error, but if I remove self from the super().__init__(self), the call to __str__(self): works.
Question:
I only discovered this error when I implemented the __str__(self):
In Python 3.x when calling the parent constructor from the child with no arguments, is passing self, necessary?
Suppose MountainBike now sets the cadence, gear, speed this means in my subclass the constructor will look like this:
class MountainBike(Bicycle):
def __init__(self, cadence, gear, speed):
super().__init__(cadence,gear,speed)
notice, self isn't being passed in the super because to my knowledge, it can throw the variable assignments off. Is this assumption correct?
self is passed implicitly to the super call, so adding it explicitly sends it twice:
def __init__(self):
super().__init__(self)
That ends up calling Bicycle(self, self), which is the same as Bicycle(self, cadence=self).
Later on, you have probably tried convert your instance to str (e.g. to print it), so this was called:
def __str__(self):
return "Cadence: {0} Gear: {1} Speed: {2}".format(self._cadence,
self._gear, self._speed)
That code tried to convert self._cadence to a string and self._cadence is self because of the previous error, so it continues in an endless recursion (until the recursion exception).
Note that super() takes two forms: with arguments and without arguments, so there are two correct ways to fix the code.
The Python 3 way (without arguments):
def __init__(self):
super().__init__()
The old Python 2 way, which is more explicit:
def __init__(self):
super(MountainBike, self).__init__()
Both do the same, i.e. they give you the bound __init__ method which already has the implicit self.
See also here: https://docs.python.org/3/library/functions.html#super

Categories