Related
If i had a dataframe such as this, how would i create aggragtes such as min,max and mean for each Port for each given year?
df1 = pd.DataFrame({'Year': {0: 2019, 1: 2019, 2: 2019, 3: 2019, 4:2019},'Port': {0: 'NORTH SHIELDS', 1: 'NORTH SHIELDS' 2: 'NORTH SHIELDS', 3: 'NORTH SHIELDS', 4: 'NORTH SHIELDS'},'Vessel capacity units': {0: 760.5, 1: 760.5, 2: 760.5, 3: 760.5, 4: 760.5},'Engine power': {0: 790.0, 1: 790.0, 2: 790.0, 3: 790.0, 4: 790.0},'Registered tonnage': {0: 516.0, 1: 516.0, 2: 516.0, 3: 516.0, 4: 516.0},'Overall length': {0: 45.0, 1: 45.0, 2: 45.0, 3: 45.0, 4: 45.0},'Value(£)': {0: 2675.81, 1: 62.98, 2: 9.67, 3: 527.02, 4: 2079.0}, 'Landed Weight (tonnes)': {0: 0.978,1: 0.0135, 2: 0.001, 3: 0.3198, 4: 3.832}})
df1
IIUC
df.groupby(['PORT', 'YEAR'])['<WHATEVER COLUMN HERE>'].agg(['count', 'min', 'max', 'mean']) #groupys by 'PORT', 'YEAR' and finds the multiple arguments of count, min, max, and mean
Without any kind of background information this questions is tricky. Would you want it for every year or just some given years?
To extract min/max/mean etc is quite straightforward. I assume that you have some kind of datafile and have extracted a df from there:
file = 'my-data.csv' # the data file
df = pd.read_csv(file)
VALUE_I_WANT_TO_EXTRAXT = df['Column name']
Then for each port you can extract the min/max/mean data like this.
for i in range(Port):
print( i, np.min(VALUE_I_WANT_TO_EXTRAXT) )
But, as I said. Without any kind of specifik knowledge about the problem it is hard to provide a solution
Two DataFrames have gene and isoform names that are not formatted the same way. I'd like to do a join and add the df2 columns name, isoform for all partial string matches between the isoform (df2) and the name (df1) in both DataFrames. df2 is a key for the isoforms/genes, where a gene can have many isoforms. In df1, basically an output from a gene-quantification software (SALMON) the name field has both, the gene and isoform in it. I cant use regex since isoforms have variable suffixs, such as ".","_", "-", and many others.
Another important piece of information is that each df1["Name"] cell has a unique isoform.
Piece of dfs to merge:
import pandas as pd
df1 = pd.DataFrame({'Name': {0: 'AT1G01010;AT1G01010.1;Isoseq::Chr1:3616-5846', 1: 'AT1G01010;AT1G01010_2;Isoseq::Chr1:3630-5894', 2: 'AT1G01010;AT1G01010.3;Isoseq::Chr1:3635-5849', 3: 'AT1G01020;AT1G01020.11;Isoseq::Chr1:6803-8713', 4: 'AT1G01020;AT1G01020.13;Isoseq::Chr1:6811-8713'}, 'Length': {0: 2230, 1: 2264, 2: 2214, 3: 1910, 4: 1902}, 'EffectiveLength': {0: 1980.0, 1: 2014.0, 2: 1964.0, 3: 1660.0, 4: 1652.0}, 'TPM': {0: 2.997776, 1: 1.58178, 2: 0.0, 3: 4.317311, 4: 0.0}, 'NumReads': {0: 154.876, 1: 83.124, 2: 0.0, 3: 187.0, 4: 0.0}})
df2 = pd.DataFrame({'gene': {0: 'AT1G01010', 14: 'AT1G01010', 30: 'AT1G01010', 46: 'AT1G01020', 62: 'AT1G01020', 80: 'AT1G01020', 100: 'AT1G01020', 116: 'AT1G01020', 138: 'AT1G01020', 156: 'AT1G01020'}, 'isoform': {0: 'AT1G01010.1', 14: 'AT1G01010_2', 30: 'AT1G01010.3', 46: 'AT1G01020.1', 62: 'AT1G01020.10', 80: 'AT1G01020.11', 100: 'AT1G01020.12', 116: 'AT1G01020.13', 138: 'AT1G01020.14', 156: 'AT1G01020.15'}})
display(df1)
display(df2)
Desired output:
df3 = pd.DataFrame({'gene': {0: 'AT1G01010', 1:"AT1G01010", 2:"AT1G01010", 3:"AT1G01020", 4:"AT1G01020"},'isoform': {0: 'AT1G01010.1',1:"AT1G01010_2", 2:"AT1G01010.3", 3:"AT1G01020.11", 4:"AT1G01020.13"}, 'Length': {0: 2230, 1: 2264, 2: 2214, 3: 1910, 4: 1902}, 'EffectiveLength': {0: 1980.0, 1: 2014.0, 2: 1964.0, 3: 1660.0, 4: 1652.0}, 'TPM': {0: 2.997776, 1: 1.58178, 2: 0.0, 3: 4.317311, 4: 0.0}, 'NumReads': {0: 154.876, 1: 83.124, 2: 0.0, 3: 187.0, 4: 0.0}})
#"Name" column from df1 is not necessary anymore. (the idea is to replace it for gene and isoform)
display(df3)
Real dfs size:
df1 = 143646 rows × 5 columns
df2 = 169499 rows × 2 columns
(since df1 may not have all the isoforms detected, it's always smaller than df2)
I tried some answers i found online, but since this dfs have a huge size, many need 50gb of RAM or so...
Already checked: Merge Dataframes Based on Partial Substrings Match, Join to Dataframes based on partial string matches in python, Join dataframes based on partial string-match between columns
Thanks for the help!
I am working on an optimization problem and need to create indexing to build a mixed-integer mathematical model. I am using python dictionaries for the task. Below is a sample of my dataset. Full dataset is expected to have about 400K rows if that matters.
# sample input data
pd.DataFrame.from_dict({'origin': {0: 'perris', 1: 'perris', 2: 'perris', 3: 'perris', 4: 'perris'},
'dest': {0: 'alexandria', 1: 'alexandria', 2: 'alexandria', 3: 'alexandria', 4: 'alexandria'},
'product': {0: 'bike', 1: 'bike', 2: 'bike', 3: 'bike', 4: 'bike'},
'lead_time': {0: 4, 1: 4, 2: 4, 3: 4, 4: 4}, 'build_time': {0: 2, 1: 2, 2: 2, 3: 2, 4: 2},
'ship_date': {0: '02/25/2022', 1: '02/26/2022', 2: '02/27/2022', 3: '02/28/2022', 4: '03/01/2022'},
'ship_day': {0: 5, 1: 6, 2: 7, 3: 1, 4: 2},
'truck_in': {0: '03/01/2022', 1: '03/02/2022', 2: '03/03/2022', 3: '03/04/2022', 4: '03/07/2022'},
'product_in': {0: '03/03/2022', 1: '03/04/2022', 2: '03/05/2022', 3: '03/06/2022', 4: '03/09/2022'}})
The data frame looks like this -
I am looking to generate a dictionary from each row of this dataframe where the keys and values are tuples made of multiple column values. The output would look like this -
(origin, dest, product, ship_date): (origin, dest, product, truck_in)
# for example, first two rows will become a dictionary key-value pair like
{('perris', 'alexandria', 'bike', '2/25/2022'): ('perris', 'alexandria', 'bike', '3/1/2022'),
('perris', 'alexandria', 'bike', '2/26/2022'): ('perris', 'alexandria', 'bike', '3/2/2022')}
I am very new to python and couldn't figure out how to do this. Any help is appreciated. Thanks!
You can loop through the DataFrame.
Assuming your DataFrame is called "df" this gives you the dict.
result_dict = {}
for idx, row in df.iterrows():
result_dict[(row.origin, row.dest, row['product'], row.ship_date )] = (
row.origin, row.dest, row['product'], row.truck_in )
Since looping through 400k rows will take some time, have a look at tqdm (https://tqdm.github.io/) to get a progress bar with a time estimate that quickly tells you if the approach works for your dataset.
Also, note that 400K dictionary entries may take up a lot of memory so you may try to estimate if the dict fits your memory.
Another, memory waisting but faster way is to do it in Pandas
Create a new column with the value for the dictionary
df['value'] = df.apply(lambda x: (x.origin, x.dest, x['product'], x.truck_in), axis=1)
Then set the index and convert to dict
df.set_index(['origin','dest','product','ship_date'])['value'].to_dict()
The approach below splits the initial dataframe into two dataframes that will be the source of the keys and values in the dictionary. These are then converted to arrays in order to get away from working with dataframes as soon as possible. The arrays are converted to tuples and zipped together to create the key:value pairs.
import pandas as pd
import numpy as np
df = pd.DataFrame.from_dict(
{'origin': {0: 'perris', 1: 'perris', 2: 'perris', 3: 'perris', 4: 'perris'},
'dest': {0: 'alexandria', 1: 'alexandria', 2: 'alexandria', 3: 'alexandria', 4: 'alexandria'},
'product': {0: 'bike', 1: 'bike', 2: 'bike', 3: 'bike', 4: 'bike'},
'lead_time': {0: 4, 1: 4, 2: 4, 3: 4, 4: 4}, 'build_time': {0: 2, 1: 2, 2: 2, 3: 2, 4: 2},
'ship_date': {0: '02/25/2022', 1: '02/26/2022', 2: '02/27/2022', 3: '02/28/2022', 4: '03/01/2022'},
'ship_day': {0: 5, 1: 6, 2: 7, 3: 1, 4: 2},
'truck_in': {0: '03/01/2022', 1: '03/02/2022', 2: '03/03/2022', 3: '03/04/2022', 4: '03/07/2022'},
'product_in': {0: '03/03/2022', 1: '03/04/2022', 2: '03/05/2022', 3: '03/06/2022', 4: '03/09/2022'}}
)
#display(df)
#desired output: (origin, dest, product, ship_date): (origin, dest, product, truck_in)
#slice df to key/value chunks
#list to array
ship = df[['origin','dest', 'product', 'ship_date']]
ship.set_index('origin', inplace = True)
keys_array=ship.to_records()
truck = df[['origin', 'dest', 'product', 'truck_in']]
truck.set_index('origin', inplace = True)
values_array = truck.to_records()
#array_of_tuples = map(tuple, an_array)
keys_map = map(tuple, keys_array)
values_map = map(tuple, values_array)
#tuple_of_tuples = tuple(array_of_tuples)
keys_tuple = tuple(keys_map)
values_tuple = tuple(values_map)
zipp = zip(keys_tuple, values_tuple)
dict2 = dict(zipp)
print(dict2)
I would like to transform the below dataframe to concatenate duplicate data into a single row. For example:
data_dict={'FromTo_U': {0: 'L->R', 1: 'L->R', 2: 'S->I'},
'GeneName': {0: 'EGFR', 1: 'EGFR', 2: 'EGFR'},
'MutationAA_C': {0: 'p.L858R', 1: 'p.L858R', 2: 'p.S768I'},
'MutationDescription': {0: 'Substitution - Missense',
1: 'Substitution - Missense',
2: 'Substitution - Missense'},
'PubMed': {0: '22523351', 1: '23915069', 2: '26862733'},
'VariantID': {0: 'COSM12979', 1: 'COSM12979', 2: 'COSM18486'},
'VariantPos_U': {0: '858', 1: '858', 2: '768'},
'VariantSource': {0: 'COSMIC', 1: 'COSMIC', 2: 'COSMIC'}}
df1=pd.DataFrame(data_dict)
transformed dataframe should be
data_dict_t={'FromTo_U': {0: 'L->R', 2: 'S->I'},
'GeneName': {0: 'EGFR', 2: 'EGFR'},
'MutationAA_C': {0: 'p.L858R', 2: 'p.S768I'},
'MutationDescription': {0: 'Substitution - Missense',2: 'Substitution - Missense'},
'PubMed': {0: '22523351,23915069', 2: '26862733'},
'VariantID': {0: 'COSM12979', 2: 'COSM18486'},
'VariantPos_U': {0: '858', 2: '768'},
'VariantSource': {0: 'COSMIC', 2: 'COSMIC'}}
I want to merge the two rows of df1 only if PubMed IDs are different and rest of the columns have same data. Thanks in advance!
Use groupby + agg with str.join as the aggfunc.
c = df1.columns.difference(['PubMed']).tolist()
df1.groupby(c, as_index=False).PubMed.agg(','.join)
FromTo_U GeneName MutationAA_C MutationDescription VariantID \
0 L->R EGFR p.L858R Substitution - Missense COSM12979
1 S->I EGFR p.S768I Substitution - Missense COSM18486
VariantPos_U VariantSource PubMed
0 858 COSMIC 22523351,23915069
1 768 COSMIC 26862733
I am working with movie data and have a dataframe column for movie genre. Currently the column contains a list of movie genres for each movie (as most movies are assigned to multiple genres), but for the purpose of this analysis, I would like to parse the list and create a new dataframe column for each genre. So instead of having genre=['Drama','Thriller'] for a given movie, I would have two columns, something like genre1='Drama' and genre2='Thriller'.
Here is a snippet of my data:
{'color': {0: [u'Color::(Technicolor)'],
1: [u'Color::(Technicolor)'],
2: [u'Color::(Technicolor)'],
3: [u'Color::(Technicolor)'],
4: [u'Black and White']},
'country': {0: [u'USA'],
1: [u'USA'],
2: [u'USA'],
3: [u'USA', u'UK'],
4: [u'USA']},
'genre': {0: [u'Crime', u'Drama'],
1: [u'Crime', u'Drama'],
2: [u'Crime', u'Drama'],
3: [u'Action', u'Crime', u'Drama', u'Thriller'],
4: [u'Crime', u'Drama']},
'language': {0: [u'English'],
1: [u'English', u'Italian', u'Latin'],
2: [u'English', u'Italian', u'Spanish', u'Latin', u'Sicilian'],
3: [u'English', u'Mandarin'],
4: [u'English']},
'rating': {0: 9.3, 1: 9.2, 2: 9.0, 3: 9.0, 4: 8.9},
'runtime': {0: [u'142'],
1: [u'175'],
2: [u'202', u'220::(The Godfather Trilogy 1901-1980 VHS Special Edition)'],
3: [u'152'],
4: [u'96']},
'title': {0: u'The Shawshank Redemption',
1: u'The Godfather',
2: u'The Godfather: Part II',
3: u'The Dark Knight',
4: u'12 Angry Men'},
'votes': {0: 1793199, 1: 1224249, 2: 842044, 3: 1774083, 4: 484061},
'year': {0: 1994, 1: 1972, 2: 1974, 3: 2008, 4: 1957}}
Any help would be greatly appreciated! Thanks!
I think you need DataFrame constructor with add_prefix and last concat to original:
df1 = pd.DataFrame(df.genre.values.tolist()).add_prefix('genre_')
df = pd.concat([df.drop('genre',axis=1), df1], axis=1)
Timings:
df = pd.DataFrame(d)
print (df)
#5000 rows
df = pd.concat([df]*1000).reset_index(drop=True)
In [394]: %timeit (pd.concat([df.drop('genre',axis=1), pd.DataFrame(df.genre.values.tolist()).add_prefix('genre_')], axis=1))
100 loops, best of 3: 3.4 ms per loop
In [395]: %timeit (pd.concat([df.drop(['genre'],axis=1),df['genre'].apply(pd.Series).rename(columns={0:'genre_0',1:'genre_1',2:'genre_2',3:'genre_3'})],axis=1))
1 loop, best of 3: 757 ms per loop
This should work for you:
pd.concat([df.drop(['genre'],axis=1),df['genre'].apply(pd.Series).rename(columns={0:'genre_0',1:'genre_1',2:'genre_2',3:'genre_3'})],axis=1)