This question already has answers here:
calculate mod using pow function python
(3 answers)
Closed 1 year ago.
Is there any way to make this code run faster?
g = 53710316114328094
a = 995443176435632644
n = 926093738455418579
print(g**a%n)
It is running for too long I want to make it faster
I also tried:
import math
g = 53710316114328094
a = 995443176435632644
n = 926093738455418579
print(math.pow(g**a)%n)
and
g = 53710316114328094
a = 995443176435632644
n = 926093738455418579
def power(a,b):
ans = 1
for i in range(b):
ans *= a
return ans
print(power(g,a)%n)
All of these code is running for very long
First of all you need to know about Binary exponentiation algorithm. The idea is that instead of computing e.g. 5^46 like 5*5*5*5... 46 times, you can do
5^46 == 5^2 * 5^4 * 5^8 * 5^32
The key here, is that you can compute 5^2 fast from 5 (just square it), then 5^4 fast from 5^2 (just square it), then 5^8 from 5^4 (just square it) and so on. To determine which 5^K numbers you should multiply and which not, you can represent the power as a binary number, and multiply to the final result only those components, that correspond to 1 in this binary representation. E.g.
decimal 46 == binary 101110
Thus
5^1 is skipped (corresponds to right most 0), 5^2 is multiplied (corresponds to right most 1), 5^4 is multiplied(second from the right 1), 5^8 is multiplied (third from the right 1), 5^16 is skipped (the left most 0) and 5^32 is multiplied (the left most 1).
Next, you need to compute a very huge power, it's impractically big. But there is a shortcut, since you use modulo operation.
You see, there's a rule that
(a*b % n) == ( (a % n)*(b % n) ) % n
So these should be equivalent
5^46 % n == ( ( ( (5^2 % n) * (5^4 % n) % n) * (5^8 % n) % n) * (5^32 % n) % n)
Notice that each number we multiply won't ever exceed n, so the overall multiplication chain will not take forever, as n is big, but not even remotely as gigantic as g**a
In the code, all of that looks like that. It computes instantly
def pow_modulo_n(base, power, n):
result = 1
multiplier = base
while power > 0:
power, binary_digit = divmod(power, 2)
if binary_digit == 1:
result = (result * multiplier) % n
multiplier = (multiplier**2) % n
return result % n
g = 53710316114328094
a = 995443176435632644
n = 926093738455418579
print(pow_modulo_n(g, a, n))
This prints
434839845697636246
Related
I was bored at work and was playing with some math and python coding, when I noticed the following:
Recursively (or if using a for loop) you simply add integers together to get a given Fibonacci number. However there is also a direct equation for calculating Fibonacci numbers, and for large n this equation will give answers that are, frankly, quite wrong with respect to the recursively calculated Fibonacci number.
I imagine this is due to rounding and floating point arithmetic ( sqrt(5) is irrational after all), and if so can anyone point me into a direction on how I could modify the fibo_calc_direct function to return a more accurate result?
Thanks!
def fib_calc_recur(n, ii = 0, jj = 1):
#n is the index of the nth fibonacci number, F_n, where F_0 = 0, F_1 = 1, ...
if n == 0: #use recursion
return ii
if n == 1:
return jj
else:
return(fib_calc_recur(n -1, jj, ii + jj))
def fib_calc_direct(n):
a = (1 + np.sqrt(5))/2
b = (1 - np.sqrt(5))/2
f = (1/np.sqrt(5)) * (a**n - b**n)
return(f)
You could make use of Decimal numbers, and set its precision depending on the magninute of n
Not your question, but I'd use an iterative version of the addition method. Here is a script that makes both calculations (naive addition, direct with Decimal) for values of n up to 4000:
def fib_calc_iter(n):
a, b = 0, 1
if n < 2:
return n
for _ in range(1, n):
a, b = b, a + b
return b
from decimal import Decimal, getcontext
def fib_calc_decimal(n):
getcontext().prec = n // 4 + 3 # Choose a precision good enough for this n
sqrt5 = Decimal(5).sqrt()
da = (1 + sqrt5) / 2
db = (1 - sqrt5) / 2
f = (da**n - db**n) / sqrt5
return int(f + Decimal(0.5)) # Round to nearest int
# Test it...
for n in range(1, 4000):
x = fib_calc_iter(n)
y = fib_calc_decimal(n)
if x != y:
print(f"Difference found for n={n}.\nNaive method={x}.\nDecimal method={y}")
break
else:
print("No differences found")
Using Python, I would like to implement a function that takes a natural number n as input and outputs a list of natural numbers [y1, y2, y3, ...] such that n + y1*y1 and n + y2*y2 and n + y3*y3 and so forth is again a square.
What I tried so far is to obtain one y-value using the following function:
def find_square(n:int) -> tuple[int, int]:
if n%2 == 1:
y = (n-1)//2
x = n+y*y
return (y,x)
return None
It works fine, eg. find_square(13689) gives me a correct solution y=6844. It would be great to have an algorithm that yields all possible y-values such as y=44 or y=156.
Simplest slow approach is of course for given N just to iterate all possible Y and check if N + Y^2 is square.
But there is a much faster approach using integer Factorization technique:
Lets notice that to solve equation N + Y^2 = X^2, that is to find all integer pairs (X, Y) for given fixed integer N, we can rewrite this equation to N = X^2 - Y^2 = (X + Y) * (X - Y) which follows from famous school formula of difference of squares.
Now lets rename two factors as A, B i.e. N = (X + Y) * (X - Y) = A * B, which means that X = (A + B) / 2 and Y = (A - B) / 2.
Notice that A and B should be of same odditiy, either both odd or both even, otherwise in last formulas above we can't have whole division by 2.
We will factorize N into all possible pairs of two factors (A, B) of same oddity. For fast factorization in code below I used simple to implement but yet quite fast algorithm Pollard Rho, also two extra algorithms were needed as a helper to Pollard Rho, one is Fermat Primality Test (which allows fast checking if number is probably prime) and second is Trial Division Factorization (which helps Pollard Rho to factor out small factors, which could cause Pollard Rho to fail).
Pollard Rho for composite number has time complexity O(N^(1/4)) which is very fast even for 64-bit numbers. Any faster factorization algorithm can be chosen if needed a bigger space to be searched. My fast algorithm time is dominated by speed of factorization, remaining part of algorithm is blazingly fast, just few iterations of loop with simple formulas.
If your N is a square itself (hence we know its root easily), then Pollard Rho can factor N even much faster, within O(N^(1/8)) time. Even for 128-bit numbers it means very small time, 2^16 operations, and I hope you're solving your task for less than 128 bit numbers.
If you want to process a range of possible N values then fastest way to factorize them is to use techniques similar to Sieve of Erathosthenes, using set of prime numbers, it allows to compute all factors for all N numbers within some range. Using Sieve of Erathosthenes for the case of range of Ns is much faster than factorizing each N with Pollard Rho.
After factoring N into pairs (A, B) we compute (X, Y) based on (A, B) by formulas above. And output resulting Y as a solution of fast algorithm.
Following code as an example is implemented in pure Python. Of course one can use Numba to speed it up, Numba usually gives 30-200 times speedup, for Python it achieves same speed as optimized C++. But I thought that main thing here is to implement fast algorithm, Numba optimizations can be done easily afterwards.
I added time measurement into following code. Although it is pure Python still my fast algorithm achieves 8500x times speedup compared to regular brute force approach for limit of 1 000 000.
You can change limit variable to tweak amount of searched space, or num_tests variable to tweak amount of different tests.
Following code implements both solutions - fast solution find_fast() described above plus very tiny brute force solution find_slow() which is very slow as it scans all possible candidates. This slow solution is only used to compare correctness in tests and compare speedup.
Code below uses nothing except few standard Python library modules, no external modules were used.
Try it online!
def find_slow(N):
import math
def is_square(x):
root = int(math.sqrt(float(x)) + 0.5)
return root * root == x, root
l = []
for y in range(N):
if is_square(N + y ** 2)[0]:
l.append(y)
return l
def find_fast(N):
import itertools, functools
Prod = lambda it: functools.reduce(lambda a, b: a * b, it, 1)
fs = factor(N)
mfs = {}
for e in fs:
mfs[e] = mfs.get(e, 0) + 1
fs = sorted(mfs.items())
del mfs
Ys = set()
for take_a in itertools.product(*[
(range(v + 1) if k != 2 else range(1, v)) for k, v in fs]):
A = Prod([p ** t for (p, _), t in zip(fs, take_a)])
B = N // A
assert A * B == N, (N, A, B, take_a)
if A < B:
continue
X = (A + B) // 2
Y = (A - B) // 2
assert N + Y ** 2 == X ** 2, (N, A, B, X, Y)
Ys.add(Y)
return sorted(Ys)
def trial_div_factor(n, limit = None):
# https://en.wikipedia.org/wiki/Trial_division
fs = []
while n & 1 == 0:
fs.append(2)
n >>= 1
all_checked = False
for d in range(3, (limit or n) + 1, 2):
if d * d > n:
all_checked = True
break
while True:
q, r = divmod(n, d)
if r != 0:
break
fs.append(d)
n = q
if n > 1 and all_checked:
fs.append(n)
n = 1
return fs, n
def fermat_prp(n, trials = 32):
# https://en.wikipedia.org/wiki/Fermat_primality_test
import random
if n <= 16:
return n in (2, 3, 5, 7, 11, 13)
for i in range(trials):
if pow(random.randint(2, n - 2), n - 1, n) != 1:
return False
return True
def pollard_rho_factor(n):
# https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
import math, random
fs, n = trial_div_factor(n, 1 << 7)
if n <= 1:
return fs
if fermat_prp(n):
return sorted(fs + [n])
for itry in range(8):
failed = False
x = random.randint(2, n - 2)
for cycle in range(1, 1 << 60):
y = x
for i in range(1 << cycle):
x = (x * x + 1) % n
d = math.gcd(x - y, n)
if d == 1:
continue
if d == n:
failed = True
break
return sorted(fs + pollard_rho_factor(d) + pollard_rho_factor(n // d))
if failed:
break
assert False, f'Pollard Rho failed! n = {n}'
def factor(N):
import functools
Prod = lambda it: functools.reduce(lambda a, b: a * b, it, 1)
fs = pollard_rho_factor(N)
assert N == Prod(fs), (N, fs)
return sorted(fs)
def test():
import random, time
limit = 1 << 20
num_tests = 20
t0, t1 = 0, 0
for i in range(num_tests):
if (round(i / num_tests * 1000)) % 100 == 0 or i + 1 >= num_tests:
print(f'test {i}, ', end = '', flush = True)
N = random.randrange(limit)
tb = time.time()
r0 = find_slow(N)
t0 += time.time() - tb
tb = time.time()
r1 = find_fast(N)
t1 += time.time() - tb
assert r0 == r1, (N, r0, r1, t0, t1)
print(f'\nTime slow {t0:.05f} sec, fast {t1:.05f} sec, speedup {round(t0 / max(1e-6, t1))} times')
if __name__ == '__main__':
test()
Output:
test 0, test 2, test 4, test 6, test 8, test 10, test 12, test 14, test 16, test 18, test 19,
Time slow 26.28198 sec, fast 0.00301 sec, speedup 8732 times
For the easiest solution, you can try this:
import math
n=13689 #or we can ask user to input a square number.
for i in range(1,9999):
if math.sqrt(n+i**2).is_integer():
print(i)
Examples,
1.Input=4
Output=111
Explanation,
1 = 1³(divisors of 1)
2 = 1³ + 2³(divisors of 2)
3 = 1³ + 3³(divisors of 3)
4 = 1³ + 2³ + 4³(divisors of 4)
------------------------
sum = 111(output)
1.Input=5
Output=237
Explanation,
1 = 1³(divisors of 1)
2 = 1³ + 2³(divisors of 2)
3 = 1³ + 3³(divisors of 3)
4 = 1³ + 2³ + 4³(divisors of 4)
5 = 1³ + 5³(divisors of 5)
-----------------------------
sum = 237 (output)
x=int(raw_input().strip())
tot=0
for i in range(1,x+1):
for j in range(1,i+1):
if(i%j==0):
tot+=j**3
print tot
Using this code I can find the answer for small number less than one million.
But I want to find the answer for very large numbers. Is there any algorithm
for how to solve it easily for large numbers?
Offhand I don't see a slick way to make this truly efficient, but it's easy to make it a whole lot faster. If you view your examples as matrices, you're summing them a row at a time. This requires, for each i, finding all the divisors of i and summing their cubes. In all, this requires a number of operations proportional to x**2.
You can easily cut that to a number of operations proportional to x, by summing the matrix by columns instead. Given an integer j, how many integers in 1..x are divisible by j? That's easy: there are x//j multiples of j in the range, so divisor j contributes j**3 * (x // j) to the grand total.
def better(x):
return sum(j**3 * (x // j) for j in range(1, x+1))
That runs much faster, but still takes time proportional to x.
There are lower-level tricks you can play to speed that in turn by constant factors, but they still take O(x) time overall. For example, note that x // j == 1 for all j such that x // 2 < j <= x. So about half the terms in the sum can be skipped, replaced by closed-form expressions for a sum of consecutive cubes:
def sum3(x):
"""Return sum(i**3 for i in range(1, x+1))"""
return (x * (x+1) // 2)**2
def better2(x):
result = sum(j**3 * (x // j) for j in range(1, x//2 + 1))
result += sum3(x) - sum3(x//2)
return result
better2() is about twice as fast as better(), but to get faster than O(x) would require deeper insight.
Quicker
Thinking about this in spare moments, I still don't have a truly clever idea. But the last idea I gave can be carried to a logical conclusion: don't just group together divisors with only one multiple in range, but also those with two multiples in range, and three, and four, and ... That leads to better3() below, which does a number of operations roughly proportional to the square root of x:
def better3(x):
result = 0
for i in range(1, x+1):
q1 = x // i
# value i has q1 multiples in range
result += i**3 * q1
# which values have i multiples?
q2 = x // (i+1) + 1
assert x // q1 == i == x // q2
if i < q2:
result += i * (sum3(q1) - sum3(q2 - 1))
if i+1 >= q2: # this becomes true when i reaches roughly sqrt(x)
break
return result
Of course O(sqrt(x)) is an enormous improvement over the original O(x**2), but for very large arguments it's still impractical. For example better3(10**6) appears to complete instantly, but better3(10**12) takes a few seconds, and better3(10**16) is time for a coffee break ;-)
Note: I'm using Python 3. If you're using Python 2, use xrange() instead of range().
One more
better4() has the same O(sqrt(x)) time behavior as better3(), but does the summations in a different order that allows for simpler code and fewer calls to sum3(). For "large" arguments, it's about 50% faster than better3() on my box.
def better4(x):
result = 0
for i in range(1, x+1):
d = x // i
if d >= i:
# d is the largest divisor that appears `i` times, and
# all divisors less than `d` also appear at least that
# often. Account for one occurence of each.
result += sum3(d)
else:
i -= 1
lastd = x // i
# We already accounted for i occurrences of all divisors
# < lastd, and all occurrences of divisors >= lastd.
# Account for the rest.
result += sum(j**3 * (x // j - i)
for j in range(1, lastd))
break
return result
It may be possible to do better by extending the algorithm in "A Successive Approximation Algorithm for Computing the Divisor Summatory Function". That takes O(cube_root(x)) time for the possibly simpler problem of summing the number of divisors. But it's much more involved, and I don't care enough about this problem to pursue it myself ;-)
Subtlety
There's a subtlety in the math that's easy to miss, so I'll spell it out, but only as it pertains to better4().
After d = x // i, the comment claims that d is the largest divisor that appears i times. But is that true? The actual number of times d appears is x // d, which we did not compute. How do we know that x // d in fact equals i?
That's the purpose of the if d >= i: guarding that comment. After d = x // i we know that
x == d*i + r
for some integer r satisfying 0 <= r < i. That's essentially what floor division means. But since d >= i is also known (that's what the if test ensures), it must also be the case that 0 <= r < d. And that's how we know x // d is i.
This can break down when d >= i is not true, which is why a different method needs to be used then. For example, if x == 500 and i == 51, d (x // i) is 9, but it's certainly not the case that 9 is the largest divisor that appears 51 times. In fact, 9 appears 500 // 9 == 55 times. While for positive real numbers
d == x/i
if and only if
i == x/d
that's not always so for floor division. But, as above, the first does imply the second if we also know that d >= i.
Just for Fun
better5() rewrites better4() for about another 10% speed gain. The real pedagogical point is to show that it's easy to compute all the loop limits in advance. Part of the point of the odd code structure above is that it magically returns 0 for a 0 input without needing to test for that. better5() gives up on that:
def isqrt(n):
"Return floor(sqrt(n)) for int n > 0."
g = 1 << ((n.bit_length() + 1) >> 1)
d = n // g
while d < g:
g = (d + g) >> 1
d = n // g
return g
def better5(x):
assert x > 0
u = isqrt(x)
v = x // u
return (sum(map(sum3, (x // d for d in range(1, u+1)))) +
sum(x // i * i**3 for i in range(1, v)) -
u * sum3(v-1))
def sum_divisors(n):
sum = 0
i = 0
for i in range (1, n) :
if n % i == 0 and n != 0 :
sum = sum + i
# Return the sum of all divisors of n, not including n
return sum
print(sum_divisors(0))
# 0
print(sum_divisors(3)) # Should sum of 1
# 1
print(sum_divisors(36)) # Should sum of 1+2+3+4+6+9+12+18
# 55
print(sum_divisors(102)) # Should be sum of 2+3+6+17+34+51
# 114
I get this code from leetcode.
class Solution(object):
def myPow(self, x, n):
if n == 0:
return 1
if n == -1:
return 1 / x
return self.myPow(x * x, n / 2) * ([1, x][n % 2])
This code is used to implement poe(x, n), which means x**n in Python.
I want to know why it can implement pow(x, n).
It looks doesn't make sense...
I understand
if n == 0:
and
if n == -1:
But the core code:
self.myPow(x * x, n / 2) * ([1, x][n % 2])
is really hard to understand.
BTW, this code only works on Python 2.7. If you want to test on Python 3, you should change
myPow(x*x, n / 2) * ([1, x][n % 2])
to
myPow(x*x, n // 2) * ([1, x][n % 2])
The recursive function is to compute power (most probably integer, non negative or -1, power) of a number, as you might have expected (something like x = 2.2 and n = 9).
(And this seems to be written for Python 2.x (due to the n/2 having expected result of integer instead of n//2))
The initial returns are very straight-forward math.
if n == 0:
return 1
if n == -1:
return 1 / x
When the power is 0, then you return 1 and then the power is -1, you return 1/x.
Now the next line consists of two elements:
self.myPow(x * x, n/2)
and
[1, x][n%2]
The first one self.myPow(x * x, n/2) simply means you want to make higher power (not 0 or -1) into half of it by squaring the powered number x
(most probably to speed up the calculation by reducing the number of multiplication needed - imagine if you have case to compute 2^58. By multiplication, you have to multiply the number 58 times. But if you divide it into two every time and solve it recursively, you end up will smaller number of operations).
Example:
x^8 = (x^2)^4 = y^4 #thus you reduce the number of operation you need to perform
Here, you pass x^2 as your next argument in the recursive (that is y) and do it recursively till the power is 0 or -1.
And the next one is you get the modulo of two of the divided power. This is to make up the case for odd case (that is, when the power n is odd).
[1,x][n%2] #is 1 when n is even, is x when n is odd
If n is odd, then by doing n/2, you lose one x in the process. Thus you have to make up by multiplying the self.myPow(x * x, n / 2) with that x. But if your n is not odd (even), you do not lose one x, thus you do not need to multiply the result by x but by 1.
Illustratively:
x^9 = (x^2)^4 * x #take a look the x here
but
x^8 = (x^2)^4 * 1 #take a look the 1 here
Thus, this:
[1, x][n % 2]
is to multiply the previous recursion by either 1 (for even n case) or x (for odd n case) and is equivalent to ternary expression:
1 if n % 2 == 0 else x
This is divide and conquer technique. The implementation above is a fast way of computing exponentiation. At each call, half of the multiplications are eliminated.
Assuming that n is even, x^n can be written as below (If n is odd, it requires one extra multiplication)
x^n = (x^2)^(n/2)
or
x^n = (x^n/2)^2
The function shown above implements the 1st version. It's easy to implement the 2nd one also (I removed recursion base cases below)
r = self.myPow(x,n/2)
return r * r * ([1, x][n % 2])
The right answer might be below
class Solution:
def myPow(self, x: float, n: int) -> float:
if n == 0:
return 1
if n > 0:
return self.myPow(x * x, int(n / 2)) * ([1, x][n % 2])
else:
return self.myPow(x * x, int(n / 2)) * ([1, 1/x][n % 2])
I want to generate the digits of the square root of two to 3 million digits.
I am aware of Newton-Raphson but I don't have much clue how to implement it in C or C++ due to lack of biginteger support. Can somebody point me in the right direction?
Also, if anybody knows how to do it in python (I'm a beginner), I would also appreciate it.
You could try using the mapping:
a/b -> (a+2b)/(a+b) starting with a= 1, b= 1. This converges to sqrt(2) (in fact gives the continued fraction representations of it).
Now the key point: This can be represented as a matrix multiplication (similar to fibonacci)
If a_n and b_n are the nth numbers in the steps then
[1 2] [a_n b_n]T = [a_(n+1) b_(n+1)]T
[1 1]
which now gives us
[1 2]n [a_1 b_1]T = [a_(n+1) b_(n+1)]T
[1 1]
Thus if the 2x2 matrix is A, we need to compute An which can be done by repeated squaring and only uses integer arithmetic (so you don't have to worry about precision issues).
Also note that the a/b you get will always be in reduced form (as gcd(a,b) = gcd(a+2b, a+b)), so if you are thinking of using a fraction class to represent the intermediate results, don't!
Since the nth denominators is like (1+sqrt(2))^n, to get 3 million digits you would likely need to compute till the 3671656th term.
Note, even though you are looking for the ~3.6 millionth term, repeated squaring will allow you to compute the nth term in O(Log n) multiplications and additions.
Also, this can easily be made parallel, unlike the iterative ones like Newton-Raphson etc.
EDIT: I like this version better than the previous. It's a general solution that accepts both integers and decimal fractions; with n = 2 and precision = 100000, it takes about two minutes. Thanks to Paul McGuire for his suggestions & other suggestions welcome!
def sqrt_list(n, precision):
ndigits = [] # break n into list of digits
n_int = int(n)
n_fraction = n - n_int
while n_int: # generate list of digits of integral part
ndigits.append(n_int % 10)
n_int /= 10
if len(ndigits) % 2: ndigits.append(0) # ndigits will be processed in groups of 2
decimal_point_index = len(ndigits) / 2 # remember decimal point position
while n_fraction: # insert digits from fractional part
n_fraction *= 10
ndigits.insert(0, int(n_fraction))
n_fraction -= int(n_fraction)
if len(ndigits) % 2: ndigits.insert(0, 0) # ndigits will be processed in groups of 2
rootlist = []
root = carry = 0 # the algorithm
while root == 0 or (len(rootlist) < precision and (ndigits or carry != 0)):
carry = carry * 100
if ndigits: carry += ndigits.pop() * 10 + ndigits.pop()
x = 9
while (20 * root + x) * x > carry:
x -= 1
carry -= (20 * root + x) * x
root = root * 10 + x
rootlist.append(x)
return rootlist, decimal_point_index
As for arbitrary big numbers you could have a look at The GNU Multiple Precision Arithmetic Library (for C/C++).
For work? Use a library!
For fun? Good for you :)
Write a program to imitate what you would do with pencil and paper. Start with 1 digit, then 2 digits, then 3, ..., ...
Don't worry about Newton or anybody else. Just do it your way.
Here is a short version for calculating the square root of an integer a to digits of precision. It works by finding the integer square root of a after multiplying by 10 raised to the 2 x digits.
def sqroot(a, digits):
a = a * (10**(2*digits))
x_prev = 0
x_next = 1 * (10**digits)
while x_prev != x_next:
x_prev = x_next
x_next = (x_prev + (a // x_prev)) >> 1
return x_next
Just a few caveats.
You'll need to convert the result to a string and add the decimal point at the correct location (if you want the decimal point printed).
Converting a very large integer to a string isn't very fast.
Dividing very large integers isn't very fast (in Python) either.
Depending on the performance of your system, it may take an hour or longer to calculate the square root of 2 to 3 million decimal places.
I haven't proven the loop will always terminate. It may oscillate between two values differing in the last digit. Or it may not.
The nicest way is probably using the continued fraction expansion [1; 2, 2, ...] the square root of two.
def root_two_cf_expansion():
yield 1
while True:
yield 2
def z(a,b,c,d, contfrac):
for x in contfrac:
while a > 0 and b > 0 and c > 0 and d > 0:
t = a // c
t2 = b // d
if not t == t2:
break
yield t
a = (10 * (a - c*t))
b = (10 * (b - d*t))
# continue with same fraction, don't pull new x
a, b = x*a+b, a
c, d = x*c+d, c
for digit in rdigits(a, c):
yield digit
def rdigits(p, q):
while p > 0:
if p > q:
d = p // q
p = p - q * d
else:
d = (10 * p) // q
p = 10 * p - q * d
yield d
def decimal(contfrac):
return z(1,0,0,1,contfrac)
decimal((root_two_cf_expansion()) returns an iterator of all the decimal digits. t1 and t2 in the algorithm are minimum and maximum values of the next digit. When they are equal, we output that digit.
Note that this does not handle certain exceptional cases such as negative numbers in the continued fraction.
(This code is an adaptation of Haskell code for handling continued fractions that has been floating around.)
Well, the following is the code that I wrote. It generated a million digits after the decimal for the square root of 2 in about 60800 seconds for me, but my laptop was sleeping when it was running the program, it should be faster that. You can try to generate 3 million digits, but it might take a couple days to get it.
def sqrt(number,digits_after_decimal=20):
import time
start=time.time()
original_number=number
number=str(number)
list=[]
for a in range(len(number)):
if number[a]=='.':
decimal_point_locaiton=a
break
if a==len(number)-1:
number+='.'
decimal_point_locaiton=a+1
if decimal_point_locaiton/2!=round(decimal_point_locaiton/2):
number='0'+number
decimal_point_locaiton+=1
if len(number)/2!=round(len(number)/2):
number+='0'
number=number[:decimal_point_locaiton]+number[decimal_point_locaiton+1:]
decimal_point_ans=int((decimal_point_locaiton-2)/2)+1
for a in range(0,len(number),2):
if number[a]!='0':
list.append(eval(number[a:a+2]))
else:
try:
list.append(eval(number[a+1]))
except IndexError:
pass
p=0
c=list[0]
x=0
ans=''
for a in range(len(list)):
while c>=(20*p+x)*(x):
x+=1
y=(20*p+x-1)*(x-1)
p=p*10+x-1
ans+=str(x-1)
c-=y
try:
c=c*100+list[a+1]
except IndexError:
c=c*100
while c!=0:
x=0
while c>=(20*p+x)*(x):
x+=1
y=(20*p+x-1)*(x-1)
p=p*10+x-1
ans+=str(x-1)
c-=y
c=c*100
if len(ans)-decimal_point_ans>=digits_after_decimal:
break
ans=ans[:decimal_point_ans]+'.'+ans[decimal_point_ans:]
total=time.time()-start
return ans,total
Python already supports big integers out of the box, and if that's the only thing holding you back in C/C++ you can always write a quick container class yourself.
The only problem you've mentioned is a lack of big integers. If you don't want to use a library for that, then are you looking for help writing such a class?
Here's a more efficient integer square root function (in Python 3.x) that should terminate in all cases. It starts with a number much closer to the square root, so it takes fewer steps. Note that int.bit_length requires Python 3.1+. Error checking left out for brevity.
def isqrt(n):
x = (n >> n.bit_length() // 2) + 1
result = (x + n // x) // 2
while abs(result - x) > 1:
x = result
result = (x + n // x) // 2
while result * result > n:
result -= 1
return result