Phase portrait of Verhulst equation - python

I was trying to an example of the book -"Dynamical Systems with Applications using Python" and I was asked to plot the phase portrait of Verhulst equation, then I came across this post: How to plot a phase portrait of Verhulst equation with SciPy (or SymPy) and Matplotlib?
I'm getting the same plot as the user on the previous post. Whenever, I try to use the accepted solution I get a "division by zero" error. Why doesn't the accepted solution in How to plot a phase portrait of Verhulst equation with SciPy (or SymPy) and Matplotlib? works?
Thank you very much for you help!
Edit:
Using the code from the previous post and the correction given by #Lutz Lehmann
beta, delta, gamma = 1, 2, 1
b,d,c = 1,2,1
C1 = gamma*c-delta*d
C2 = gamma*b-beta*d
C3 = beta*c-delta*b
def verhulst(X, t=0):
return np.array([beta*X[0] - delta*X[0]**2 -gamma*X[0]*X[1],
b*X[1] - d*X[1]**2 -c*X[0]*X[1]])
X_O = np.array([0., 0.])
X_R = np.array([C2/C1, C3/C1])
X_P = np.array([0, b/d])
X_Q = np.array([beta/delta, 0])
def jacobian(X, t=0):
return np.array([[beta-delta*2*X[0]-gamma*X[1], -gamma*x[0]],
[b-d*2*X[1]-c*X[0], -c*X[1]]])
values = np.linspace(0.3, 0.9, 5)
vcolors = plt.cm.autumn_r(np.linspace(0.3, 1., len(values)))
f2 = plt.figure(figsize=(4,4))
for v, col in zip(values, vcolors):
X0 = v * X_R
X = odeint(verhulst, X0, t)
plt.plot(X[:,0], X[:,1], color=col, label='X0=(%.f, %.f)' % ( X0[0], X0[1]) )
ymax = plt.ylim(ymin=0)[1]
xmax = plt.xlim(xmin=0)[1]
nb_points = 20
x = np.linspace(0, xmax, nb_points)
y = np.linspace(0, ymax, nb_points)
X1, Y1 = np.meshgrid(x, y)
DX1, DY1 = verhulst([X1, Y1]) # compute growth rate on the gridt
M = (np.hypot(DX1, DY1)) # Norm of the growth rate
M[M == 0] = 1. # Avoid zero division errors
DX1 /= M # Normalize each arrows
DY1 /= M
plt.quiver(X1, Y1, DX1, DY1, M, cmap=plt.cm.jet)
plt.xlabel('Number of Species 1')
plt.ylabel('Number of Species 2')
plt.legend()
plt.grid()
We have:
That is still different from:
What am I missing?

With the help of #Lutz Lehmann I could rewrite the code to get want I needed.
The solutions is something like this:
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(8, 4), dpi= 80, facecolor='whitesmoke', edgecolor='k')
beta, delta, gamma = 1, 2, 1
b,d,c = 1,2,1
t = np.linspace(0, 10, 100)
C1 = gamma*c-delta*d
C2 = gamma*b-beta*d
C3 = beta*c-delta*b
def verhulst(X, t=0):
return np.array([beta*X[0] - delta*X[0]**2 -gamma*X[0]*X[1],
b*X[1] - d*X[1]**2 -c*X[0]*X[1]])
X_O = np.array([0., 0.])
X_R = np.array([C2/C1, C3/C1])
X_P = np.array([0, b/d])
X_Q = np.array([beta/delta, 0])
def jacobian(X, t=0):
return np.array([[beta-delta*2*X[0]-gamma*X[1], -gamma*x[0]],
[b-d*2*X[1]-c*X[0], -c*X[1]]])
values = np.linspace(0.05, 0.15, 5)
vcolors = plt.cm.autumn_r(np.linspace(0.3, 1., len(values)))
for v, col in zip(values, vcolors):
X0 = [v,0.2-v]
X = odeint(verhulst, X0, t)
plt.plot(X[:,0], X[:,1], color=col, label='X0=(%.f, %.f)' % ( X0[0], X0[1]) )
for v, col in zip(values, vcolors):
X0 = [6 * v, 6 *(0.2-v)]
X = odeint(verhulst, X0, t)
plt.plot(X[:,0], X[:,1], color=col, label='X0=(%.f, %.f)' % ( X0[0], X0[1]) )
ymax = plt.ylim(ymin=0)[1]
xmax = plt.xlim(xmin=0)[1]
nb_points = 20
x = np.linspace(0, xmax, nb_points)
y = np.linspace(0, ymax, nb_points)
X1, Y1 = np.meshgrid(x, y)
DX1, DY1 = verhulst([X1, Y1]) # compute growth rate on the gridt
M = (np.hypot(DX1, DY1)) # Norm of the growth rate
M[M == 0] = 1. # Avoid zero division errors
DX1 /= M # Normalize each arrows
DY1 /= M
plt.quiver(X1, Y1, DX1, DY1, M, cmap=plt.cm.jet)
plt.xlabel('Number of Species 1')
plt.ylabel('Number of Species 2')
plt.grid()
We get what we were looking for:
Finally, I would like to thank again #Lutz Lehnmann for the help. I wouldn't have solved without it him.
Edit 1:
I forgot $t = np.linspace(0, 10, 100)$ and if you change figsize = (8,8), we get a nicer shape in the plot. (Thank you #Trenton McKinney for the remarks)

Related

Reconstructing polynomials from scipy.interpolate.RectBivariateSpline

I have fitted a 2-D cubic spline using scipy.interpolate.RectBivariateSpline. I would like to access/reconstruct the underlying polynomials within each rectangular cell. How can I do this? My code so far is written below.
I have been able to get the knot points and the coefficients with get_knots() and get_coeffs() so it should be possible to build the polynomials, but I do not know the form of the polynomials that the coefficients correspond to. I tried looking at the SciPy source code but I could not locate the underlying dfitpack.regrid_smth function.
A code demonstrating the fitting:
import numpy as np
from scipy.interpolate import RectBivariateSpline
# Evaluate a demonstration function Z(x, y) = sin(sin(x * y)) on a mesh
# of points.
x0 = -1.0
x1 = 1.0
n_x = 11
x = np.linspace(x0, x1, num = n_x)
y0 = -2.0
y1 = 2.0
n_y = 21
y = np.linspace(y0, y1, num = n_y)
X, Y = np.meshgrid(x, y, indexing = 'ij')
Z = np.sin(np.sin(X * Y))
# Fit the sampled function using SciPy's RectBivariateSpline.
order_spline = 3
smoothing = 0.0
spline_fit_func = RectBivariateSpline(x, y, Z,
kx = order_spline, ky = order_spline, s = smoothing)
And to plot it:
import matplotlib.pyplot as plt
# Make axes.
fig, ax_arr = plt.subplots(1, 2, sharex = True, sharey = True, figsize = (12.0, 8.0))
# Plot the input function.
ax = ax_arr[0]
ax.set_aspect(1.0)
d_x = x[1] - x[0]
x_edges = np.zeros(n_x + 1)
x_edges[:-1] = x - (d_x / 2.0)
x_edges[-1] = x[-1] + (d_x / 2.0)
d_y = y[1] - y[0]
y_edges = np.zeros(n_y + 1)
y_edges[:-1] = y - (d_y / 2.0)
y_edges[-1] = y[-1] + (d_y / 2.0)
ax.pcolormesh(x_edges, y_edges, Z.T)
ax.set_title('Input function')
# Plot the fitted function.
ax = ax_arr[1]
ax.set_aspect(1.0)
n_x_span = n_x * 10
x_span_edges = np.linspace(x0, x1, num = n_x_span)
x_span_centres = (x_span_edges[1:] + x_span_edges[:-1]) / 2.0
#
n_y_span = n_y * 10
y_span_edges = np.linspace(y0, y1, num = n_y_span)
y_span_centres = (y_span_edges[1:] + y_span_edges[:-1]) / 2.0
Z_fit = spline_fit_func(x_span_centres, y_span_centres)
ax.pcolormesh(x_span_edges, y_span_edges, Z_fit.T)
x_knot, y_knot = spline_fit_func.get_knots()
X_knot, Y_knot = np.meshgrid(x_knot, y_knot)
# Plot the knots.
ax.scatter(X_knot, Y_knot, s = 1, c = 'r')
ax.set_title('Fitted function and knots')
plt.show()

Python given implicit equation, find points on that equation?

Context: Convert an .iges to .vtk.
I have the following equation Ax^2+Bxy+Cy^2+Dx+Ey+F=0 representing a conic section.
The parameters A~F are given. I want to find points on the conic section, so that I can connect them with lines, and make a mesh.
The reason I need the points instead of just using matplotlib Ellipse is because I'm creating a mesh not a plot.
It is in 3 dimension space, but I first get points on xy plane, and use affine transformation to send it to 3 dim.
Question: How do I find points given an implicit equation?
To avoid spending too much time on this, I wrote some code that seems to handle general ellipses. It can be expanded for other conics, depending on what is needed.
The code takes in the coefficients of a general quadratic equation of an ellipse and a number of desired points to be generated on the ellipse and generates a set of points on the ellipse.
import numpy as np
def equation(conic, points):
'''
equation of a conic with coefficients 'conic'
applied to a matrix number_of_points x 3 whose each row is the coordinates
of each point
'''
c = np.array(conic)
x = np.array([points[:,0]**2, points[:, 0]*points[:,1], points[:,1]**2, points[:,0], points[:,1], np.ones(points.shape[0])])
return c.dot(x)
def equation_to_matrix(eq):
'''
eq[0]*x**2 + eq[1]*x*y + eq[2]*y**2 + eq[3]*x + eq[4]*y + eq[5] = 0
'''
return np.array([[2*eq[0], eq[1], eq[3]],
[ eq[1], 2*eq[2], eq[4]],
[ eq[3], eq[4], 2*eq[5]]]) / 2
def solve_quadratic(a, b, c):
'''
solves
ax^2 + bx + c = 0
'''
D = b**2 - 4*a*c
D = np.sqrt(D)
return (-b-D)/(2*a), (-b+D)/(2*a)
def eigen2(S):
'''
solves the eigen-decomposition problem
for a 2x2 symmetric matrix
'''
k1, k2 = solve_quadratic(1, -S[0,0]-S[1,1], S[0,0]*S[1,1] - S[0,1]*S[1,0])
u1 = np.array([-S[0,1], S[0,0]-k1, 0])
u1 = u1 / np.sqrt(u1.dot(u1))
u2 = np.array([-u1[1], u1[0], 0])
return np.array([k1, k2]), np.array([u1, u2, np.array([0,0,1])]).T
def center(conic_matrix):
center = np.linalg.solve(conic_matrix, np.array([0,0,1]))
return center/center[2]
def find_rotation_and_translation(conic_matrix):
'''
conic = c[0]x^2 + c[1]*xy + c[2]*y^2 + c[3]*x + c[4]*y + c[5] = 0
the result is rotation U such that U.T C U = diag
'''
k, U = eigen2(conic_matrix)
U[:,2] = center(conic_matrix)
return U, k
def find_transform(conic):
C = equation_to_matrix(conic)
U, k = find_rotation_and_translation(C)
C = (U.T).dot(C.dot(U))
C = - C / C[2,2]
k = np.array([1/np.sqrt(C[0,0]), 1/np.sqrt(C[1,1]), 1])
return U.dot(np.diag(k))
def generate_points_on(conic, num_points):
'''
conic = [c[0], c[1], c[2], c[3], c[4], c[5]]
coefficients of the qudaratic equation:
conic: c[0]x^2 + c[1]*xy + c[2]*y^2 + c[3]*x + c[4]*y + c[5] = 0
result is the affine transformation (scaling, rotation, translation)
that maps the unit circle to the ellipse defined by the coefficients
'conic'
'''
cos_ = np.cos(2*np.pi* np.arange(0, num_points)/ num_points)
sin_ = np.sin(2*np.pi* np.arange(0, num_points)/ num_points)
U = find_transform(conic)
points = np.array([cos_, sin_, np.ones(num_points)])
return ((U.dot(points)).T)[:,[0,1]]
'''
Test:
'''
'''
Ellipse with equation whose coefficients are in the list E.
The ellipse has semi-major axes 2 and 1,
it is rotated 60 deg from the horizontal,
and its center is at (1, 4)
'''
E = [ 3.25, -2.59807621, 1.75, -23.40192379, 6.89230485, 39.35769515]
'''
U maps points from unit circle to points on E
'''
U = find_transform(E)
print(U)
'''
the set of points on the ellipse E
'''
p = generate_points_on(E, num_points = 20)
print(p)
'''
check that the points p lie on the ellipse E
'''
print(equation(E, p).round(10))
'''
plot
'''
fig = plt.figure()
ax = fig.add_subplot()
ax.plot(p[:,0], p[:,1], 'ro')
ax.set_aspect('equal')
plt.show()
The code below handles the case of a hyperbola. It largely adapts the code from here
import numpy as np
import matplotlib.pyplot as plt
def equation_to_matrix(eq):
'''
eq[0]*x**2 + eq[1]*x*y + eq[2]*y**2 + eq[3]*x + eq[4]*y + eq[5] = 0
'''
return np.array([[2*eq[0], eq[1], eq[3]],
[ eq[1], 2*eq[2], eq[4]],
[ eq[3], eq[4], 2*eq[5]]]) / 2
def hyp_params_from_general(coeffs):
# get the matrix of the quadratic equation
Aq = equation_to_matrix(coeffs)
# get the matrix of the quadratic form A33
A33 = Aq[:2, :2]
# determinant of A33
detA33 = np.linalg.det(A33)
if detA33 > 0:
raise ValueError('coeffs do not represent a hyperbola: det A33 must be negative!')
# get the center
x0 = -np.linalg.det(np.array([Aq[:2, 2], Aq[:2, 1]]).T) / detA33
y0 = -np.linalg.det(np.array([Aq[:2, 0], Aq[:2, 2]]).T) / detA33
# The semi-major and semi-minor axis lengths (these are not sorted).
# get discriminant of the conic section
delta = np.linalg.det(Aq)
# get the eigenvalues
k1, k2 = np.linalg.eigvals(A33)
k1isk2 = np.isclose(k1/k2, -1)
ap = np.sqrt(abs(delta/k1/detA33))
bp = np.sqrt(abs(delta/k2/detA33))
# Eccentricity.
fac = np.sqrt((Aq[0, 0] - Aq[1, 1])**2 + Aq[0, 1]**2)
if delta < 0:
nu = 1
else:
nu = -1
e = np.sqrt(2*fac/(nu*(Aq[0, 0] - Aq[1, 1]) + fac))
# slope of the asymptotes
if Aq[0, 0] == Aq[1, 1] and k1isk2:
m1 = 0.
m2 = np.nan
else:
m1 = Aq[0, 0]/(-Aq[0, 1] - np.sqrt(-detA33))
m2 = Aq[0, 0]/(-Aq[0, 1] + np.sqrt(-detA33))
# Sort the semi-major and semi-minor axis lengths but keep track of
# the original relative magnitudes of width and height.
width_gt_height = True
if ap < bp and not k1isk2:
width_gt_height = False
ap, bp = bp, ap
# The angle of anticlockwise rotation of the major-axis from x-axis.
if Aq[0, 1] == 0:
phi = 0 if Aq[0, 0] < Aq[1, 1] else np.pi/2
elif Aq[0, 0] == Aq[1, 1]:
phi = np.pi/4 # would divide by zero and arctan(inf) -> pi/4
if m1 > 0 and m2 > 0:
width_gt_height = True
else:# Aq[0, 0] > Aq[1, 1]:
phi = np.arctan(2*Aq[0, 1]/(Aq[0, 0] - Aq[1, 1])) / 2
if not width_gt_height:
# Ensure that phi is the angle to rotate to the semi-major axis.
phi += np.pi/2
phi = phi % np.pi
return x0, y0, ap, bp, phi, e, m1, m2, width_gt_height
def get_hyperbola_pts(params, npts=100, tmin=-1, tmax=1):
x0, y0, ap, bp, phi, m1, m2 = params
# A grid of the parametric variable, t.
t = np.linspace(tmin, tmax, npts)
# points
x = x0 + ap * np.cosh(t) * np.cos(phi) - bp * np.sinh(t) * np.sin(phi)
y = y0 + ap * np.cosh(t) * np.sin(phi) + bp * np.sinh(t) * np.cos(phi)
# asymptotes
ya1 = y0 + m1*(x - x0)
ya2 = y0 + m2*(x - x0)
return x, y, ya1, ya2
if __name__ == '__main__':
coeffs = [1., 6., -2., 3., 0., 0.]
x0, y0, ap, bp, phi, e, m1, m2, width_gt_height = hyp_params_from_general(coeffs)
print('x0, y0, ap, bp, phi, e, m1, m2, width_gt_height = ', x0, y0, ap, bp, phi, e, m1, m2)
x_, y_, ya1, ya2 = get_hyperbola_pts((x0, y0, ap, bp, phi, m1, m2), npts=250, tmin=-2, tmax=3)
fig, ax = plt.subplots(figsize=(16, 9))
ax.plot(x_, y_, marker='.', linewidth=0.5, c='r')
ax.plot(x_, ya1, marker='.', linewidth=0.2, c='b')
ax.plot(x_, ya2, marker='.', linewidth=0.2, c='b')
ax.grid(True, linestyle='--')

Plotting vector field for first order differential equation

I'm trying to plot the direction fields for a simple velocity equation. I understand what I have to do when I'm working with two variables. I can understand the vector I have to create, but I don't understand how to do it for only one variable. My program is:
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
def modelo2(y, t):
dydt = 32 - 0.16 * y
return dydt
t0 = 0 ; tf = 25 ; h = 0.1
t = np.arange(t0,tf+h,h)
for y0 in np.arange(0, 400, 25):
y = odeint(modelo2,y0,t )
plt.plot(t,y,'b')
x = np.arange(0, 400, 20)
z = np.arange(0, 400, 20)
X, Z = np.meshgrid(x, z)
U = modelo2(X,t)
V = modelo2 (Z, t)
plt.quiver(X, Z, U, V, scale = 70)
plt.quiver(X, Z, U, V, scale = 60)
plt.xlabel('time')
plt.ylabel('y(t)')
plt.axis([0,20,0, 500])
plt.show()
I get this
When I expect something like this
Can someone explain what I'm doing wrong?
Change this
U = modelo2(X,t)
V = modelo2 (Z, t)
to this
U = 1.0
V = modelo2(Z, None)
N = np.sqrt(U**2 + V**2)
U /= N
V /= N
As you can see you defined U wrong. Diving both U and V by N is necessary to normalise the magnitude of the vectors, otherwise their length in the plot will vary according to the strength of the field at each point. Just set U = np.ones(Z.shape) and don't divide either by N to see what I'm talking about.
Secondly, you need to set the following argument in plt.quiver()
plt.quiver(X, Z, U, V, angles='xy')
From the docs:
angles : {'uv', 'xy'} or array-like, optional, default: 'uv'
Method for determining the angle of the arrows.
- 'uv': The arrow axis aspect ratio is 1 so that
if *U* == *V* the orientation of the arrow on the plot is 45 degrees
counter-clockwise from the horizontal axis (positive to the right).
Use this if the arrows symbolize a quantity that is not based on
*X*, *Y* data coordinates.
- 'xy': Arrows point from (x, y) to (x+u, y+v).
Use this for plotting a gradient field, for example.
- Alternatively, arbitrary angles may be specified explicitly as an array
of values in degrees, counter-clockwise from the horizontal axis.
In this case *U*, *V* is only used to determine the length of the
arrows.
Note: inverting a data axis will correspondingly invert the
arrows only with ``angles='xy'``.
All in all, your code should look like this (with some minor variable name edits):
def modelo2(y, t):
dydt = 32 - 0.16 * y
return dydt
t0, tf, h = 0, 25, 0.1
t = np.arange(t0, tf+h, h)
ymin, ymax, ystep = 0, 400, 25
y = np.arange(ymin, ymax+ystep, ystep)
for y0 in y:
line = odeint(modelo2, y0, t)
plt.plot(t, line, 'b')
x = np.linspace(t0, tf, 20)
X, Y = np.meshgrid(x, y)
U = 1
V = modelo2(Y, None)
N = np.sqrt(U**2 + V**2)
U /= N
V /= N
plt.quiver(X, Y, U, V, angles='xy')
plt.xlabel('time')
plt.ylabel('y(t)')
plt.axis([t0, tf, ymin, ymax])
plt.show()
Result

How to plot same function with many different values in subplots in numpy/matplotlib python?

I have following python code, and would like to:
Plot the same function in 1 (only one) figure with many different (lets say 4) 'v0' and 'theta' values, each trajectory in a different color.
Make 4 plots in 4 different figures, so that it looks like a square with 4 plots of 4 different 'v0' and 'theta' values
Make a widget to vary the v0 and theta values as the user wants with the mouse.
import numpy as np
import scipy.integrate as integrate
import matplotlib.pyplot as plt
%matplotlib inline
theta = 45.
theta = theta * np.pi/180.
v0 = 20.0
g = 9.81
R = 0.035
m = 0.057
rho = 1.2041
C = 0.5
k = (0.5*np.pi*R**2*C*rho)/m
x0=0
y0=10
vx0 = v0*np.sin(theta)
vy0 =
v0*np.cos(theta)
print(vx0)
print(vy0)
def f_func(X_vek,time):
f = np.zeros(4)
f[0] = X_vek[2]
f[1] = X_vek[3]
f[2] = - k*(f[0]**2 + f[1]**2)**(0.5)*f[0]
f[3] = -g - k*(f[0]**2 + f[1]**2)**(0.5)*f[1]
return f
X0 = [ x0, y0, vx0, vy0]
t0 = 0. tf = 10
tau = 0.05
t = np.arange(t0,tf,tau)
X = integrate.odeint(f_func,X0,t)
x = X[:,0]
y = X[:,1]
vx = X[:,2]
vy = X[:,3]
mask = y >= 0
plt.scatter(x[mask],y[mask])
plt.scatter(x[mask],y[mask])
plt.xlabel('x') plt.ylabel('y') plt.show()
I could do point 1 and 2 of my question with changing the values after plotting, then calculate vx0 and vy0 again and then call the integrate function and finally plot again, but that's kinda weird and not clean. Is there any better way to do that? like an array of different v0 and theta values or something?
Thanks!
Make your code as a function:
def func(theta=45, v0=20):
theta = theta * np.pi/180.
g = 9.81
R = 0.035
m = 0.057
rho = 1.2041
C = 0.5
k = (0.5*np.pi*R**2*C*rho)/m
x0=0
y0=10
vx0 = v0*np.sin(theta)
vy0 = v0*np.cos(theta)
def f_func(X_vek,time):
f0, f1 = X_vek[2:4].tolist()
f2 = - k*(f0**2 + f1**2)**(0.5)*f0
f3 = -g - k*(f0**2 + f1**2)**(0.5)*f1
return [f0, f1, f2, f3]
X0 = [ x0, y0, vx0, vy0]
t0 = 0.
tf = 10
tau = 0.05
t = np.arange(t0,tf,tau)
X = integrate.odeint(f_func,X0,t)
x = X[:,0]
y = X[:,1]
vx = X[:,2]
vy = X[:,3]
mask = y >= 0
return x[mask], y[mask]
then you can plot it with different parameters:
plt.plot(*func())
plt.plot(*func(theta=30))
plt.xlabel('x')
plt.ylabel('y')
plt.show()
I suggest you use Holoviews to make dynamic graph:
import holoviews as hv
hv.extension("bokeh")
hv.DynamicMap(
lambda theta, v0:hv.Curve(func(theta, v0)).redim.range(x=(0, 50), y=(0, 50)),
kdims=[hv.Dimension("theta", range=(0, 80), default=40),
hv.Dimension("v0", range=(1, 40), default=20)])
Here is the result:

Plotting projectile motion of 1 y-position values vs. 2 x-position values using matplotlib and numpy

Hi i'm trying to get a plot of the trajectory of a mass under projectile motion. One with a force acting on the horizontal axis and one without (basically 2 sets of x values plotted against a 1 set of y-values). Here's what i have so far.. I'm new to programming and i can't seem to figure out where this went wrong. Hope you guys can help me. Thank you!
import numpy as np
import matplotlib.pyplot as pl
def position(y0, v0, theta, g, t):
y= y0 + v0*np.sin(theta)*t + (g*t**2)/2
return y
def position2(x0, v0, theta, c, e, alpha, t):
x1 = x0 + v0*(np.cos(theta))*t + c*(t*(e-1)+(2-2*e)/alpha)
return x1
def position3(x0, v0, theta, t):
x2 = x0 + v0*(np.cos(theta))*t
return x2
t = np.linspace(0,10,1000)
#part1
m = 1
theta = 45
y0 = 2
x0 = 0
v0 = 3
k = 1
alpha = 0.5
g = -9.8
c = (-k/m)*(1/alpha**2)
e = -(np.e**(-alpha*t))
x1 = []
x2 = []
y = []
for a in t:
x1_data = position2(x0, v0, theta, c, e, alpha, t)
x1.append(x1_data)
x2_data = position3(x0, v0, theta, t)
x2.append(x2_data)
y_data = position(y0, v0, theta, g, t)
y.append(y_data)
print x1_data
print x2_data
print y_data
pl.title('Constant and Time-Dependent Forces')
pl.xlabel(b'x-position')
pl.ylabel(b'y-position')
x1label = 'projectile 1'
x2label = "'normal' projectile"
plot1 = pl.plot(x1_data, y, 'r')
plot2 = pl.plot(x2_data, y, 'b')
pl.legend()
pl.show()
I went through your code since i am new to matplotlib and wanted to play a bit with it. The only mistake i found is in the for loop where you do for a in t: but end up passing t to the functions instead of a.
import numpy as np
import matplotlib.pyplot as pl
sin = np.sin
cos = np.cos
pi = np.pi
def y_position(y0, v0, phi, g, t):
y_t = y0 + v0 * sin(phi) * t + (g * t**2) / 2
return y_t
def x_position_force(x0, v0, phi, k, m, alpha, t):
term1 = (-k / m) * (1 / alpha ** 2)
term2 = -np.e ** (-alpha * t)
x_t = x0 + v0 * cos(phi) * t + term1 * (t * (term2 - 1) + (2 - 2 * term2) / alpha)
return x_t
def x_position_no_force(x0, v0, phi, t):
x_t = x0 + v0 * cos(phi) * t
return x_t
time = np.linspace(0, 10, 100)
#------------- I N P U T -------------#
x_init = 0
y_init = 2
v_init = 3
theta = 45
gravity = -9.8
m = 1
k = 1
alpha = 0.5
#------------- I N P U T -------------#
x_with_force = []
x_with_no_force = []
y = []
for time_i in time:
x_with_force.append(x_position_force(x_init, v_init, theta, k, m, alpha, time_i))
x_with_no_force.append(x_position_no_force(x_init, v_init, theta, time_i))
y.append(y_position(y_init, v_init, theta, gravity, time_i))
# print(x1_data)
# print(x2_data)
# print(y_data)
pl.subplot(211)
pl.title('Constant and Time-Dependent Forces')
pl.xlabel('time')
plot1 = pl.plot(time, x_with_force, 'r', label='x_coord_dynamicF')
plot2 = pl.plot(time, x_with_no_force, 'g', label='x_coord_staticF')
plot3 = pl.plot(time, y, 'b', label='y_coord')
pl.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.)
pl.subplot(212)
pl.title('Trajectory (x,y)')
pl.xlabel('X')
pl.ylabel('Y')
plot4 = pl.plot(x_with_force, y, 'r^')
plot5 = pl.plot(x_with_no_force, y, 'b*')
pl.show()
I changed a number of things though to make the code inline with PEP8. In my opinion it is the use of bad variable names that lead you to the mistake you did. So i would recommend taking the time to type those few extra characters that ultimately help you and the people reading your code.

Categories