Pandas: Get top n columns based on a row values - python

Having a dataframe with a single row, I need to filter it into a smaller one with filtered columns based on a value in a row.
What's the most effective way?
df = pd.DataFrame({'a':[1], 'b':[10], 'c':[3], 'd':[5]})
a
b
c
d
1
10
3
5
For example top-3 features:
b
c
d
10
3
5

Use sorting per row and select first 3 values:
df1 = df.sort_values(0, axis=1, ascending=False).iloc[:, :3]
print (df1)
b d c
0 10 5 3
Solution with Series.nlargest:
df1 = df.iloc[0].nlargest(3).to_frame().T
print (df1)
b d c
0 10 5 3

You can transpose T, and use nlargest():
new = df.T.nlargest(columns = 0, n = 3).T
print(new)
b d c
0 10 5 3

You can use np.argsort to get the solution. This Numpy method, in the below code, gives the indices of the column values in descending order. Then slicing selects the largest n values' indices.
import pandas as pd
import numpy as np
# Your dataframe
df = pd.DataFrame({'a':[1], 'b':[10], 'c':[3], 'd':[5]})
# Pick the number n to find n largest values
nlargest = 3
# Get the order of the largest value columns by their indices
order = np.argsort(-df.values, axis=1)[:, :nlargest]
# Find the columns with the largest values
top_features = df.columns[order].tolist()[0]
# Filter the dateframe by the columns
top_features_df = df[top_features]
top_features_df
output:
b d c
0 10 5 3

Related

Python Pandas pandas correlation one column vs all

I'm trying to get the correlation between a single column and the rest of the numerical columns of the dataframe, but I'm stuck.
I'm trying with this:
corr = IM['imdb_score'].corr(IM)
But I get the error
operands could not be broadcast together with shapes
which I assume is because I'm trying to find a correlation between a vector (my imdb_score column) with the dataframe of several columns.
How can this be fixed?
The most efficient method it to use corrwith.
Example:
df.corrwith(df['A'])
Setup of example data:
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randint(10, size=(5, 5)), columns=list('ABCDE'))
# A B C D E
# 0 7 2 0 0 0
# 1 4 4 1 7 2
# 2 6 2 0 6 6
# 3 9 8 0 2 1
# 4 6 0 9 7 7
output:
A 1.000000
B 0.526317
C -0.209734
D -0.720400
E -0.326986
dtype: float64
I think you can you just use .corr which returns all correlations between all columns and then select just the column you are interested in.
So, something like
IM.corr()['imbd_score']
should work.
Rather than calculating all correlations and keeping the ones of interest, it can be computationally more efficient to compute the subset of interesting correlations:
import pandas as pd
df = pd.DataFrame()
df['a'] = range(10)
df['b'] = range(10)
df['c'] = range(10)
pd.DataFrame([[c, df['a'].corr(df[c])] for c in df.columns if c!='a'], columns=['var', 'corr'])

Add column to DataFrame in a loop

Let's say I have a very simple pandas dataframe, containing a single indexed column with "initial values". I want to read in a loop N other dataframes to fill a single "comparison" column, with matching indices.
For instance, with my inital dataframe as
Initial
0 a
1 b
2 c
3 d
and the following two dataframes to read in a loop
Comparison
0 e
1 f
Comparison
2 g
3 h
4 i <= note that this index doesn't exist in Initial so won't be matched
I would like to produce the following result
Initial Comparison
0 a e
1 b f
2 c g
3 d h
Using merge, concat or join, I only ever seem to be able to create a new column for each iteration of the loop, filling the blanks with NaN.
What's the most pandas-pythonic way of achieving this?
Below an example from the proposed duplicate solution:
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.array([['a'],['b'],['c'],['d']]), columns=['Initial'])
print df1
df2 = pd.DataFrame(np.array([['e'],['f']]), columns=['Compare'])
print df2
df3 = pd.DataFrame(np.array([[2,'g'],[3,'h'],[4,'i']]), columns=['','Compare'])
df3 = df3.set_index('')
print df3
print df1.merge(df2,left_index=True,right_index=True).merge(df3,left_index=True,right_index=True)
>>
Initial
0 a
1 b
2 c
3 d
Compare
0 e
1 f
Compare
2 g
3 h
4 i
Empty DataFrame
Columns: [Initial, Compare_x, Compare_y]
Index: []
Second edit: #W-B, the following seems to work, but it can't be the case that there isn't a simpler option using proper pandas methods. It also requires turning off warnings, which might be dangerous...
pd.options.mode.chained_assignment = None
df1["Compare"]=pd.Series()
for ind in df1.index.values:
if ind in df2.index.values:
df1["Compare"][ind]=df2.T[ind]["Compare"]
if ind in df3.index.values:
df1["Compare"][ind]=df3.T[ind]["Compare"]
print df1
>>
Initial Compare
0 a e
1 b f
2 c g
3 d h
Ok , since Op need more info
Data input
import functools
df1 = pd.DataFrame(np.array([['a'],['b'],['c'],['d']]), columns=['Initial'])
df1['Compare']=np.nan
df2 = pd.DataFrame(np.array([['e'],['f']]), columns=['Compare'])
df3 = pd.DataFrame(np.array(['g','h','i']), columns=['Compare'],index=[2,3,4])
Solution
newdf=functools.reduce(lambda x,y: x.fillna(y),[df1,df2,df3])
newdf
Out[639]:
Initial Compare
0 a e
1 b f
2 c g
3 d h

How to transform the result of a Pandas `GROUPBY` function to the original dataframe

Suppose I have a Pandas DataFrame with 6 columns and a custom function that takes counts of the elements in 2 or 3 columns and produces a boolean output. When a groupby object is created from the original dataframe and the custom function is applied df.groupby('col1').apply(myfunc), the result is a series whose length is equal to the number of categories of col1. How do I expand this output to match the length of the original dataframe? I tried transform, but was not able to use the custom function myfunc with it.
EDIT:
Here is an example code:
A = pd.DataFrame({'X':['a','b','c','a','c'], 'Y':['at','bt','ct','at','ct'], 'Z':['q','q','r','r','s']})
print (A)
def myfunc(df):
return ((df['Z'].nunique()>=2) and (df['Y'].nunique()<2))
A.groupby('X').apply(myfunc)
I would like to expand this output as a new column Result such that where there is a in column X, the Result will be True.
You can map the groupby back to the original dataframe
A['Result'] = A['X'].map(A.groupby('X').apply(myfunc))
Result would look like:
X Y Z Result
0 a at q True
1 b bt q False
2 c ct r True
3 a at r True
4 c ct s True
My solution may not be the best one, which uses a loop, but it's pretty good I think.
The core idea is you can traverse all the sub-dataframe (gdf) by for i, gdf in gp. Then add the column result (in my example it is c) for each sub-dataframe. Finally concat all the sub-dataframe into one.
Here is an example:
import pandas as pd
df = pd.DataFrame({'a':[1,2,1,2],'b':['a','b','c','d']})
gp = df.groupby('a') # group
s = gp.apply(sum)['a'] # apply a func
adf = []
# then create a new dataframe
for i, gdf in gp:
tdf = gdf.copy()
tdf.loc[:,'c'] = s.loc[i]
adf.append(tdf)
pd.concat(adf)
from:
a b
0 1 a
1 2 b
2 1 c
3 2 d
to:
a b c
0 1 a 2
2 1 c 2
1 2 b 4
3 2 d 4

Unpack DataFrame with tuple entries into separate DataFrames

I wrote a small class to compute some statistics through bootstrap without replacement. For those not familiar with this technique, you get n random subsamples of some data, compute the desired statistic (lets say the median) on each subsample, and then compare the values across subsamples. This allows you to get a measure of variance on the obtained median over the dataset.
I implemented this in a class but reduced it to a MWE given by the following function
import numpy as np
import pandas as pd
def bootstrap_median(df, n=5000, fraction=0.1):
if isinstance(df, pd.DataFrame):
columns = df.columns
else:
columns = None
# Get the values as a ndarray
arr = np.array(df.values)
# Get the bootstrap sample through random permutations
sample_len = int(len(arr)*fraction)
if sample_len<1:
sample_len = 1
sample = []
for n_sample in range(n):
sample.append(arr[np.random.permutation(len(arr))[:sample_len]])
sample = np.array(sample)
# Compute the median on each sample
temp = np.median(sample, axis=1)
# Get the mean and std of the estimate across samples
m = np.mean(temp, axis=0)
s = np.std(temp, axis=0)/np.sqrt(len(sample))
# Convert output to DataFrames if necesary and return
if columns:
m = pd.DataFrame(data=m[None, ...], columns=columns)
s = pd.DataFrame(data=s[None, ...], columns=columns)
return m, s
This function returns the mean and standard deviation across the medians computed on each bootstrap sample.
Now consider this example DataFrame
data = np.arange(20)
group = np.tile(np.array([1, 2]).reshape(-1,1), (1,10)).flatten()
df = pd.DataFrame.from_dict({'data': data, 'group': group})
print(df)
print(bootstrap_median(df['data']))
this prints
data group
0 0 1
1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
6 6 1
7 7 1
8 8 1
9 9 1
10 10 2
11 11 2
12 12 2
13 13 2
14 14 2
15 15 2
16 16 2
17 17 2
18 18 2
19 19 2
(9.5161999999999995, 0.056585753613431718)
So far so good because bootstrap_median returns a tuple of two elements. However, if I do this after a groupby
In: df.groupby('group')['data'].apply(bootstrap_median)
Out:
group
1 (4.5356, 0.0409710449952)
2 (14.5006, 0.0403772204095)
The values inside each cell are tuples, as one would expect from apply. I can unpack the result into two DataFrame's by iterating over elements like this:
index = []
data1 = []
data2 = []
for g, (m, s) in out.iteritems():
index.append(g)
data1.append(m)
data2.append(s)
dfm = pd.DataFrame(data=data1, index=index, columns=['E[median]'])
dfm.index.name = 'group'
dfs = pd.DataFrame(data=data2, index=index, columns=['std[median]'])
dfs.index.name = 'group'
thus
In: dfm
Out:
E[median]
group
1 4.5356
2 14.5006
In: dfs
Out:
std[median]
group
1 0.0409710449952
2 0.0403772204095
This is a bit cumbersome and my question is if there is a more pandas native way to "unpack" a dataframe whose values are tuples into separate DataFrame's
This question seemed related but it concerned string regex replacements and not unpacking true tuples.
I think you need change:
return m, s
to:
return pd.Series([m, s], index=['m','s'])
And then get:
df1 = df.groupby('group')['data'].apply(bootstrap_median)
print (df1)
group
1 m 4.480400
s 0.040542
2 m 14.565200
s 0.040373
Name: data, dtype: float64
So is possible select by xs:
print (df1.xs('s', level=1))
group
1 0.040542
2 0.040373
Name: data, dtype: float64
print (df1.xs('m', level=1))
group
1 4.4804
2 14.5652
Name: data, dtype: float64
Also if need one column DataFrame add to_frame:
df1 = df.groupby('group')['data'].apply(bootstrap_median).to_frame()
print (df1)
data
group
1 m 4.476800
s 0.041100
2 m 14.468400
s 0.040719
print (df1.xs('s', level=1))
data
group
1 0.041100
2 0.040719
print (df1.xs('m', level=1))
data
group
1 4.4768
2 14.4684

Create new columns and fill with calculated values from same dataframe

Here is a simplified example of my df:
ds = pd.DataFrame(np.abs(randn(3, 4)), index=[1,2,3], columns=['A','B','C','D'])
ds['sum'] = ds.sum(axis=1)
which looks like
A B C D sum
1 0.095389 0.556978 1.646888 1.959295 4.258550
2 1.076190 2.668270 0.825116 1.477040 6.046616
3 0.245034 1.066285 0.967124 0.791606 3.070049
I would like to create 4 new columns and calculate the percentage value from the total (sum) in every row. So first value in the first new column should be (0.095389/4.258550), first value in the second new column (0.556978/4.258550)...and so on.
You can do this easily manually for each column like this:
df['A_perc'] = df['A']/df['sum']
If you want to do this in one step for all columns, you can use the div method (http://pandas.pydata.org/pandas-docs/stable/basics.html#matching-broadcasting-behavior):
ds.div(ds['sum'], axis=0)
And if you want this in one step added to the same dataframe:
>>> ds.join(ds.div(ds['sum'], axis=0), rsuffix='_perc')
A B C D sum A_perc B_perc \
1 0.151722 0.935917 1.033526 0.941962 3.063127 0.049532 0.305543
2 0.033761 1.087302 1.110695 1.401260 3.633017 0.009293 0.299283
3 0.761368 0.484268 0.026837 1.276130 2.548603 0.298739 0.190013
C_perc D_perc sum_perc
1 0.337409 0.307517 1
2 0.305722 0.385701 1
3 0.010530 0.500718 1
In [56]: df = pd.DataFrame(np.abs(randn(3, 4)), index=[1,2,3], columns=['A','B','C','D'])
In [57]: df.divide(df.sum(axis=1), axis=0)
Out[57]:
A B C D
1 0.319124 0.296653 0.138206 0.246017
2 0.376994 0.326481 0.230464 0.066062
3 0.036134 0.192954 0.430341 0.340571
You can convert sum column in a numpy column array and broadcast division.
new_df = df / df[['sum']].values # note the double-brackets around 'sum'
To add the percentages as new columns,
df[df.columns.drop('sum') + '_perc'] = df.drop(columns='sum') / df[['sum']].values

Categories