I have a column that includes strings including a percent at the end e.g XX: (+2, 30%); (-5, 20%); (+17, 50%) .
I need to extract the highest % value for each such string and perform this on the whole column.
Any advice will be highly appreciated!
Thanks
In my understanding, each cell in column XX is a cells which contains some percentages. I have included a small test DataFrame I have used:
import pandas as pd
import re
df = pd.DataFrame({"XX":["(+2, 30%), (-5, 20%), (+17, 50%)","(+2, 70%), (-5, 20%), (+17, 50%)", ""]})
pattern = re.compile("([0-9\.]+)%")
df["XX"].apply(lambda x: max(pattern.findall(x), default=-1))
OUTPUT
0 50
1 70
this code returns the most value in a column having percents
import pandas as pd
import numpy as np
data = [['2.3%', 1],['5.3%', 3]]
data = pd.DataFrame(data)
first_column = data.iloc[:, 0]
percent_list = []
for val in first_column:
percent_list.append(float(val[:-1]))
print(percent_list[np.argmax(percent_list)])
Related
import numpy as np
import pandas as pd
df = pd.read_csv('test_python.csv')
print(df.groupby('fifth').sum())
this is my data
**And I am summing the first three columns for every word is in fifth.
The result is this and it is correct
The next thing I want to do is take those results and sum the together
example:
**buy = 6
cheese = 8
file = 12
.
.
.
word = 13**
How can I do this? how can I use the results.**
-And also now, want to use the column second as a new column with the name second2 with the results as data, how can I do it?
For Summing you can use apply-lambda ;
df = pd.DataFrame({"first":[1]*14,
"second":np.arange(1,15),
"third":[0]*14,
"forth":["one","two","three","four"]*3+["one","two"],
"fifth":["hello","no","hello","hi","buy","hello","cheese","water","hi","juice","file","word","hi","red"]})
df1 = df.groupby(['fifth'])['first','second','third'].agg('sum').reset_index()
df1["sum_3_Col"] = df1.apply(lambda x: x["first"] + x["second"] + x["third"],axis=1)
df1.rename(columns={'second':'second2'}, inplace=True)
Output of df1;
I have two dataframes, and trying to find out a way to match the exact substring from one dataframe to another dataframe.
First DataFrame:
import pandas as pd
import numpy as np
random_data = {'Place Name':['TS~HOT_MD~h_PB~progra_VV~gogl', 'FM~uiosv_PB~emo_SZ~1x1_TG~bhv'],
'Site':['DV360', 'Adikteev']}
dataframe = pd.DataFrame(random_data)
print(dataframe)
Second DataFrame
test_data = {'code name': ['PB', 'PB', 'PB'],
'Actual':['programmatic me', 'emoteev', 'programmatic-mechanics'],
'code':['progra', 'emo', 'prog']}
test_dataframe = pd.DataFrame(test_data)
Approach
for k, l, m in zip(test_dataframe.iloc[:, 0], test_dataframe.iloc[:, 1], test_dataframe.iloc[:, 2]):
dataframe['Site'] = np.select([dataframe['Place Name'].str.contains(r'\b{}~{}\b'.format(k, m), regex=False)], [l],
default=dataframe['Site'])
The current output is as below, though I am expecting to match the exact substring, which is not working with the code above.
Current Output:
Place Name Site
TS~HOT_MD~h_PB~progra_VV~gogl programmatic-mechanics
FM~uiosv_PB~emo_SZ~1x1_TG~bhv emoteev
Expected Output:
Place Name Site
TS~HOT_MD~h_PB~progra_VV~gogl programmatic me
FM~uiosv_PB~emo_SZ~1x1_TG~bhv emoteev
Data
import pandas as pd
import numpy as np
random_data = {'Place Name':['TS~HOT_MD~h_PB~progra_VV~gogl',
'FM~uiosv_PB~emo_SZ~1x1_TG~bhv'], 'Site':['DV360', 'Adikteev']}
dataframe = pd.DataFrame(random_data)
test_data = {'code name': ['PB', 'PB', 'PB'], 'Actual':['programmatic me', 'emoteev', 'programmatic-mechanics'],
'code':['progra', 'emo', 'prog']}
test_dataframe = pd.DataFrame(test_data)
Map the test_datframe code and Actual into dictionary as key and value respectively
keys=test_dataframe['code'].values.tolist()
dicto=dict(zip(test_dataframe.code, test_dataframe.Actual))
dicto
Join the keys separated by | to enable search of either phrases
k = '|'.join(r"{}".format(x) for x in dicto.keys())
k
Extract string from datframe meeting any of the phrases in k and map them to to the dictionary
dataframe['Site'] = dataframe['Place Name'].str.extract('('+ k + ')', expand=False).map(dicto)
dataframe
Output
Not the most elegant solution, but this does the trick.
Set up data
import pandas as pd
import numpy as np
random_data = {'Place Name':['TS~HOT_MD~h_PB~progra_VV~gogl',
'FM~uiosv_PB~emo_SZ~1x1_TG~bhv'], 'Site':['DV360', 'Adikteev']}
dataframe = pd.DataFrame(random_data)
test_data = {'code name': ['PB', 'PB', 'PB'], 'Actual':['programmatic me', 'emoteev', 'programmatic-mechanics'],
'code':['progra', 'emo', 'prog']}
test_dataframe = pd.DataFrame(test_data)
Solution
Create a column in test_dataframe with the substring to match:
test_dataframe['match_str'] = test_dataframe['code name'] + '~' + test_dataframe.code
print(test_dataframe)
code name Actual code match_str
0 PB programmatic me progra PB~progra
1 PB emoteev emo PB~emo
2 PB programmatic-mechanics prog PB~prog
Define a function to apply to test_dataframe:
def match_string(row, dataframe):
ind = row.name
try:
if row[-1] in dataframe.loc[ind, 'Place Name']:
return row[1]
else:
return dataframe.loc[ind, 'Site']
except KeyError:
# More rows in test_dataframe than there are in dataframe
pass
# Apply match_string and assign back to dataframe
dataframe['Site'] = test_dataframe.apply(match_string, args=(dataframe,), axis=1)
Output:
Place Name Site
0 TS~HOT_MD~h_PB~progra_VV~gogl programmatic me
1 FM~uiosv_PB~emo_SZ~1x1_TG~bhv emoteev
I have a DataFrame consisting of Ids and Serial Numbers. I want to create a new DataFrame with the Ids as index and the serial numbers as column values and zero padding where the length are not equal.
My problem is that when I try to group by id the number of groups in my groupby("id")-object does not match the number of nunique("id") values which is counter intuitive. For every example I tried using smaller DateFrames the numbers match. Any suggestions why?
import pandas as pd
import numpy as np
# data example (real df is shape(188225, 2)
hu = pd.DataFrame({'Id': ['1','12','123','1234','12345'],
'Serial':['A','AB','ABC','ABC','ABC']},
dtype = 'category')
max_len = df.groupby('Id')['Serial'].size().max() # Find the max length
grouped = df.groupby('Id')
from io import StringIO
from csv import writer
output = StringIO()
csv_writer = writer(output)
for key, vals in grouped.groups.items():
# Vector of serials with 0 padding matching so max_len = | [a, b, c, 0, 0, 0...]|
csv_writer.writerow(np.append(np.append(key, vals.values), np.array([0] * (max_len - len(vals)))))
output.seek(0) #goes to the start of the IO file
dfdiscrete = pd.read_csv(output,
header=None,
index_col=0,
dtype=str)
print("\Discrete Serials:", len(grouped.groups), "nunique ids", hu['Id'].nunique())
I expect the these two to be:
Shape discrete devices: (29840, 50) nunique citizen ids 29840,
but the actual output is
Shape discrete devices: (56674, 50) nunique citizen ids 29840
I am trying to do the equivalent of a COUNTIF() function in excel. I am stuck at how to tell the .count() function to read from a specific column in excel.
I have
df = pd.read_csv('testdata.csv')
df.count('1')
but this does not work, and even if it did it is not specific enough.
I am thinking I may have to use read_csv to read specific columns individually.
Example:
Column name
4
4
3
2
4
1
the function would output that there is one '1' and I could run it again and find out that there are three '4' answers. etc.
I got it to work! Thank you
I used:
print (df.col.value_counts().loc['x']
Here is an example of a simple 'countif' recipe you could try:
import pandas as pd
def countif(rng, criteria):
return rng.eq(criteria).sum()
Example use
df = pd.DataFrame({'column1': [4,4,3,2,4,1],
'column2': [1,2,3,4,5,6]})
countif(df['column1'], 1)
If all else fails, why not try something like this?
import numpy as np
import pandas
import matplotlib.pyplot as plt
df = pandas.DataFrame(data=np.random.randint(0, 100, size=100), columns=["col1"])
counters = {}
for i in range(len(df)):
if df.iloc[i]["col1"] in counters:
counters[df.iloc[i]["col1"]] += 1
else:
counters[df.iloc[i]["col1"]] = 1
print(counters)
plt.bar(counters.keys(), counters.values())
plt.show()
I am writing a python code, it should read the values of columns but I am getting the KeyError: 'column_name' error. Can anyone please tell me how to fix this issue.
import numpy as np
from sklearn.cluster import KMeans
import pandas as pd
### For the purposes of this example, we store feature data from our
### dataframe `df`, in the `f1` and `f2` arrays. We combine this into
### a feature matrix `X` before entering it into the algorithm.
df = pd.read_csv(r'C:\Users\Desktop\data.csv')
print (df)
#df = pd.read_csv(csv_file)
"""
saved_column = df.Distance_Feature
saved_column = df.Speeding_Feature
print(saved_column)
"""
f1 = df['Distance_Feature'].tolist()
f2 = df['Speeding_Feature'].tolist()
print(f1)
print(f2)
X=np.matrix(zip(f1,f2))
print(X)
kmeans = KMeans(n_clusters=2).fit(X)
Can anyone please help me.
Asumming 'C:\Users\Desktop\data.csv' contains the following data
Distance_Feature Speeding_Feature
1 2
3 4
5 6
...
Change
df = pd.read_csv(r'C:\Users\Desktop\data.csv')
to
df = pd.read_csv("data.txt",names=["Distance_Feature","Speeding_Feature"],sep= "\s+|\t+|\s+\t+|\t+\s+",header=1)
# Here it is assumed white space separator, if another separator is used change `sep`.