pandas - get max of groups based on multiple columns - python

I have the following pandas DataFrame df:
FFDI_SFC AET_date
latitude longitude time
-39.7650000000 140.8954000000 2017-09-30 13:00:00 1 2017-09-30
2017-09-30 14:00:00 2 2017-10-01
2017-09-30 15:00:00 1 2017-10-01
2017-09-30 16:00:00 1 2017-10-01
2017-09-30 17:00:00 2 2017-10-01
2017-09-30 18:00:00 4 2017-10-01
2017-09-30 19:00:00 3 2017-10-01
2017-09-30 20:00:00 2 2017-10-01
2017-09-30 21:00:00 4 2017-10-01
2017-09-30 22:00:00 1 2017-10-01
2017-09-30 23:00:00 3 2017-10-01
2017-10-01 00:00:00 nan 2017-10-01
2017-10-01 01:00:00 nan 2017-10-01
2017-10-01 02:00:00 4 2017-10-01
2017-10-01 03:00:00 3 2017-10-01
2017-10-01 04:00:00 nan 2017-10-01
2017-10-01 05:00:00 5 2017-10-01
2017-10-01 06:00:00 nan 2017-10-01
2017-10-01 07:00:00 4 2017-10-01
2017-10-01 08:00:00 4 2017-10-01
2017-10-01 09:00:00 4 2017-10-01
2017-10-01 10:00:00 3 2017-10-01
2017-10-01 11:00:00 4 2017-10-01
2017-10-01 12:00:00 5 2017-10-01
2017-10-01 13:00:00 3 2017-10-02
2017-10-01 13:00:00 3 2017-10-02
2017-10-01 14:00:00 nan 2017-10-02
2017-10-01 14:00:00 4 2017-10-02
2017-10-01 15:00:00 5 2017-10-02
2017-10-01 16:00:00 nan 2017-10-02
2017-10-01 17:00:00 nan 2017-10-02
2017-10-01 18:00:00 nan 2017-10-02
... ... ... ... ...
-33.9350000000 151.0466000000 2017-10-08 07:00:00 6 2017-10-08
2017-10-08 08:00:00 5 2017-10-08
2017-10-08 09:00:00 5 2017-10-08
2017-10-08 10:00:00 6 2017-10-08
2017-10-08 11:00:00 6 2017-10-08
2017-10-08 12:00:00 nan 2017-10-08
2017-10-08 13:00:00 6 2017-10-09
2017-10-08 13:00:00 nan 2017-10-09
2017-10-08 14:00:00 7 2017-10-09
2017-10-08 14:00:00 7 2017-10-09
2017-10-08 15:00:00 7 2017-10-09
... ... ... ... ... ... ... ... ... ... ...
2017-10-10 09:00:00 nan 2017-10-10
2017-10-10 10:00:00 12 2017-10-10
2017-10-10 11:00:00 10 2017-10-10
2017-10-10 12:00:00 14 2017-10-10
2017-10-10 13:00:00 13 2017-10-11
2017-10-10 14:00:00 15 2017-10-11
103554880 rows × 2 columns
They are multi-indexed (latitude, longitude and time). There is a column called AET_date indicating its actual date for each record. FFDI_SFC is a nan-able value for each record.
What I want to achieve is to get the max of FFDI_SFC for the rows which have the identical latitude, longitude and AET_date. In other words this is to group rows by latitude, longitude and AET_date and get the max (daily) for each group.
The anticipated output will look like:
Max_Daily_FFDI_SFC
latitude longitude AET_date
-39.7650000000 140.8954000000 2017-09-30 5
2017-10-01 7
2017-10-02 5
... ... ... ... ...
-33.9350000000 151.0466000000 2017-10-08 14
2017-10-09 12
2017-10-10 16

Related

Reverse position of entries in pandas dataframe based on condition

Here I have an extract from my pandas dataframe which is survey data with two datetime fields. It appears that some of the start times and end times were filled in the wrong position in the survey. Here is an example from my dataframe. The start and end time in the 8th row, I suspect were entered the wrong way round.
Just to give context, I generated the third column like this:
df_time['trip_duration'] = df_time['tripEnd_time'] - df_time['tripStart_time']
The three columns are in timedelta64 format.
Here is the top of my dataframe:
tripStart_time tripEnd_time trip_duration
1 22:30:00 23:15:00 00:45:00
2 11:00:00 11:30:00 00:30:00
3 09:00:00 09:15:00 00:15:00
4 13:30:00 14:25:00 00:55:00
5 09:00:00 10:15:00 01:15:00
6 12:00:00 12:15:00 00:15:00
7 08:00:00 08:30:00 00:30:00
8 11:00:00 09:15:00 -1 days +22:15:00
9 14:00:00 14:30:00 00:30:00
10 14:55:00 15:20:00 00:25:00
What I am trying to do is, loop through these two columns, and for each time 'tripEnd_time' is less than 'tripStart_time' swap the positions of these two entries. So in the case of row 8 above, I would make tripStart_time = tripEnd_time and tripEnd_time = tripStart_time.
I am not quite sure the best way to approach this. Should I use nested for loop where i compare each entry in the two columns?
Thanks
Use Series.abs:
df_time['trip_duration'] = (df_time['tripEnd_time'] - df_time['tripStart_time']).abs()
print (df_time)
1 22:30:00 23:15:00 00:45:00
2 11:00:00 11:30:00 00:30:00
3 09:00:00 09:15:00 00:15:00
4 13:30:00 14:25:00 00:55:00
5 09:00:00 10:15:00 01:15:00
6 12:00:00 12:15:00 00:15:00
7 08:00:00 08:30:00 00:30:00
8 11:00:00 09:15:00 01:45:00
9 14:00:00 14:30:00 00:30:00
10 14:55:00 15:20:00 00:25:00
What is same like:
a = df_time['tripEnd_time'] - df_time['tripStart_time']
b = df_time['tripStart_time'] - df_time['tripEnd_time']
mask = df_time['tripEnd_time'] > df_time['tripStart_time']
df_time['trip_duration'] = np.where(mask, a, b)
print (df_time)
tripStart_time tripEnd_time trip_duration
1 22:30:00 23:15:00 00:45:00
2 11:00:00 11:30:00 00:30:00
3 09:00:00 09:15:00 00:15:00
4 13:30:00 14:25:00 00:55:00
5 09:00:00 10:15:00 01:15:00
6 12:00:00 12:15:00 00:15:00
7 08:00:00 08:30:00 00:30:00
8 11:00:00 09:15:00 01:45:00
9 14:00:00 14:30:00 00:30:00
10 14:55:00 15:20:00 00:25:00
You can switch column values on selected rows:
df_time.loc[df_time['tripEnd_time'] < df_time['tripStart_time'],
['tripStart_time', 'tripEnd_time']] = df_time.loc[
df_time['tripEnd_time'] < df_time['tripStart_time'],
['tripEnd_time', 'tripStart_time']].values

Forward fill seasonal data in pandas

I have hourly observations of several variables that exhibit daily seasonality. I want to fill any missing value with the corresponding variable's value 24 hours prior.
Ideally my function would fill the missing values from oldest to newest. Thus if there are 25 consecutive missing values, the 25th missing value is filled with the same value as the first missing value. Using Series.map() fails in this case.
value desired_output
hour
2019-08-17 00:00:00 58.712986 58.712986
2019-08-17 01:00:00 28.904234 28.904234
2019-08-17 02:00:00 14.275149 14.275149
2019-08-17 03:00:00 58.777087 58.777087
2019-08-17 04:00:00 95.964955 95.964955
2019-08-17 05:00:00 64.971372 64.971372
2019-08-17 06:00:00 95.759469 95.759469
2019-08-17 07:00:00 98.675457 98.675457
2019-08-17 08:00:00 77.510319 77.510319
2019-08-17 09:00:00 56.492446 56.492446
2019-08-17 10:00:00 90.968924 90.968924
2019-08-17 11:00:00 66.647501 66.647501
2019-08-17 12:00:00 7.756725 7.756725
2019-08-17 13:00:00 49.328135 49.328135
2019-08-17 14:00:00 28.634033 28.634033
2019-08-17 15:00:00 65.157161 65.157161
2019-08-17 16:00:00 93.127539 93.127539
2019-08-17 17:00:00 98.806335 98.806335
2019-08-17 18:00:00 94.789761 94.789761
2019-08-17 19:00:00 63.518037 63.518037
2019-08-17 20:00:00 89.524433 89.524433
2019-08-17 21:00:00 48.076081 48.076081
2019-08-17 22:00:00 5.027928 5.027928
2019-08-17 23:00:00 0.417763 0.417763
2019-08-18 00:00:00 29.933627 29.933627
2019-08-18 01:00:00 61.726948 61.726948
2019-08-18 02:00:00 NaN 14.275149
2019-08-18 03:00:00 NaN 58.777087
2019-08-18 04:00:00 NaN 95.964955
2019-08-18 05:00:00 NaN 64.971372
2019-08-18 06:00:00 NaN 95.759469
2019-08-18 07:00:00 NaN 98.675457
2019-08-18 08:00:00 NaN 77.510319
2019-08-18 09:00:00 NaN 56.492446
2019-08-18 10:00:00 NaN 90.968924
2019-08-18 11:00:00 NaN 66.647501
2019-08-18 12:00:00 NaN 7.756725
2019-08-18 13:00:00 NaN 49.328135
2019-08-18 14:00:00 NaN 28.634033
2019-08-18 15:00:00 NaN 65.157161
2019-08-18 16:00:00 NaN 93.127539
2019-08-18 17:00:00 NaN 98.806335
2019-08-18 18:00:00 NaN 94.789761
2019-08-18 19:00:00 NaN 63.518037
2019-08-18 20:00:00 NaN 89.524433
2019-08-18 21:00:00 NaN 48.076081
2019-08-18 22:00:00 NaN 5.027928
2019-08-18 23:00:00 NaN 0.417763
2019-08-19 00:00:00 NaN 29.933627
2019-08-19 01:00:00 NaN 61.726948
2019-08-19 02:00:00 NaN 14.275149
2019-08-19 03:00:00 NaN 58.777087
2019-08-19 04:00:00 NaN 95.964955
2019-08-19 05:00:00 NaN 64.971372
2019-08-19 06:00:00 NaN 95.759469
2019-08-19 07:00:00 NaN 98.675457
2019-08-19 08:00:00 NaN 77.510319
2019-08-19 09:00:00 NaN 56.492446
2019-08-19 10:00:00 NaN 90.968924
2019-08-19 11:00:00 NaN 66.647501
2019-08-19 12:00:00 NaN 7.756725
2019-08-19 13:00:00 61.457913 61.457913
2019-08-19 14:00:00 52.429383 52.429383
2019-08-19 15:00:00 79.016485 79.016485
2019-08-19 16:00:00 77.724758 77.724758
2019-08-19 17:00:00 62.205810 62.205810
2019-08-19 18:00:00 15.841707 15.841707
2019-08-19 19:00:00 72.196028 72.196028
2019-08-19 20:00:00 5.497441 5.497441
2019-08-19 21:00:00 30.737596 30.737596
2019-08-19 22:00:00 65.550690 65.550690
2019-08-19 23:00:00 3.543332 3.543332
import pandas as pd
from dateutil.relativedelta import relativedelta as rel_delta
df['isna'] = df['value'].isna()
df['value'] = df.index.map(lambda t: df.at[t - rel_delta(hours=24), 'value'] if df.at[t,'isna'] and t - rel_delta(hours=24) >= df.index.min() else df.at[t, 'value'])
What is the most efficient way to complete this naive forward fill?
IIUC, just groupby time and ffill()
df['resuts'] = df.groupby(df.hour.dt.time).value.ffill()
If hour is your index, just do df.index.time instead.
Checking:
>>> (df['results'] == df['desired_output']).all()
True
Wouldn't this work?
df['value'] = df['value'].fillna(df.index.hour)
Separate Date and Time into two columns as strings. Call it df.
Date Time Value
0 2019-08-17 00:00:00 58.712986
1 2019-08-17 01:00:00 28.904234
2 2019-08-17 02:00:00 14.275149
3 2019-08-17 03:00:00 58.777087
4 2019-08-17 04:00:00 95.964955
Then conducts data reshaping, pivot Time into column headers, forward fillna along each hour.
(df reshaping)
Date 00:00:00 01:00:00 02:00:00 03:00:00 04:00:00
2019-08-17 58.712986 28.904234 14.275149 58.777087 95.964955
2019-08-18 29.933627 61.726948 NaN NaN NaN
2019-08-19 NaN NaN NaN NaN NaN
(df ffill)
Date 00:00:00 01:00:00 02:00:00 03:00:00 04:00:00
2019-08-17 58.712986 28.904234 14.275149 58.777087 95.964955
2019-08-18 29.933627 61.726948 14.275149 58.777087 95.964955
2019-08-19 29.933627 61.726948 14.275149 58.777087 95.964955
(Code)
(df.set_index(['Date','Time')['Value']
.unstack()
.ffill()
.stack()
.reset_index(name='Value')

How do I display a subset of a pandas dataframe?

I have a dataframe df that contains datetimes for every hour of a day between 2003-02-12 to 2017-06-30 and I want to delete all datetimes between 24th Dec and 1st Jan of EVERY year.
An extract of my data frame is:
...
7505,2003-12-23 17:00:00
7506,2003-12-23 18:00:00
7507,2003-12-23 19:00:00
7508,2003-12-23 20:00:00
7509,2003-12-23 21:00:00
7510,2003-12-23 22:00:00
7511,2003-12-23 23:00:00
7512,2003-12-24 00:00:00
7513,2003-12-24 01:00:00
7514,2003-12-24 02:00:00
7515,2003-12-24 03:00:00
7516,2003-12-24 04:00:00
7517,2003-12-24 05:00:00
7518,2003-12-24 06:00:00
...
7723,2004-01-01 19:00:00
7724,2004-01-01 20:00:00
7725,2004-01-01 21:00:00
7726,2004-01-01 22:00:00
7727,2004-01-01 23:00:00
7728,2004-01-02 00:00:00
7729,2004-01-02 01:00:00
7730,2004-01-02 02:00:00
7731,2004-01-02 03:00:00
7732,2004-01-02 04:00:00
7733,2004-01-02 05:00:00
7734,2004-01-02 06:00:00
7735,2004-01-02 07:00:00
...
and my expected output is:
...
7505,2003-12-23 17:00:00
7506,2003-12-23 18:00:00
7507,2003-12-23 19:00:00
7508,2003-12-23 20:00:00
7509,2003-12-23 21:00:00
7510,2003-12-23 22:00:00
7511,2003-12-23 23:00:00
...
7728,2004-01-02 00:00:00
7729,2004-01-02 01:00:00
7730,2004-01-02 02:00:00
7731,2004-01-02 03:00:00
7732,2004-01-02 04:00:00
7733,2004-01-02 05:00:00
7734,2004-01-02 06:00:00
7735,2004-01-02 07:00:00
...
Sample dataframe:
dates
0 2003-12-23 23:00:00
1 2003-12-24 05:00:00
2 2004-12-27 05:00:00
3 2003-12-13 23:00:00
4 2002-12-23 23:00:00
5 2004-01-01 05:00:00
6 2014-12-24 05:00:00
Solution:
If you want it for every year between the following dates excluded, then extract the month and dates first:
df['month'] = df['dates'].dt.month
df['day'] = df['dates'].dt.day
And now put the condition check:
dec_days = [24, 25, 26, 27, 28, 29, 30, 31]
## if the month is dec, then check for these dates
## if the month is jan, then just check for the day to be 1 like below
df = df[~(((df.month == 12) & (df.day.isin(dec_days))) | ((df.month == 1) & (df.day == 1)))]
Sample output:
dates month day
0 2003-12-23 23:00:00 12 23
3 2003-12-13 23:00:00 12 13
4 2002-12-23 23:00:00 12 23
This takes advantage of the fact that datetime-strings in the form mm-dd are sortable. Read everything in from the CSV file then filter for the dates you want:
df = pd.read_csv('...', parse_dates=['DateTime'])
s = df['DateTime'].dt.strftime('%m-%d')
excluded = (s == '01-01') | (s >= '12-24') # Jan 1 or >= Dec 24
df[~excluded]
You can try dropping on conditionals. Maybe with a pattern match to the date string or parsing the date as a number (like in Java) and conditionally removing.
datesIdontLike = df[df['colname'] == <stringPattern>].index
newDF = df.drop(datesIdontLike, inplace=True)
Check this out: https://thispointer.com/python-pandas-how-to-drop-rows-in-dataframe-by-conditions-on-column-values/
(If you have issues, let me know.)
You can use pandas and boolean filtering with strftime
# version 0.23.4
import pandas as pd
# make df
df = pd.DataFrame(pd.date_range('20181223', '20190103', freq='H'), columns=['date'])
# string format the date to only include the month and day
# then set it strictly less than '12-24' AND greater than or equal to `01-02`
df = df.loc[
(df.date.dt.strftime('%m-%d') < '12-24') &
(df.date.dt.strftime('%m-%d') >= '01-02')
].copy()
print(df)
date
0 2018-12-23 00:00:00
1 2018-12-23 01:00:00
2 2018-12-23 02:00:00
3 2018-12-23 03:00:00
4 2018-12-23 04:00:00
5 2018-12-23 05:00:00
6 2018-12-23 06:00:00
7 2018-12-23 07:00:00
8 2018-12-23 08:00:00
9 2018-12-23 09:00:00
10 2018-12-23 10:00:00
11 2018-12-23 11:00:00
12 2018-12-23 12:00:00
13 2018-12-23 13:00:00
14 2018-12-23 14:00:00
15 2018-12-23 15:00:00
16 2018-12-23 16:00:00
17 2018-12-23 17:00:00
18 2018-12-23 18:00:00
19 2018-12-23 19:00:00
20 2018-12-23 20:00:00
21 2018-12-23 21:00:00
22 2018-12-23 22:00:00
23 2018-12-23 23:00:00
240 2019-01-02 00:00:00
241 2019-01-02 01:00:00
242 2019-01-02 02:00:00
243 2019-01-02 03:00:00
244 2019-01-02 04:00:00
245 2019-01-02 05:00:00
246 2019-01-02 06:00:00
247 2019-01-02 07:00:00
248 2019-01-02 08:00:00
249 2019-01-02 09:00:00
250 2019-01-02 10:00:00
251 2019-01-02 11:00:00
252 2019-01-02 12:00:00
253 2019-01-02 13:00:00
254 2019-01-02 14:00:00
255 2019-01-02 15:00:00
256 2019-01-02 16:00:00
257 2019-01-02 17:00:00
258 2019-01-02 18:00:00
259 2019-01-02 19:00:00
260 2019-01-02 20:00:00
261 2019-01-02 21:00:00
262 2019-01-02 22:00:00
263 2019-01-02 23:00:00
264 2019-01-03 00:00:00
This will work with multiple years because we are only filtering on the month and day.
# change range to include 2017
df = pd.DataFrame(pd.date_range('20171223', '20190103', freq='H'), columns=['date'])
df = df.loc[
(df.date.dt.strftime('%m-%d') < '12-24') &
(df.date.dt.strftime('%m-%d') >= '01-02')
].copy()
print(df)
date
0 2017-12-23 00:00:00
1 2017-12-23 01:00:00
2 2017-12-23 02:00:00
3 2017-12-23 03:00:00
4 2017-12-23 04:00:00
5 2017-12-23 05:00:00
6 2017-12-23 06:00:00
7 2017-12-23 07:00:00
8 2017-12-23 08:00:00
9 2017-12-23 09:00:00
10 2017-12-23 10:00:00
11 2017-12-23 11:00:00
12 2017-12-23 12:00:00
13 2017-12-23 13:00:00
14 2017-12-23 14:00:00
15 2017-12-23 15:00:00
16 2017-12-23 16:00:00
17 2017-12-23 17:00:00
18 2017-12-23 18:00:00
19 2017-12-23 19:00:00
20 2017-12-23 20:00:00
21 2017-12-23 21:00:00
22 2017-12-23 22:00:00
23 2017-12-23 23:00:00
240 2018-01-02 00:00:00
241 2018-01-02 01:00:00
242 2018-01-02 02:00:00
243 2018-01-02 03:00:00
244 2018-01-02 04:00:00
245 2018-01-02 05:00:00
... ...
8779 2018-12-23 19:00:00
8780 2018-12-23 20:00:00
8781 2018-12-23 21:00:00
8782 2018-12-23 22:00:00
8783 2018-12-23 23:00:00
9000 2019-01-02 00:00:00
9001 2019-01-02 01:00:00
9002 2019-01-02 02:00:00
9003 2019-01-02 03:00:00
9004 2019-01-02 04:00:00
9005 2019-01-02 05:00:00
9006 2019-01-02 06:00:00
9007 2019-01-02 07:00:00
9008 2019-01-02 08:00:00
9009 2019-01-02 09:00:00
9010 2019-01-02 10:00:00
9011 2019-01-02 11:00:00
9012 2019-01-02 12:00:00
9013 2019-01-02 13:00:00
9014 2019-01-02 14:00:00
9015 2019-01-02 15:00:00
9016 2019-01-02 16:00:00
9017 2019-01-02 17:00:00
9018 2019-01-02 18:00:00
9019 2019-01-02 19:00:00
9020 2019-01-02 20:00:00
9021 2019-01-02 21:00:00
9022 2019-01-02 22:00:00
9023 2019-01-02 23:00:00
9024 2019-01-03 00:00:00
Since you want this to happen for every year, we can first define a series that where we replace the year by a static value (2000 for example). Let date be the column that stores the date, we can generate such column as:
dt = pd.to_datetime({'year': 2000, 'month': df['date'].dt.month, 'day': df['date'].dt.day})
For the given sample data, we get:
>>> dt
0 2000-12-23
1 2000-12-23
2 2000-12-23
3 2000-12-23
4 2000-12-23
5 2000-12-23
6 2000-12-23
7 2000-12-24
8 2000-12-24
9 2000-12-24
10 2000-12-24
11 2000-12-24
12 2000-12-24
13 2000-12-24
14 2000-01-01
15 2000-01-01
16 2000-01-01
17 2000-01-01
18 2000-01-01
19 2000-01-02
20 2000-01-02
21 2000-01-02
22 2000-01-02
23 2000-01-02
24 2000-01-02
25 2000-01-02
26 2000-01-02
dtype: datetime64[ns]
Next we can filter the rows, like:
from datetime import date
df[(dt >= date(2000,1,2)) & (dt < date(2000,12,24))]
This gives us the following data for your sample data:
>>> df[(dt >= date(2000,1,2)) & (dt < date(2000,12,24))]
id dt
0 7505 2003-12-23 17:00:00
1 7506 2003-12-23 18:00:00
2 7507 2003-12-23 19:00:00
3 7508 2003-12-23 20:00:00
4 7509 2003-12-23 21:00:00
5 7510 2003-12-23 22:00:00
6 7511 2003-12-23 23:00:00
19 7728 2004-01-02 00:00:00
20 7729 2004-01-02 01:00:00
21 7730 2004-01-02 02:00:00
22 7731 2004-01-02 03:00:00
23 7732 2004-01-02 04:00:00
24 7733 2004-01-02 05:00:00
25 7734 2004-01-02 06:00:00
26 7735 2004-01-02 07:00:00
So regardless what the year is, we will only consider dates between the 2nd of January and the 23rd of December (both inclusive).

Incrementing dates in pandas groupby

I'm building a basic rota/schedule for staff, and have a DataFrame from a MySQL cursor which gives a list of IDs, dates and class
id the_date class
0 195593 2017-09-12 14:00:00 3
1 193972 2017-09-13 09:15:00 2
2 195594 2017-09-13 14:00:00 3
3 195595 2017-09-15 14:00:00 3
4 193947 2017-09-16 17:30:00 3
5 195627 2017-09-17 08:00:00 2
6 193948 2017-09-19 11:30:00 2
7 195628 2017-09-21 08:00:00 2
8 193949 2017-09-21 11:30:00 2
9 195629 2017-09-24 08:00:00 2
10 193950 2017-09-24 10:00:00 2
11 193951 2017-09-27 11:30:00 2
12 195644 2017-09-28 06:00:00 1
13 194400 2017-09-28 08:00:00 1
14 195630 2017-09-28 08:00:00 2
15 193952 2017-09-29 11:30:00 2
16 195631 2017-10-01 08:00:00 2
17 194401 2017-10-06 08:00:00 1
18 195645 2017-10-06 10:00:00 1
19 195632 2017-10-07 13:30:00 3
If the class == 1, I need that instance duplicated 5 times.
first_class = df[df['class'] == 1]
non_first_class = df[df['class'] != 1]
first_class_replicated = pd.concat([tests_df]*5,ignore_index=True).sort_values(['the_date'])
id the_date class
0 195644 2017-09-28 06:00:00 1
16 195644 2017-09-28 06:00:00 1
4 195644 2017-09-28 06:00:00 1
12 195644 2017-09-28 06:00:00 1
8 195644 2017-09-28 06:00:00 1
17 194400 2017-09-28 08:00:00 1
13 194400 2017-09-28 08:00:00 1
9 194400 2017-09-28 08:00:00 1
5 194400 2017-09-28 08:00:00 1
1 194400 2017-09-28 08:00:00 1
6 194401 2017-10-06 08:00:00 1
18 194401 2017-10-06 08:00:00 1
10 194401 2017-10-06 08:00:00 1
14 194401 2017-10-06 08:00:00 1
2 194401 2017-10-06 08:00:00 1
11 195645 2017-10-06 10:00:00 1
3 195645 2017-10-06 10:00:00 1
15 195645 2017-10-06 10:00:00 1
7 195645 2017-10-06 10:00:00 1
19 195645 2017-10-06 10:00:00 1
I then merge non_first_class and first_class_replicated. Before that though, I need the dates in first_class_replicated to increment by one day, grouped by id. Below is how I need it to look. Is there an elegant Pandas solution to this, or should I be looking at looping over a groupby series to modify the dates?
Desired:
id
0 195644 2017-09-28 6:00:00
16 195644 2017-09-29 6:00:00
4 195644 2017-09-30 6:00:00
12 195644 2017-10-01 6:00:00
8 195644 2017-10-02 6:00:00
17 194400 2017-09-28 8:00:00
13 194400 2017-09-29 8:00:00
9 194400 2017-09-30 8:00:00
5 194400 2017-10-01 8:00:00
1 194400 2017-10-02 8:00:00
6 194401 2017-10-06 8:00:00
18 194401 2017-10-07 8:00:00
10 194401 2017-10-08 8:00:00
14 194401 2017-10-09 8:00:00
2 194401 2017-10-10 8:00:00
11 195645 2017-10-06 10:00:00
3 195645 2017-10-07 10:00:00
15 195645 2017-10-08 10:00:00
7 195645 2017-10-09 10:00:00
19 195645 2017-10-10 10:00:00
You can use cumcount for count categories, then convert to_timedelta and add to column:
#another solution for repeat
first_class_replicated = first_class.loc[np.repeat(first_class.index, 5)]
.sort_values(['the_date'])
df1 = first_class_replicated.groupby('id').cumcount()
first_class_replicated['the_date'] += pd.to_timedelta(df1, unit='D')
print (first_class_replicated)
id the_date class
0 195644 2017-09-28 06:00:00 1
16 195644 2017-09-29 06:00:00 1
4 195644 2017-09-30 06:00:00 1
12 195644 2017-10-01 06:00:00 1
8 195644 2017-10-02 06:00:00 1
17 194400 2017-09-28 08:00:00 1
13 194400 2017-09-29 08:00:00 1
9 194400 2017-09-30 08:00:00 1
5 194400 2017-10-01 08:00:00 1
1 194400 2017-10-02 08:00:00 1
6 194401 2017-10-06 08:00:00 1
18 194401 2017-10-07 08:00:00 1
10 194401 2017-10-08 08:00:00 1
14 194401 2017-10-09 08:00:00 1
2 194401 2017-10-10 08:00:00 1
11 195645 2017-10-06 10:00:00 1
3 195645 2017-10-07 10:00:00 1
15 195645 2017-10-08 10:00:00 1
7 195645 2017-10-09 10:00:00 1
19 195645 2017-10-10 10:00:00 1

Resample python list with pandas

Fairly new to python and pandas here.
I make a query that's giving me back a timeseries. I'm never sure how many data points I receive from the query (run for a single day), but what I do know is that I need to resample them to contain 24 points (one for each hour in the day).
Printing m3hstream gives
[(1479218009000L, 109), (1479287368000L, 84)]
Then I try to make a dataframe df with
df = pd.DataFrame(data = list(m3hstream), columns=['Timestamp', 'Value'])
and this gives me an output of
Timestamp Value
0 1479218009000 109
1 1479287368000 84
Following I do this
daily_summary = pd.DataFrame()
daily_summary['value'] = df['Value'].resample('H').mean()
daily_summary = daily_summary.truncate(before=start, after=end)
print "Now daily summary"
print daily_summary
But this is giving me a TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'RangeIndex'
Could anyone please let me know how to resample it so I have 1 point for each hour in the 24 hour period that I'm querying for?
Thanks.
First thing you need to do is convert that 'Timestamp' to an actual pd.Timestamp. It looks like those are milliseconds
Then resample with the on parameter set to 'Timestamp'
df = df.assign(
Timestamp=pd.to_datetime(df.Timestamp, unit='ms')
).resample('H', on='Timestamp').mean().reset_index()
Timestamp Value
0 2016-11-15 13:00:00 109.0
1 2016-11-15 14:00:00 NaN
2 2016-11-15 15:00:00 NaN
3 2016-11-15 16:00:00 NaN
4 2016-11-15 17:00:00 NaN
5 2016-11-15 18:00:00 NaN
6 2016-11-15 19:00:00 NaN
7 2016-11-15 20:00:00 NaN
8 2016-11-15 21:00:00 NaN
9 2016-11-15 22:00:00 NaN
10 2016-11-15 23:00:00 NaN
11 2016-11-16 00:00:00 NaN
12 2016-11-16 01:00:00 NaN
13 2016-11-16 02:00:00 NaN
14 2016-11-16 03:00:00 NaN
15 2016-11-16 04:00:00 NaN
16 2016-11-16 05:00:00 NaN
17 2016-11-16 06:00:00 NaN
18 2016-11-16 07:00:00 NaN
19 2016-11-16 08:00:00 NaN
20 2016-11-16 09:00:00 84.0
If you want to fill those NaN values, use ffill, bfill, or interpolate
df.assign(
Timestamp=pd.to_datetime(df.Timestamp, unit='ms')
).resample('H', on='Timestamp').mean().reset_index().interpolate()
Timestamp Value
0 2016-11-15 13:00:00 109.00
1 2016-11-15 14:00:00 107.75
2 2016-11-15 15:00:00 106.50
3 2016-11-15 16:00:00 105.25
4 2016-11-15 17:00:00 104.00
5 2016-11-15 18:00:00 102.75
6 2016-11-15 19:00:00 101.50
7 2016-11-15 20:00:00 100.25
8 2016-11-15 21:00:00 99.00
9 2016-11-15 22:00:00 97.75
10 2016-11-15 23:00:00 96.50
11 2016-11-16 00:00:00 95.25
12 2016-11-16 01:00:00 94.00
13 2016-11-16 02:00:00 92.75
14 2016-11-16 03:00:00 91.50
15 2016-11-16 04:00:00 90.25
16 2016-11-16 05:00:00 89.00
17 2016-11-16 06:00:00 87.75
18 2016-11-16 07:00:00 86.50
19 2016-11-16 08:00:00 85.25
20 2016-11-16 09:00:00 84.00
Let's try:
daily_summary = daily_summary.set_index('Timestamp')
daily_summary.index = pd.to_datetime(daily_summary.index, unit='ms')
For once an hour:
daily_summary.resample('H').mean()
or for once a day:
daily_summary.resample('D').mean()

Categories