I'm working with Pandas, but I have a question about how to change equivalent values. I want to work with binary values in the "class" column so I have 1 and I want 2 and 3 to be changed to 0. Ah! And I don't just have these lines, I have 70 in total! How do I do it?
id class col2 col3
0 1 2 0
1 1 1 1
2 1 9 9
3 2 8 4
4 2 7 2
5 2 4 3
6 2 7 2
7 3 1 4
8 3 2 8
9 3 3 9
I want this result:
id class col2 col3
0 1 2 0
1 1 1 1
2 1 9 9
3 0 8 4
4 0 7 2
5 0 4 3
6 0 7 2
7 0 1 4
8 0 2 8
9 0 3 9
Try this:
df.loc[df['class'] > 1, 'class'] = 0
Related
I have the following column in my pandas dataframe named as FailureLabel
ID FailureLabel
0 1 1
1 2 1
2 3 1
3 4 0
4 5 0
5 6 0
6 7 0
7 8 1
8 9 1
9 10 0
10 11 0
11 12 1
12 13 1
I would like to assign a unique_id to this column such that eachs 1's have a unique id whereas all zeros + the next one have a common "unique id".
I tried using the following code ,
df['unique_id'] = (df['FailureLabel'] | (df['FailureLabel']!=df['FailureLabel'].shift())).cumsum()
which gives me the following output,
ID FailureLabel unique_id
0 1 1 1
1 2 1 2
2 3 1 3
3 4 0 4
4 5 0 4
5 6 0 4
6 7 0 4
7 8 1 5
8 9 1 6
9 10 0 7
10 11 0 7
11 12 1 8
12 13 1 9
But what I desire is,
ID FailureLabel unique_id
0 1 1 1
1 2 1 2
2 3 1 3
3 4 0 4
4 5 0 4
5 6 0 4
6 7 0 4
7 8 1 4
8 9 1 5
9 10 0 6
10 11 0 6
11 12 1 6
12 13 1 7
Use Series.shift with backfilling first value, compare by 1 and add cumulative sum:
df['unique_id'] = df['FailureLabel'].shift().bfill().eq(1).cumsum()
print (df)
ID FailureLabel unique_id
0 1 1 1
1 2 1 2
2 3 1 3
3 4 0 4
4 5 0 4
5 6 0 4
6 7 0 4
7 8 1 4
8 9 1 5
9 10 0 6
10 11 0 6
11 12 1 6
12 13 1 7
I have a Series that look like this
col
0 1
1 2
2 3
3 4
4 1
5 2
6 3
7 1
8 2
9 3
10 1
11 2
and I would like to generate a second counter that looks like this
col col2
0 1 1
1 2 1
2 3 1
3 4 1
4 1 2
5 2 2
6 3 2
7 1 3
8 2 3
9 3 3
10 1 4
11 2 4
How can I do that in python?
If 1 is always start of groups then create mask by compare by Series.eq and then add Series.cumsum for cumulative sum:
df['col2'] = df['col'].eq(1).cumsum()
print (df)
col col2
0 1 1
1 2 1
2 3 1
3 4 1
4 1 2
5 2 2
6 3 2
7 1 3
8 2 3
9 3 3
10 1 4
11 2 4
Currently, I have a dataframe like this:
0 0 0 3 0 0
0 7 8 9 1 0
0 4 5 2 4 0
My code to stack it:
dt = dataset.iloc[:,0:7].stack().sort_index(level=1).reset_index(level=0, drop=True).to_frame()
dt['variable'] = pandas.Categorical(dt.index).codes+1
dt.rename(columns={0:index_column_name}, inplace=True)
dt.set_index(index_column_name, inplace=True)
dt['variable'] = numpy.sort(dt['variable'])
However, it drops the first row when I'm stacking it, and I want to keep the headers / first row, how would I achieve this?
In essence, I'm losing the data from the first row (a.k.a column headers) and I want to keep it.
Desired Output:
value,variable
0 1
0 1
0 1
0 2
7 2
4 2
0 3
8 3
5 3
3 4
9 4
2 4
0 5
1 5
4 5
0 6
0 6
0 6
Current output:
value,variable
0 1
0 1
7 2
4 2
8 3
5 3
9 4
2 4
1 5
4 5
0 6
0 6
Why not use df.melt as #WeNYoBen mentioned?
print(df)
1 2 3 4 5 6
0 0 0 0 3 0 0
1 0 7 8 9 1 0
2 0 4 5 2 4 0
print(df.melt())
variable value
0 1 0
1 1 0
2 1 0
3 2 0
4 2 7
5 2 4
6 3 0
7 3 8
8 3 5
9 4 3
10 4 9
11 4 2
12 5 0
13 5 1
14 5 4
15 6 0
16 6 0
17 6 0
I have a dataset where I want to add a suffix to column names based on their positions. For ex- 1st to 4th columns should be named 'abc_1', then 5th to 8th columns as 'abc_2' and so on.
I have tried using dataframe.rename
but it is a time consuming process. What would be the most efficient way to achieve this?
I think here is good choice create MultiIndex for avoid duplicated columns names - create first level by floor divide by 4 and add prefix by f-strings:
np.random.seed(123)
df = pd.DataFrame(np.random.randint(10, size=(5, 10)))
df.columns = [[f'abc_{i+1}' for i in df.columns // 4], df.columns]
print (df)
abc_1 abc_2 abc_3
0 1 2 3 4 5 6 7 8 9
0 2 2 6 1 3 9 6 1 0 1
1 9 0 0 9 3 4 0 0 4 1
2 7 3 2 4 7 2 4 8 0 7
3 9 3 4 6 1 5 6 2 1 8
4 3 5 0 2 6 2 4 4 6 3
More general solution if no RangeIndex in column names:
cols = [f'abc_{i+1}' for i in np.arange(len(df.columns)) // 4]
df.columns = [cols, df.columns]
print (df)
abc_1 abc_2 abc_3
0 1 2 3 4 5 6 7 8 9
0 2 2 6 1 3 9 6 1 0 1
1 9 0 0 9 3 4 0 0 4 1
2 7 3 2 4 7 2 4 8 0 7
3 9 3 4 6 1 5 6 2 1 8
4 3 5 0 2 6 2 4 4 6 3
Also is possible specify MultiIndex levels names by MultiIndex.from_arrays:
df.columns = pd.MultiIndex.from_arrays([cols, df.columns], names=('level0','level1'))
print (df)
level0 abc_1 abc_2 abc_3
level1 0 1 2 3 4 5 6 7 8 9
0 2 2 6 1 3 9 6 1 0 1
1 9 0 0 9 3 4 0 0 4 1
2 7 3 2 4 7 2 4 8 0 7
3 9 3 4 6 1 5 6 2 1 8
4 3 5 0 2 6 2 4 4 6 3
Then is possible select each level by xs:
print (df.xs('abc_2', axis=1))
4 5 6 7
0 3 9 6 1
1 3 4 0 0
2 7 2 4 8
3 1 5 6 2
4 6 2 4 4
I have a dataframe now:
class1 class2 value value2
0 1 0 1 4
1 2 1 2 3
2 2 0 3 5
3 3 1 4 6
I want to repeat rows and insert an increment column in the same amount according to the difference between value and value2. I want to get the dataframe should like this:
class1 class2 value value2 value3
0 1 0 1 4 1
1 1 0 1 4 2
2 1 0 1 4 3
3 1 0 1 4 4
4 2 1 2 3 2
5 2 1 2 3 3
6 2 0 3 5 3
7 2 0 3 5 4
8 2 0 3 5 5
9 3 1 4 6 4
10 3 1 4 6 5
11 3 1 4 6 6
I tried it like:
def func(x):
copy = x.copy()
num = x.value2+1-x.value
return pd.concat([copy]*num.values[0])
df= df.groupby(['class1','class2']).apply(lambda x:func(x))
But there will be a oredr problem that leads me to not know how to add column value3. And I'd like to have an elegant way of doing it.
Can anyone help me? Thanks in advance
Compute the difference and call Index.repeat:
idx = df.index.repeat(df.value2 - df.value + 1)
Now, either use reindex:
df = df.reindex(idx).reset_index(drop=True)
Or loc:
df = df.loc[idx].reset_index(drop=True)
And you get
df
class1 class2 value value2
0 1 0 1 4
1 1 0 1 4
2 1 0 1 4
3 1 0 1 4
4 2 1 2 3
5 2 1 2 3
6 2 0 3 5
7 2 0 3 5
8 2 0 3 5
9 3 1 4 6
10 3 1 4 6
11 3 1 4 6
For the second part of your question, you'll need groupby.cumcount:
s = idx.to_series()
df['value3'] = df['value'] + s.groupby(idx).cumcount().values
df
class1 class2 value value2 value3
0 1 0 1 4 1
1 1 0 1 4 2
2 1 0 1 4 3
3 1 0 1 4 4
4 2 1 2 3 2
5 2 1 2 3 3
6 2 0 3 5 3
7 2 0 3 5 4
8 2 0 3 5 5
9 3 1 4 6 4
10 3 1 4 6 5
11 3 1 4 6 6
Here's a sequence of things that would get you the desired output:
df.join(df
.apply(lambda x: pd.Series(range(x.value, x.value2+1)), axis=1)
.stack().astype(int)
.reset_index(level=1, drop=1)
.to_frame('value3')).reset_index(drop=1)
Out[]:
class1 class2 value value2 value3
0 1 0 1 4 1
1 1 0 1 4 2
2 1 0 1 4 3
3 1 0 1 4 4
4 2 1 2 3 2
5 2 1 2 3 3
6 2 0 3 5 3
7 2 0 3 5 4
8 2 0 3 5 5
9 3 1 4 6 4
10 3 1 4 6 5
11 3 1 4 6 6