Creation Variations of Pandas DataFrame with Column Dependencies - python

I want to be able to expand my DataFrame to incorporate other scenarios. For example, for a DataFrame capturing active users per company, I want to add a scenario where active users increase but do not exceed the total user count.
Example input:
Example output:
I tried using a loop but quite inefficiently, yielding odd results:
while df[df['active_users'] + add_users <= df['total_users']].any():
df[(df['active_users'] + add_users) <= df["total_users"]]['active_users'] = (df['active_users'] + add_users).astype(int)
add_users += 1

Use Index.repeat with DataFrame.loc and for counters use GroupBy.cumcount:
df1 = df.loc[df.index.repeat(df['inactive_users'] + 1)]
df1['inactive_users'] = df1.groupby(level=0).cumcount(ascending=False)
s = df1.groupby(level=0).cumcount()
df1['active_users'] += s
df1['company'] = (df1['company'] + ' + ' + s.astype(str).replace('0','')).str.strip(' +')
print (df1)
company contract total_users active_users inactive_users
0 A 10000 10 7 3
0 A + 1 10000 10 8 2
0 A + 2 10000 10 9 1
0 A + 3 10000 10 10 0
1 B 7500 5 4 1
1 B + 1 7500 5 5 0

Related

python panda apply compare to external list and remove part of list

I have a parking lot with cars of different models (nr) and the cars are so closely packed that in order for one to get out one might need to move some others. A little like a 15Puzzle, only I can take one or more cars out of the parking lot. Ordered_car_List includes the cars that will be picked up today, and they need to be taken out of the parking lot with as few non-ordered cars as possible moved. There are more columns to this panda, but this is what I can't figure out.
I have a Program that works good for small sets of data, but it seems that this is not the way of the PANDAS :-)
I have this:
cars = pd.DataFrame({'x': [1,1,1,1,1,2,2,2,2],
'y': [1,2,3,4,5,1,2,3,4],
'order_number':[6,6,7,6,7,9,9,10,12]})
cars['order_number_no_dublicates_down'] = None
Ordered_car_List = [6,9,9,10,28]
i=0
while i < len(cars):
temp_val = cars.at[i, 'order_number']
if temp_val in Ordered_car_List:
cars.at[i, 'order_number_no_dublicates_down'] = temp_val
Ordered_car_List.remove(temp_val)
i+=1
If I use cars.apply(lambda..., how can I change the Ordered_car_List in each iteration?
Is there another approach that I can take?
I found this page, and it made me want to be faster. The Lambda approach is in the middle when it comes to speed, but it still is so much faster than what I am doing now.
https://towardsdatascience.com/how-to-make-your-pandas-loop-71-803-times-faster-805030df4f06
Updating cars
We can vectorize this based on two counters:
cumcount() to cumulatively count each unique value in cars['order_number']
collections.Counter() to count each unique value in Ordered_car_List
cumcount = cars.groupby('order_number').cumcount().add(1)
maxcount = cars['order_number'].map(Counter(Ordered_car_List))
# order_number cumcount maxcount
# 0 6 1 1
# 1 6 2 1
# 2 7 1 0
# 3 6 3 1
# 4 7 2 0
# 5 9 1 2
# 6 9 2 2
# 7 10 1 1
# 8 12 1 0
So then we only want to keep cars['order_number'] where cumcount <= maxcount:
either use DataFrame.loc[]
cars.loc[cumcount <= maxcount, 'nodup'] = cars['order_number']
or Series.where()
cars['nodup'] = cars['order_number'].where(cumcount <= maxcount)
or Series.mask() with the condition inverted
cars['nodup'] = cars['order_number'].mask(cumcount > maxcount)
Updating Ordered_car_List
The final Ordered_car_List is a Counter() difference:
Used_car_List = cars.loc[cumcount <= maxcount, 'order_number']
# [6, 9, 9, 10]
Ordered_car_List = list(Counter(Ordered_car_List) - Counter(Used_car_List))
# [28]
Final output
cumcount = cars.groupby('order_number').cumcount().add(1)
maxcount = cars['order_number'].map(Counter(Ordered_car_List))
cars['nodup'] = cars['order_number'].where(cumcount <= maxcount)
# x y order_number nodup
# 0 1 1 6 6.0
# 1 1 2 6 NaN
# 2 1 3 7 NaN
# 3 1 4 6 NaN
# 4 1 5 7 NaN
# 5 2 1 9 9.0
# 6 2 2 9 9.0
# 7 2 3 10 10.0
# 8 2 4 12 NaN
Used_car_List = cars.loc[cumcount <= maxcount, 'order_number']
Ordered_car_List = list(Counter(Ordered_car_List) - Counter(Used_car_List))
# [28]
Timings
Note that your loop is still very fast with small data, but the vectorized counter approach just scales much better:

Python: Return rows where the same IDs are within 30 days of the next

test = pd.DataFrame({'ID':[1,2,3,3,4,4],'ID2':[1,1,1,1,2,1]\
,'dts1':['2016-1-25','2016-1-25','2016-1-25','2016-2-20','2016-1-25','2016-2-20']
,'dts2':['2016-1-27','2016-1-27','2016-1-27','2016-2-24','2016-1-27','2016-2-24']})
I have a data frame like:
ID ID2 dts1 dts2
0 1 1 2016-1-25 2016-1-27
1 2 1 2016-1-25 2016-1-27
2 3 1 2016-1-25 2016-1-27
3 3 1 2016-2-20 2016-2-24
4 4 2 2016-1-25 2016-1-27
5 4 1 2016-2-20 2016-2-24
I want rows that are 1) have the same ID 2) have different ID2 3) have a dts2 within 30 days of the next dts1 of the next row with the same ID...
For this dataframe I would want the last two rows (where ID = next ID, ID2 != next ID2 and dts2 < next dts1 + 30 days
****EDIT***
ts_df[ts_df.groupby(['ID']).apply(lambda x: ((x['dts1'].shift(-1)-x['dts2']<=pd.Timedelta('30days'))\
&(x['ID2'].shift(-1)!=x['ID2']))|\
((x['dts1']-x['dts2'].shift(1)<=pd.Timedelta('30days'))\
&(x['ID2']!=x['ID2'].shift(1)))).values]
The only think I have found to work is the above ^
It is super slow (22 min on my dataset), so any improvement would be much appreciated.
test['dts1'] = pd.to_datetime(test['dts1'])
test['dts2'] = pd.to_datetime(test['dts2'])
def get_what_you_need(df):
mask1 = df[df.duplicated(subset='ID', keep=False)]
mask2 = mask1.drop_duplicates(subset=['ID', 'ID2'], keep=False).reset_index(drop=True)
idx = 0
if len(df) >= 2:
mask3 = (mask2.loc[idx + 1, 'dts1'] - mask2.loc[idx, 'dts2']) < pd.Timedelta(days = 30)
else:
return None
if mask3:
return mask2
else:
return None
get_what_you_need(test)
I put idx and days as constants here. If you want, you could set the idx and days as the parameters of the function.

Find longest run of consecutive zeros for each user in dataframe

I'm looking to find the max run of consecutive zeros in a DataFrame with the result grouped by user. I'm interested in running the RLE on usage.
sample input:
user--day--usage
A-----1------0
A-----2------0
A-----3------1
B-----1------0
B-----2------1
B-----3------0
Desired output
user---longest_run
a - - - - 2
b - - - - 1
mydata <- mydata[order(mydata$user, mydata$day),]
user <- unique(mydata$user)
d2 <- data.frame(matrix(NA, ncol = 2, nrow = length(user)))
names(d2) <- c("user", "longest_no_usage")
d2$user <- user
for (i in user) {
if (0 %in% mydata$usage[mydata$user == i]) {
run <- rle(mydata$usage[mydata$user == i]) #Run Length Encoding
d2$longest_no_usage[d2$user == i] <- max(run$length[run$values == 0])
} else {
d2$longest_no_usage[d2$user == i] <- 0 #some users did not have no-usage days
}
}
d2 <- d2[order(-d2$longest_no_usage),]
this works in R but I want to do the same thing in python, I'm totally stumped
Use groupby with size by columns user, usage and helper Series for consecutive values first:
print (df)
user day usage
0 A 1 0
1 A 2 0
2 A 3 1
3 B 1 0
4 B 2 1
5 B 3 0
6 C 1 1
df1 = (df.groupby([df['user'],
df['usage'].rename('val'),
df['usage'].ne(df['usage'].shift()).cumsum()])
.size()
.to_frame(name='longest_run'))
print (df1)
longest_run
user val usage
A 0 1 2
1 2 1
B 0 3 1
5 1
1 4 1
C 1 6 1
Then filter only zero rows, get max and add reindex for append non 0 groups:
df2 = (df1.query('val == 0')
.max(level=0)
.reindex(df['user'].unique(), fill_value=0)
.reset_index())
print (df2)
user longest_run
0 A 2
1 B 1
2 C 0
Detail:
print (df['usage'].ne(df['usage'].shift()).cumsum())
0 1
1 1
2 2
3 3
4 4
5 5
6 6
Name: usage, dtype: int32
get max number of consecutive zeros on series:
def max0(sr):
return (sr != 0).cumsum().value_counts().max() - (0 if (sr != 0).cumsum().value_counts().idxmax()==0 else 1)
max0(pd.Series([1,0,0,0,0,2,3]))
4
I think the following does what you are looking for, where the consecutive_zero function is an adaptation of the top answer here.
Hope this helps!
import pandas as pd
from itertools import groupby
df = pd.DataFrame([['A', 1], ['A', 0], ['A', 0], ['B', 0],['B',1],['C',2]],
columns=["user", "usage"])
def len_iter(items):
return sum(1 for _ in items)
def consecutive_zero(data):
x = list((len_iter(run) for val, run in groupby(data) if val==0))
if len(x)==0: return 0
else: return max(x)
df.groupby('user').apply(lambda x: consecutive_zero(x['usage']))
Output:
user
A 2
B 1
C 0
dtype: int64
If you have a large dataset and speed is essential, you might want to try the high-performance pyrle library.
Setup:
# pip install pyrle
# or
# conda install -c bioconda pyrle
import numpy as np
np.random.seed(0)
import pandas as pd
from pyrle import Rle
size = int(1e7)
number = np.random.randint(2, size=size)
user = np.random.randint(5, size=size)
df = pd.DataFrame({"User": np.sort(user), "Number": number})
df
# User Number
# 0 0 0
# 1 0 1
# 2 0 1
# 3 0 0
# 4 0 1
# ... ... ...
# 9999995 4 1
# 9999996 4 1
# 9999997 4 0
# 9999998 4 0
# 9999999 4 1
#
# [10000000 rows x 2 columns]
Execution:
for u, udf in df.groupby("User"):
r = Rle(udf.Number)
is_0 = r.values == 0
print("User", u, "Max", np.max(r.runs[is_0]))
# (Wall time: 1.41 s)
# User 0 Max 20
# User 1 Max 23
# User 2 Max 20
# User 3 Max 22
# User 4 Max 23

Python dataframe groupby binning statistics

For each "acat" unique value, I want to count how many occurrences there are of each "data" category (call this "bins"), and then calc the mean and skew of "bins"
possible values of data = 1,2,3,4,5
df = pd.DataFrame({'acat':[1,1,2,3,1,3],
'data':[1,1,2,1,3,1]})
df
Out[45]:
acat data
0 1 1
1 1 1
2 2 2
3 3 1
4 1 3
5 3 1
for acat = 1:
bins = (2 + 0 + 1 + 0 + 0)
average = bins / 5 = 0.6
for acat = 2:
bins = (0 + 1 + 0 + 0 + 0)
average = bins / 5 = 0.2
for acat = 3:
bins = (2 + 0 + 0 + 0 + 0)
average = bins / 5 = 0.4
bin_average_col
0.6
0.6
0.2
0.4
0.6
0.4
Also I would like a bin_skew_col.
I have a solution that uses crosstab, but this blows my PC memory when the number of acat is large.
I have tried extensively with groupby and transform but this is beyond me!
Many thanks in advance.

Is there a way to speed up the following pandas for loop?

My data frame contains 10,000,000 rows! After group by, ~ 9,000,000 sub-frames remain to loop through.
The code is:
data = read.csv('big.csv')
for id, new_df in data.groupby(level=0): # look at mini df and do some analysis
# some code for each of the small data frames
This is super inefficient, and the code has been running for 10+ hours now.
Is there a way to speed it up?
Full Code:
d = pd.DataFrame() # new df to populate
print 'Start of the loop'
for id, new_df in data.groupby(level=0):
c = [new_df.iloc[i:] for i in range(len(new_df.index))]
x = pd.concat(c, keys=new_df.index).reset_index(level=(2,3), drop=True).reset_index()
x = x.set_index(['level_0','level_1', x.groupby(['level_0','level_1']).cumcount()])
d = pd.concat([d, x])
To get the data:
data = pd.read_csv('https://raw.githubusercontent.com/skiler07/data/master/so_data.csv', index_col=0).set_index(['id','date'])
Note:
Most of id's will only have 1 date. This indicates only 1 visit. For id's with more visits, I would like to structure them in a 3d format e.g. store all of their visits in the 2nd dimension out of 3. The output is (id, visits, features)
Here is one way to speed that up. This adds the desired new rows in some code which processes the rows directly. This saves the overhead of constantly constructing small dataframes. Your sample of 100,000 rows runs in a couple of seconds on my machine. While your code with only 10,000 rows of your sample data takes > 100 seconds. This seems to represent a couple of orders of magnitude improvement.
Code:
def make_3d(csv_filename):
def make_3d_lines(a_df):
a_df['depth'] = 0
depth = 0
prev = None
accum = []
for row in a_df.values.tolist():
row[0] = 0
key = row[1]
if key == prev:
depth += 1
accum.append(row)
else:
if depth == 0:
yield row
else:
depth = 0
to_emit = []
for i in range(len(accum)):
date = accum[i][2]
for j, r in enumerate(accum[i:]):
to_emit.append(list(r))
to_emit[-1][0] = j
to_emit[-1][2] = date
for r in to_emit[1:]:
yield r
accum = [row]
prev = key
df_data = pd.read_csv('big-data.csv')
df_data.columns = ['depth'] + list(df_data.columns)[1:]
new_df = pd.DataFrame(
make_3d_lines(df_data.sort_values('id date'.split())),
columns=df_data.columns
).astype(dtype=df_data.dtypes.to_dict())
return new_df.set_index('id date'.split())
Test Code:
start_time = time.time()
df = make_3d('big-data.csv')
print(time.time() - start_time)
df = df.drop(columns=['feature%d' % i for i in range(3, 25)])
print(df[df['depth'] != 0].head(10))
Results:
1.7390995025634766
depth feature0 feature1 feature2
id date
207555809644681 20180104 1 0.03125 0.038623 0.008130
247833985674646 20180106 1 0.03125 0.004378 0.004065
252945024181083 20180107 1 0.03125 0.062836 0.065041
20180107 2 0.00000 0.001870 0.008130
20180109 1 0.00000 0.001870 0.008130
329567241731951 20180117 1 0.00000 0.041952 0.004065
20180117 2 0.03125 0.003101 0.004065
20180117 3 0.00000 0.030780 0.004065
20180118 1 0.03125 0.003101 0.004065
20180118 2 0.00000 0.030780 0.004065
I believe your approach for feature engineering could be done better, but I will stick to answering your question.
In Python, iterating over a Dictionary is way faster than iterating over a DataFrame
Here how I managed to process a huge pandas DataFrame (~100,000,000 rows):
# reset the Dataframe index to get level 0 back as a column in your dataset
df = data.reset_index() # the index will be (id, date)
# split the DataFrame based on id
# and store the splits as Dataframes in a dictionary using id as key
d = dict(tuple(df.groupby('id')))
# iterate over the Dictionary and process the values
for key, value in d.items():
pass # each value is a Dataframe
# concat the values and get the original (processed) Dataframe back
df2 = pd.concat(d.values(), ignore_index=True)
Modified #Stephen's code
def make_3d(dataset):
def make_3d_lines(a_df):
a_df['depth'] = 0 # sets all depth from (1 to n) to 0
depth = 1 # initiate from 1, so that the first loop is correct
prev = None
accum = [] # accumulates blocks of data belonging to given user
for row in a_df.values.tolist(): # for each row in our dataset
row[0] = 0 # NOT SURE
key = row[1] # this is the id of the row
if key == prev: # if this rows id matches previous row's id, append together
depth += 1
accum.append(row)
else: # else if this id is new, previous block is completed -> process it
if depth == 0: # previous id appeared only once -> get that row from accum
yield accum[0] # also remember that depth = 0
else: # process the block and emit each row
depth = 0
to_emit = [] # prepare to emit the list
for i in range(len(accum)): # for each unique day in the accumulated list
date = accum[i][2] # define date to be the first date it sees
for j, r in enumerate(accum[i:]):
to_emit.append(list(r))
to_emit[-1][0] = j # define the depth
to_emit[-1][2] = date # define the
for r in to_emit[0:]:
yield r
accum = [row]
prev = key
df_data = dataset.reset_index()
df_data.columns = ['depth'] + list(df_data.columns)[1:]
new_df = pd.DataFrame(
make_3d_lines(df_data.sort_values('id date'.split(), ascending=[True,False])),
columns=df_data.columns
).astype(dtype=df_data.dtypes.to_dict())
return new_df.set_index('id date'.split())
Testing:
t = pd.DataFrame(data={'id':[1,1,1,1,2,2,3,3,4,5], 'date':[20180311,20180310,20180210,20170505,20180312,20180311,20180312,20180311,20170501,20180304], 'feature':[10,20,45,1,14,15,20,20,13,11],'result':[1,1,0,0,0,0,1,0,1,1]})
t = t.reindex(columns=['id','date','feature','result'])
print t
id date feature result
0 1 20180311 10 1
1 1 20180310 20 1
2 1 20180210 45 0
3 1 20170505 1 0
4 2 20180312 14 0
5 2 20180311 15 0
6 3 20180312 20 1
7 3 20180311 20 0
8 4 20170501 13 1
9 5 20180304 11 1
Output
depth feature result
id date
1 20180311 0 10 1
20180311 1 20 1
20180311 2 45 0
20180311 3 1 0
20180310 0 20 1
20180310 1 45 0
20180310 2 1 0
20180210 0 45 0
20180210 1 1 0
20170505 0 1 0
2 20180312 0 14 0
20180312 1 15 0
20180311 0 15 0
3 20180312 0 20 1
20180312 1 20 0
20180311 0 20 0
4 20170501 0 13 1

Categories