How to manually set x-ticks in sns with python - python

How is x-ticks manually set in seaborn sns in python?
This might be a duplicate of: How to set x axis ticklabels in a seaborn plot, but the solution did not work for us.
We would like the x-ticks to start from 2020-01, but as data is only available from 2020-02, it doesn't automatically start the x-ticks on 2020-01. Although it will be an empty space, we would still like to include 2020-01. Following is the function.
def create_lineplot(dataframe):
months = mdates.MonthLocator() # every month
years_fmt = mdates.DateFormatter('%Y-%m') # This is a format. Will be clear in Screenshot
# Filtering data to only select relevant columns and data from the year 2020
dataframe = dataframe[['dev_id', 'temp_20', 'temp_60', 'datetime']]
dataframe["datetime"] = pd.to_datetime(dataframe["datetime"])
soil = dataframe[dataframe['datetime'].dt.year == 2020]
fig, axes = plt.subplots(figsize=(20, 2))
mdf = pd.melt(soil, id_vars=['datetime', 'dev_id'], var_name=['Temperature'])
g = sns.relplot(data=mdf, x='datetime', y='value', kind='line', hue='Temperature', height=5, aspect=3)
g._legend.remove()
axes.xaxis.set_major_locator(months)
axes.xaxis.set_major_formatter(years_fmt)
axes.xaxis.set_minor_locator(months)
plt.xticks(rotation='vertical')
plt.tight_layout()
plt.legend(loc='upper right')
plt.savefig('lineplot.png')
plt.show()
When we include following:
g.set_xticklabels(['2020-01','2020-02','2020-03','2020-04','2020-05','2020-06','2020-07','2020-08', '2020-09', '2020-10', '2020-11', '2020-12'])
between
g = sns.relplot(data=mdf, x='datetime', y='value', kind='line', hue='Temperature', height=5, aspect=3)
--- HERE ---
g._legend.remove()
then the tick is added as desired, but the values are stretched so it seems like there is data in 2020-01 as well.
Following is an example of the data:
Bonus
How to align the ticks after adding a new?

Related

How to set xlim in seaborn barplot?

I have created a barplot for given days of the year and the number of people born on this given day (figure a). I want to set the x-axes in my seaborn barplot to xlim = (0,365) to show the whole year.
But, once I use ax.set_xlim(0,365) the bar plot is simply moved to the left (figure b).
This is the code:
#data
df = pd.DataFrame()
df['day'] = np.arange(41,200)
df['born'] = np.random.randn(159)*100
#plot
f, axes = plt.subplots(4, 4, figsize = (12,12))
ax = sns.barplot(df.day, df.born, data = df, hue = df.time, ax = axes[0,0], color = 'skyblue')
ax.get_xaxis().set_label_text('')
ax.set_xticklabels('')
ax.set_yscale('log')
ax.set_ylim(0,10e3)
ax.set_xlim(0,366)
ax.set_title('SE Africa')
How can I set the x-axes limits to day 0 and 365 without the bars being shifted to the left?
IIUC, the expected output given the nature of data is difficult to obtain straightforwardly, because, as per the documentation of seaborn.barplot:
This function always treats one of the variables as categorical and draws data at ordinal positions (0, 1, … n) on the relevant axis, even when the data has a numeric or date type.
This means the function seaborn.barplot creates categories based on the data in x (here, df.day) and they are linked to integers, starting from 0.
Therefore, it means even if we have data from day 41 onwards, seaborn is going to refer the starting category with x = 0, making for us difficult to tweak the lower limit of x-axis post function call.
The following code and corresponding plot clarifies what I explained above:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# data
rng = np.random.default_rng(101)
day = np.arange(41,200)
born = rng.integers(low=0, high=10e4, size=200-41)
df = pd.DataFrame({"day":day, "born":born})
# plot
f, ax = plt.subplots(figsize=(4, 4))
sns.barplot(data=df, x='day', y='born', ax=ax, color='b')
ax.set_xlim(0,365)
ax.set_xticks(ticks=np.arange(0, 365, 30), labels=np.arange(0, 365, 30))
ax.set_yscale('log')
ax.set_title('SE Africa')
plt.tight_layout()
plt.show()
I suggest using matplotlib.axes.Axes.bar to overcome this issue, although handling colors of the bars would be not straightforward compared to sns.barplot(..., hue=..., ...) :
# plot
f, ax = plt.subplots(figsize=(4, 4))
ax.bar(x=df.day, height=df.born) # instead of sns.barplot
ax.get_xaxis().set_label_text('')
ax.set_xlim(0,365)
ax.set_yscale('log')
ax.set_title('SE Africa')
plt.tight_layout()
plt.show()

How to set x axis tick width and label

The x axis is year-month of date of two years. Hence 24 values. Because the relplot function only allows numeric type for x and y axis. So the x axis is all clustered to two ends since 201801 to 201912 is not equally spaced. How I could make it equally spaced with correct label like this: 201801,201802....201912. (24 date values)
import seaborn as sns
sns.set(style="ticks")
palette = dict(zip(rel['Sub-Category'].unique(),
sns.color_palette("rocket_r", 17)))
r=sns.relplot(x='YearMonth', y="Profit",
hue="Sub-Category", col="Category",
#size="Year", size_order=["2019", "2018"],
palette=palette,
height=5, aspect=.7, facet_kws=dict(sharex=True),
kind="line", legend="full", data=rel)
r.set(yticks=[i for i in range(int(min(rel['Profit'])), int(max(rel['Profit'])) + 50, 500)],
xticks=[i for i in rel.YearMonth.unique()])
sample output
As described in the comments you just have to convert your YearMonth column into a datetime:
# Input data
df = pd.DataFrame({'YearMonth': ['2018-01','2018-01','2018-02','2018-04','2018-03','2018-05'],
'Category':['Clothing','Furniture','Clothing','Clothing','Furniture','Clothing'],
'Sub-Category':['Henkerchief','Table','Skirt','Henkerchief','Table','Skirt'],
'Profit':[16,40,110,33,44,55]})
# Create datetime column
df['date'] = pd.to_datetime(df['YearMonth'], format = '%Y-%m')
# Plot
sns.set(style="ticks")
palette = dict(zip(df['Sub-Category'].unique(),
sns.color_palette("rocket_r", 17)))
r=sns.relplot(x='date', y="Profit",
hue="Sub-Category", col="Category",
palette=palette,
height=5, aspect=.7, facet_kws=dict(sharex=True),
kind="line", legend="full", data=df)
# Adjust xticks
xticks = pd.date_range(start='2017-12',end='2018-05',
freq='MS',closed='right')
r.set(xticks=xticks)
This is the output figure:
Update:
If you want to rotate the xtick labels you can use:
for ax in r.axes.ravel():
ax.set_xticklabels(ax.get_xticklabels(), rotation=45)

How to label my x-axis with years extracted from my time-series data?

I have data in this format / shape etc in a dataframe that I would like to represent in the form of a graph showing the total counts per each month. I have resampled the data so that it shows one row for one month, and then I wrote the following code to chart it out:
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
#Read in data & create total column
stacked_bar_data = new_df
stacked_bar_data["total"] = stacked_bar_data.var1 + stacked_bar_data.var2
#Set general plot properties
sns.set_style("whitegrid")
sns.set_context({"figure.figsize": (24, 10)})
sns.set_context("poster")
#Plot 1 - background - "total" (top) series
sns.barplot(x = stacked_bar_data.index, y = stacked_bar_data.total, color = "red")
#Plot 2 - overlay - "bottom" series
bottom_plot = sns.barplot(x = stacked_bar_data.index, y = stacked_bar_data.attended, color = "#0000A3")
topbar = plt.Rectangle((0,0),1,1,fc="red", edgecolor = 'none')
bottombar = plt.Rectangle((0,0),1,1,fc='#0000A3', edgecolor = 'none')
l = plt.legend([bottombar, topbar], ['var1', 'var2'], loc=1, ncol = 2, prop={'size':18})
l.draw_frame(False)
#Optional code - Make plot look nicer
sns.despine(left=True)
bottom_plot.set_ylabel("Count")
# bottom_plot.set_xlabel("date")
#Set fonts to consistent 16pt size
for item in ([bottom_plot.xaxis.label, bottom_plot.yaxis.label] +
bottom_plot.get_xticklabels() + bottom_plot.get_yticklabels()):
item.set_fontsize(16)
# making sure our xticks is formatted correctly
plt.xticks(fontsize=20)
years = mdates.YearLocator() # every year
months = mdates.MonthLocator() # every month
years_fmt = mdates.DateFormatter('%Y')
bottom_plot.xaxis.set_major_locator(years)
bottom_plot.xaxis.set_major_formatter(years_fmt)
bottom_plot.xaxis.set_minor_locator(months)
plt.show()
# bottom_plot.axes.xaxis.set_visible(False)
Thing is, my chart doesn't show me the years at the bottom. I believe I have all the pieces necessary to solve this problem, but for some reason I can't figure out what I'm doing wrong.
I think I'm doing something wrong with how I set up the subplots of the sns.barplot. Maybe I should be assigning them to fig and ax or something like that? That's how I saw it done on the matplotlib site. I just can't managed to transfer that logic over to my example.
Any help would be most appreciated. Thanks!
There are few things to consider. First of all, please try to convert your date column (new_df.date) to datetime.
new_df.date = pd.to_datetime(new_df.date)
Second of all do not use this part:
bottom_plot.xaxis.set_major_locator(years)
bottom_plot.xaxis.set_major_formatter(years_fmt)
bottom_plot.xaxis.set_minor_locator(months)
Instead use:
x_dates = stacked_bar_data['date'].dt.strftime('%Y').sort_values().unique()
bottom_plot.set_xticklabels(labels=x_dates, rotation=0, ha='center')
This is because seaborn re-locates the bars to integer positions. Even if we set them to be dates - Note, that you used indices explicitly. Below is fully working example. Note - this gives you major ticks only. You'll have to work the minor ticks out. My comments and things I've commented out after double #.
stacked_bar_data.date = pd.to_datetime(stacked_bar_data.date)
stacked_bar_data["total"] = stacked_bar_data.var1 + stacked_bar_data.var2
#Set general plot properties
sns.set_style("whitegrid")
sns.set_context({"figure.figsize": (14, 7)}) ## modified size :)
sns.set_context("poster")
years = mdates.YearLocator() # every year
months = mdates.MonthLocator() # every month
years_fmt = mdates.DateFormatter('%Y')
sns.barplot(x = stacked_bar_data.index, y = stacked_bar_data.total, color = "red")
bottom_plot = sns.barplot(x = stacked_bar_data.index, y = stacked_bar_data.attended, color = "#0000A3")
topbar = plt.Rectangle((0,0),1,1,fc="red", edgecolor = 'none')
bottombar = plt.Rectangle((0,0),1,1,fc='#0000A3', edgecolor = 'none')
l = plt.legend([bottombar, topbar], ['var1', 'var2'], loc=1, ncol = 2, prop={'size':18})
l.draw_frame(False)
#Optional code - Make plot look nicer
sns.despine(left=True)
bottom_plot.set_ylabel("Count")
# bottom_plot.set_xlabel("date")
# making sure our xticks is formatted correctly
## plt.xticks(fontsize=20) # not needed as you change font below in the loop
## Do not use at all
## bottom_plot.xaxis.set_major_locator(years)
## bottom_plot.xaxis.set_major_formatter(years_fmt)
## bottom_plot.xaxis.set_minor_locator(months)
#Set fonts to consistent 16pt size
for item in ([bottom_plot.xaxis.label, bottom_plot.yaxis.label] +
bottom_plot.get_xticklabels() + bottom_plot.get_yticklabels()):
item.set_fontsize(16)
## This part is required if you want to stick to seaborn
## This is because the moment you start using seaborn it will "re-position" the bars
## at integer position rather than dates. W/o seaborn there is no such need
x_dates = stacked_bar_data['date'].dt.strftime('%Y').sort_values().unique()
bottom_plot.set_xticklabels(labels=x_dates, rotation=0, ha='center')
plt.show()

Seaborn (time series) boxplot using hue and different scale axes

I have a dataframe which has a number of values per date (datetime field). This values are classified in U (users) and S (session) by using a column Group. Seaborn is used to visualize two boxplots per date, where the hue is set to Group.
The problem comes when considering that the values corresponding to U (users) are much bigger than those corresponding to S (session), making the S data illegible. Thus, I need to come up with a solution that allows me to plot both series (U and S) in the same figure in an understandable manner.
I wonder if independent Y axes (with different scales) can be set to each hue, so that both Y axes are shown (as when using twinx but without losing hue visualization capabilities).
Any other alternative would be welcome =)
The S boxplot time series boxplot:
The combined boxplot time series using hue. Obviously it's not possible to see any information about the S group because of the scale of the Y axis:
The columns of the dataframe:
| Day (datetime) | n_data (numeric) | Group (S or U)|
The code line generating the combined boxplot:
seaborn.boxplot(ax=ax,x='Day', y='n_data', hue='Group', data=df,
palette='PRGn', showfliers=False)
Managed to find a solution by using twinx:
fig,ax= plt.subplots(figsize=(50,10))
tmpU = groups.copy()
tmpU.loc[tmp['Group']!='U','n_data'] = np.nan
tmpS = grupos.copy()
tmpS.loc[tmp['Group']!='S','n_data'] = np.nan
ax=seaborn.boxplot(ax=ax,x='Day', y = 'n_data', hue='Group', data=tmpU, palette = 'PRGn', showfliers=False)
ax2 = ax.twinx()
seaborn.boxplot(ax=ax2,x='Day', y = 'n_data', hue='Group', data=tmpS, palette = 'PRGn', showfliers=False)
handles,labels = ax.get_legend_handles_labels()
l= plt.legend(handles[0:2],labels[0:2],loc=1)
plt.setp(ax.get_xticklabels(),rotation=30,horizontalalignment='right')
for label in ax.get_xticklabels()[::2]:
label.set_visible(False)
plt.show()
plt.close('all')
The code above generates the following figure:
Which in this case turns out to be too dense to be published. Therefore I would adopt a visualization based in subplots, as Parfait susgested in his/her answer.
It wasn't an obvious solution to me so I would like to thank Parfait for his/her answer.
Consider building separate plots on same figure with y-axes ranges tailored to subsetted data. Below demonstrates with random data seeded for reproducibility (for readers of this post).
Data (with U values higher than S values)
import pandas as pd
import numpy as np
import seaborn
import matplotlib.pyplot as plt
np.random.seed(2018)
u_df = pd.DataFrame({'Day': pd.date_range('2016-10-01', periods=10)\
.append(pd.date_range('2016-10-01', periods=10)),
'n_data': np.random.uniform(0,800,20),
'Group': 'U'})
s_df = pd.DataFrame({'Day': pd.date_range('2016-10-01', periods=10)\
.append(pd.date_range('2016-10-01', periods=10)),
'n_data': np.random.uniform(0,200,20),
'Group': 'S'})
df = pd.concat([u_df, s_df], ignore_index=True)
df['Day'] = df['Day'].astype('str')
Plot
fig = plt.figure(figsize=(10,5))
for i,g in enumerate(df.groupby('Group')):
plt.title('N_data of {}'.format(g[0]))
plt.subplot(2, 1, i+1)
seaborn.boxplot(x="Day", y="n_data", data=g[1], palette="PRGn", showfliers=False)
plt.tight_layout()
plt.show()
plt.clf()
plt.close('all')
To retain original hue and grouping, render all non-group n_data to np.nan:
fig = plt.figure(figsize=(10,5))
for i,g in enumerate(df.Group.unique()):
plt.subplot(2, 1, i+1)
tmp = df.copy()
tmp.loc[tmp['Group']!=g, 'n_data'] = np.nan
seaborn.boxplot(x="Day", y="n_data", hue="Group", data=tmp,
palette="PRGn", showfliers=False)
plt.tight_layout()
plt.show()
plt.clf()
plt.close('all')
So one option to do a grouped box plot with two separate axis is to use hue_order= ['value, np.nan] in your argument for sns.boxplot:
fig = plt.figure(figsize=(14,8))
ax = sns.boxplot(x="lon_bucketed", y="value", data=m, hue='name', hue_order=['co2',np.nan],
width=0.75,showmeans=True,meanprops={"marker":"s","markerfacecolor":"black", "markeredgecolor":"black"},linewidth=0.5 ,palette = customPalette)
ax2 = ax.twinx()
ax2 = sns.boxplot(ax=ax2,x="lon_bucketed", y="value", data=m, hue='name', hue_order=[np.nan,'g_xco2'],
width=0.75,showmeans=True,meanprops={"marker":"s","markerfacecolor":"black", "markeredgecolor":"black"},linewidth=0.5, palette = customPalette)
ax1.grid(alpha=0.5, which = 'major')
plt.tight_layout()
ax.legend_.remove()
GW = mpatches.Patch(color='seagreen', label='$CO_2$')
WW = mpatches.Patch(color='mediumaquamarine', label='$XCO_2$')
ax, ax2.legend(handles=[GW,WW], loc='upper right',prop={'size': 14}, fontsize=12)
ax.set_title("$XCO_2$ vs. $CO_2$",fontsize=18)
ax.set_xlabel('Longitude [\u00b0]',fontsize=14)
ax.set_ylabel('$CO_2$ [ppm]',fontsize=14)
ax2.set_ylabel('$XCO_2$ [ppm]',fontsize=14)
ax.tick_params(labelsize=14)

Matplotlib: How to skip a range of hours when plotting with a datetime axis?

I have tick-by-tick data of a financial instrument, which I am trying to plot using matplotlib. I am working with pandas and the data is indexed with DatetimeIndex.
The problem is, when I try to plot multiple trading days I can't skip the range of time between the market closing time and next day's opening (see the example), which of course I am not interested in.
Is there a way to make matplotlib ignore this and just "stick" together the closing quote with the following day's opening? I tried to pass a custom range of time:
plt.xticks(time_range)
But the result is the same. Any ideas how to do this?
# Example data
instrument = pd.DataFrame(data={
'Datetime': [
dt.datetime.strptime('2018-01-11 11:00:11', '%Y-%m-%d %H:%M:%S'),
dt.datetime.strptime('2018-01-11 13:02:17', '%Y-%m-%d %H:%M:%S'),
dt.datetime.strptime('2018-01-11 16:59:14', '%Y-%m-%d %H:%M:%S'),
dt.datetime.strptime('2018-01-12 11:00:11', '%Y-%m-%d %H:%M:%S'),
dt.datetime.strptime('2018-01-12 13:15:24', '%Y-%m-%d %H:%M:%S'),
dt.datetime.strptime('2018-01-12 16:58:43', '%Y-%m-%d %H:%M:%S')
],
'Price': [127.6, 128.1, 127.95, 129.85, 129.7, 131.2],
'Volume': [725, 146, 48, 650, 75, 160]
}).set_index('Datetime')
plt.figure(figsize=(10,5))
top = plt.subplot2grid((4,4), (0, 0), rowspan=3, colspan=4)
bottom = plt.subplot2grid((4,4), (3,0), rowspan=1, colspan=4)
top.plot(instrument.index, instrument['Price'])
bottom.bar(instrument.index, instrument['Volume'], 0.005)
top.xaxis.get_major_ticks()
top.axes.get_xaxis().set_visible(False)
top.set_title('Example')
top.set_ylabel('Price')
bottom.set_ylabel('Volume')
TL;DR
Replace the matplotlib plotting functions:
top.plot(instrument.index, instrument['Price'])
bottom.bar(instrument.index, instrument['Volume'], 0.005)
With these ones:
top.plot(range(instrument.index.size), instrument['Price'])
bottom.bar(range(instrument.index.size), instrument['Volume'], width=1)
Or with these pandas plotting functions (only the x-axis limits will look different):
instrument['Price'].plot(use_index=False, ax=top)
instrument['Volume'].plot.bar(width=1, ax=bottom)
Align both plots by sharing the x-axis with sharex=True and set up the ticks as you would like them using the dataframe index, as shown in the example further below.
Let me first create a sample dataset and show what it looks like if I plot it using matplotlib plotting functions like in your example where the DatetimeIndex is used as the x variable.
Create sample dataset
The sample data is created using the pandas_market_calendars package to create a realistic DatetimeIndex with a minute-by-minute frequency that spans several weekdays and a weekend.
import numpy as np # v 1.19.2
import pandas as pd # v 1.1.3
import matplotlib.pyplot as plt # v 3.3.2
import matplotlib.ticker as ticker
import pandas_market_calendars as mcal # v 1.6.1
# Create datetime index with a 'minute start' frequency based on the New
# York Stock Exchange trading hours (end date is inclusive)
nyse = mcal.get_calendar('NYSE')
nyse_schedule = nyse.schedule(start_date='2021-01-07', end_date='2021-01-11')
nyse_dti = mcal.date_range(nyse_schedule, frequency='1min', closed='left')\
.tz_convert(nyse.tz.zone)
# Remove timestamps of closing times to create a 'period start' datetime index
nyse_dti = nyse_dti.delete(nyse_dti.indexer_at_time('16:00'))
# Create sample of random data consisting of opening price and
# volume of financial instrument traded for each period
rng = np.random.default_rng(seed=1234) # random number generator
price_change = rng.normal(scale=0.1, size=nyse_dti.size)
price_open = 127.5 + np.cumsum(price_change)
volume = rng.integers(100, 10000, size=nyse_dti.size)
df = pd.DataFrame(data=dict(Price=price_open, Volume=volume), index=nyse_dti)
df.head()
# Price Volume
# 2021-01-07 09:30:00-05:00 127.339616 7476
# 2021-01-07 09:31:00-05:00 127.346026 3633
# 2021-01-07 09:32:00-05:00 127.420115 1339
# 2021-01-07 09:33:00-05:00 127.435377 3750
# 2021-01-07 09:34:00-05:00 127.521752 7354
Plot data with matplotlib using the DatetimeIndex
This sample data can now be plotted using matplotlib plotting functions like in your example, but note that the subplots are created by using plt.subplots with the sharex=True argument. This aligns the line with the bars correctly and makes it possible to use the interactive interface of matplotlib with both subplots.
# Create figure and plots using matplotlib functions
fig, (top, bot) = plt.subplots(2, 1, sharex=True, figsize=(10,5),
gridspec_kw=dict(height_ratios=[0.75,0.25]))
top.plot(df.index, df['Price'])
bot.bar(df.index, df['Volume'], 0.0008)
# Set title and labels
top.set_title('Matplotlib plots with unwanted gaps', pad=20, size=14, weight='semibold')
top.set_ylabel('Price', labelpad=10)
bot.set_ylabel('Volume', labelpad=10);
Plot data with matplotlib without any gaps by using a range of integers
The problem of these gaps can be solved by simply ignoring the DatetimeIndex and using a range of integers instead. Most of the work then lies in creating appropriate tick labels. Here is an example:
# Create figure and matplotlib plots with some additional formatting
fig, (top, bot) = plt.subplots(2, 1, sharex=True, figsize=(10,5),
gridspec_kw=dict(height_ratios=[0.75,0.25]))
top.plot(range(df.index.size), df['Price'])
top.set_title('Matplotlib plots without any gaps', pad=20, size=14, weight='semibold')
top.set_ylabel('Price', labelpad=10)
top.grid(axis='x', alpha=0.3)
bot.bar(range(df.index.size), df['Volume'], width=1)
bot.set_ylabel('Volume', labelpad=10)
# Set fixed major and minor tick locations
ticks_date = df.index.indexer_at_time('09:30')
ticks_time = np.arange(df.index.size)[df.index.minute == 0][::2] # step in hours
bot.set_xticks(ticks_date)
bot.set_xticks(ticks_time, minor=True)
# Format major and minor tick labels
labels_date = [maj_tick.strftime('\n%d-%b').replace('\n0', '\n')
for maj_tick in df.index[ticks_date]]
labels_time = [min_tick.strftime('%I %p').lstrip('0').lower()
for min_tick in df.index[ticks_time]]
bot.set_xticklabels(labels_date)
bot.set_xticklabels(labels_time, minor=True)
bot.figure.autofmt_xdate(rotation=0, ha='center', which='both')
Create dynamic ticks for interactive plots
If you like to use the interactive interface of matplotlib (with pan/zoom), you will need to use locators and formatters from the matplotlib ticker module. Here is an example of how to set the ticks, where the major ticks are fixed and formatted like above but the minor ticks are generated automatically as you zoom in/out of the plot:
# Set fixed major tick locations and automatic minor tick locations
ticks_date = df.index.indexer_at_time('09:30')
bot.set_xticks(ticks_date)
bot.xaxis.set_minor_locator(ticker.AutoLocator())
# Format major tick labels
labels_date = [maj_tick.strftime('\n%d-%b').replace('\n0', '\n')
for maj_tick in df.index[ticks_date]]
bot.set_xticklabels(labels_date)
# Format minor tick labels
def min_label(x, pos):
if 0 <= x < df.index.size:
return df.index[int(x)].strftime('%H:%M')
min_fmtr = ticker.FuncFormatter(min_label)
bot.xaxis.set_minor_formatter(min_fmtr)
bot.figure.autofmt_xdate(rotation=0, ha='center', which='both')
Documentation: example of an alternative solution; datetime string format codes
Maybe use https://pypi.org/project/mplfinance/
Allows mimicking the usual financial plots you see in most services.
When you call the mplfinance mpf.plot() function, there is a kwarg show_nontrading, which by default is set to False so that these unwanted gaps are automatically not plotted. (To plot them, set show_nontrading=True).

Categories