I have one csv file.
D,FNAME,MNAME,LNAME,GENDER,DOB,snapshot,Address
2,66M,J,Rock,F,1995,201211.0,J
3,David,HM,Lee,M,1991,201211.0,J
6,66M,,Rock,F,1990,201211.0,J
0,David,H M,Lee,M,1990,201211.0,B
3,Marc,H,Robert,M,2000,201211.0,C
6,Marc,M,Robert,M,1988,201211.0,C
6,Marc,MS,Robert,M,2000,201211.0,D
I want to assign persons with same last name living in the same address a same ID or index. It's better that ID is made up of only numbers.
If persons have different last name in the same place, then ID should be different.
Such ID should be unique. Namely, people who are different in either address or last name, ID must be different.
My expected output is
D,FNAME,MNAME,LNAME,GENDER,DOB,snapshot,Address,ID
2,66M,J,Rock,F,1995,201211.0,J,11
3,David,HM,Lee,M,1991,201211.0,J,12
6,66M,,Rock,F,1990,201211.0,J,11
0,David,H M,Lee,M,1990,201211.0,B,13
3,Marc,H,Robert,M,2000,201211.0,C,14
6,Marc,M,Robert,M,1988,201211.0,C,14
6,Marc,MS,Robert,M,2000,201211.0,D,15
My datafile size is around 30 GB. I am thinking of using groupBy function in spark based on the key consisting of LNAME and address to group those observations together. Then assign it a ID by key. But I don't know how to do this. After that, maybe I can use flatMap to split the line and return those observations with a ID. But I am not sure about it. In addition, can I also make it in Linux environment? Thank you.
As discussed in the comments, the basic idea is to partition the data properly so that records with the same LNAME+Address stay in the same partition, run Python code to generate separate idx on each partition and then merge them into the final id.
Note: I added some new rows in your sample records, see the result of df_new.show() shown below.
from pyspark.sql import Window, Row
from pyspark.sql.functions import coalesce, sum as fsum, col, max as fmax, lit, broadcast
# ...skip code to initialize the dataframe
# tweak the number of repartitioning N based on actual data size
N = 5
# Python function to iterate through the sorted list of elements in the same
# partition and assign an in-partition idx based on Address and LNAME.
def func(partition_id, it):
idx, lname, address = (1, None, None)
for row in sorted(it, key=lambda x: (x.LNAME, x.Address)):
if lname and (row.LNAME != lname or row.Address != address): idx += 1
yield Row(partition_id=partition_id, idx=idx, **row.asDict())
lname = row.LNAME
address = row.Address
# Repartition based on 'LNAME' and 'Address' and then run mapPartitionsWithIndex()
# function to create in-partition idx. Adjust N so that records in each partition
# should be small enough to be loaded into the executor memory:
df1 = df.repartition(N, 'LNAME', 'Address') \
.rdd.mapPartitionsWithIndex(func) \
.toDF()
Get number of unique rows cnt (based on Address+LNAME) which is max_idx and then grab the running SUM of this rcnt.
# idx: calculated in-partition id
# cnt: number of unique ids in the same partition: fmax('idx')
# rcnt: starting_id for a partition(something like a running count): coalesce(fsum('cnt').over(w1),lit(0))
# w1: WindowSpec to calculate the above rcnt
w1 = Window.partitionBy().orderBy('partition_id').rowsBetween(Window.unboundedPreceding,-1)
df2 = df1.groupby('partition_id') \
.agg(fmax('idx').alias('cnt')) \
.withColumn('rcnt', coalesce(fsum('cnt').over(w1),lit(0)))
df2.show()
+------------+---+----+
|partition_id|cnt|rcnt|
+------------+---+----+
| 0| 3| 0|
| 1| 1| 3|
| 2| 1| 4|
| 4| 1| 5|
+------------+---+----+
Join df1 with df2 and create the final id which is idx + rcnt
df_new = df1.join(broadcast(df2), on=['partition_id']).withColumn('id', col('idx')+col('rcnt'))
df_new.show()
#+------------+-------+---+----+-----+------+------+-----+---+--------+---+----+---+
#|partition_id|Address| D| DOB|FNAME|GENDER| LNAME|MNAME|idx|snapshot|cnt|rcnt| id|
#+------------+-------+---+----+-----+------+------+-----+---+--------+---+----+---+
#| 0| B| 0|1990|David| M| Lee| H M| 1|201211.0| 3| 0| 1|
#| 0| J| 3|1991|David| M| Lee| HM| 2|201211.0| 3| 0| 2|
#| 0| D| 6|2000| Marc| M|Robert| MS| 3|201211.0| 3| 0| 3|
#| 1| C| 3|2000| Marc| M|Robert| H| 1|201211.0| 1| 3| 4|
#| 1| C| 6|1988| Marc| M|Robert| M| 1|201211.0| 1| 3| 4|
#| 2| J| 6|1991| 66M| F| Rek| null| 1|201211.0| 1| 4| 5|
#| 2| J| 6|1992| 66M| F| Rek| null| 1|201211.0| 1| 4| 5|
#| 4| J| 2|1995| 66M| F| Rock| J| 1|201211.0| 1| 5| 6|
#| 4| J| 6|1990| 66M| F| Rock| null| 1|201211.0| 1| 5| 6|
#| 4| J| 6|1990| 66M| F| Rock| null| 1|201211.0| 1| 5| 6|
#+------------+-------+---+----+-----+------+------+-----+---+--------+---+----+---+
df_new = df_new.drop('partition_id', 'idx', 'rcnt', 'cnt')
Some notes:
Practically, you will need to clean-out/normalize the column LNAME and Address before using them as uniqueness check. For example, use a separate column uniq_key which combine LNAME and Address as the unique key of the dataframe. see below for an example with some basic data cleansing procedures:
from pyspark.sql.functions import coalesce, lit, concat_ws, upper, regexp_replace, trim
#(1) convert NULL to '': coalesce(col, '')
#(2) concatenate LNAME and Address using NULL char '\x00' or '\0'
#(3) convert to uppercase: upper(text)
#(4) remove all non-[word/whitespace/NULL_char]: regexp_replace(text, r'[^\x00\w\s]', '')
#(5) convert consecutive whitespaces to a SPACE: regexp_replace(text, r'\s+', ' ')
#(6) trim leading/trailing spaces: trim(text)
df = (df.withColumn('uniq_key',
trim(
regexp_replace(
regexp_replace(
upper(
concat_ws('\0', coalesce('LNAME', lit('')), coalesce('Address', lit('')))
),
r'[^\x00\s\w]+',
''
),
r'\s+',
' '
)
)
))
Then in the code, replace 'LNAME' and 'Address' with uniq_key to find the idx
As mentioned by cronoik in the comment, you can also try one of the Window rank functions to calculate the in-partition idx. for example:
from pyspark.sql.functions import spark_partition_id, dense_rank
# use dense_rank to calculate the in-partition idx
w2 = Window.partitionBy('partition_id').orderBy('LNAME', 'Address')
df1 = df.repartition(N, 'LNAME', 'Address') \
.withColumn('partition_id', spark_partition_id()) \
.withColumn('idx', dense_rank().over(w2))
After you have df1, use the same methods as above to calculate df2 and df_new. This should be faster than using mapPartitionsWithIndex() which is basically an RDD-based method.
For your real data, adjust N to fit your actual data size. this N only influences the initial partitions, after dataframe join, the partition will be reset to default(200). you can adjust this using spark.sql.shuffle.partitions for example when you initialize the spark session:
spark = SparkSession.builder \
....
.config("spark.sql.shuffle.partitions", 500) \
.getOrCreate()
Since you have 30GB of input data, you probably don't want something that'll attempt to hold it all in in-memory data structures. Let's use disk space instead.
Here's one approach that loads all your data into a sqlite database, and generates an id for each unique last name and address pair, and then joins everything back up together:
#!/bin/sh
csv="$1"
# Use an on-disk database instead of in-memory because source data is 30gb.
# This will take a while to run.
db=$(mktemp -p .)
sqlite3 -batch -csv -header "${db}" <<EOF
.import "${csv}" people
CREATE TABLE ids(id INTEGER PRIMARY KEY, lname, address, UNIQUE(lname, address));
INSERT OR IGNORE INTO ids(lname, address) SELECT lname, address FROM people;
SELECT p.*, i.id AS ID
FROM people AS p
JOIN ids AS i ON (p.lname, p.address) = (i.lname, i.address)
ORDER BY p.rowid;
EOF
rm -f "${db}"
Example:
$./makeids.sh data.csv
D,FNAME,MNAME,LNAME,GENDER,DOB,snapshot,Address,ID
2,66M,J,Rock,F,1995,201211.0,J,1
3,David,HM,Lee,M,1991,201211.0,J,2
6,66M,"",Rock,F,1990,201211.0,J,1
0,David,"H M",Lee,M,1990,201211.0,B,3
3,Marc,H,Robert,M,2000,201211.0,C,4
6,Marc,M,Robert,M,1988,201211.0,C,4
6,Marc,MS,Robert,M,2000,201211.0,D,5
It's better that ID is made up of only numbers.
If that restriction can be relaxed, you can do it in a single pass by using a cryptographic hash of the last name and address as the ID:
$ perl -MDigest::SHA=sha1_hex -F, -lane '
BEGIN { $" = $, = "," }
if ($. == 1) { print #F, "ID" }
else { print #F, sha1_hex("#F[3,7]") }' data.csv
D,FNAME,MNAME,LNAME,GENDER,DOB,snapshot,Address,ID
2,66M,J,Rock,F,1995,201211.0,J,5c99211a841bd2b4c9cdcf72d7e95e46b2ae08b5
3,David,HM,Lee,M,1991,201211.0,J,c263f9d1feb4dc789de17a8aab8f2808aea2876a
6,66M,,Rock,F,1990,201211.0,J,5c99211a841bd2b4c9cdcf72d7e95e46b2ae08b5
0,David,H M,Lee,M,1990,201211.0,B,e86e81ab2715a8202e41b92ad979ca3a67743421
3,Marc,H,Robert,M,2000,201211.0,C,363ed8175fdf441ed59ac19cea3c37b6ce9df152
6,Marc,M,Robert,M,1988,201211.0,C,363ed8175fdf441ed59ac19cea3c37b6ce9df152
6,Marc,MS,Robert,M,2000,201211.0,D,cf5135dc402efe16cd170191b03b690d58ea5189
Or if the number of unique lname, address pairs is small enough that they can reasonably be stored in a hash table on your system:
#!/usr/bin/gawk -f
BEGIN {
FS = OFS = ","
}
NR == 1 {
print $0, "ID"
next
}
! ($4, $8) in ids {
ids[$4, $8] = ++counter
}
{
print $0, ids[$4, $8]
}
$ sort -t, -k8,8 -k4,4 <<EOD | awk -F, ' $8","$4 != last { ++id; last = $8","$4 }
{ NR!=1 && $9=id; print }' id=9 OFS=,
D,FNAME,MNAME,LNAME,GENDER,DOB,snapshot,Address
2,66M,J,Rock,F,1995,201211.0,J
3,David,HM,Lee,M,1991,201211.0,J
6,66M,,Rock,F,1990,201211.0,J
0,David,H M,Lee,M,1990,201211.0,B
3,Marc,H,Robert,M,2000,201211.0,C
6,Marc,M,Robert,M,1988,201211.0,C
6,Marc,MS,Robert,M,2000,201211.0,D
> EOD
D,FNAME,MNAME,LNAME,GENDER,DOB,snapshot,Address
0,David,H M,Lee,M,1990,201211.0,B,11
3,Marc,H,Robert,M,2000,201211.0,C,12
6,Marc,M,Robert,M,1988,201211.0,C,12
6,Marc,MS,Robert,M,2000,201211.0,D,13
3,David,HM,Lee,M,1991,201211.0,J,14
2,66M,J,Rock,F,1995,201211.0,J,15
6,66M,,Rock,F,1990,201211.0,J,15
$
How do I handle categorical data with spark-ml and not spark-mllib ?
Thought the documentation is not very clear, it seems that classifiers e.g. RandomForestClassifier, LogisticRegression, have a featuresCol argument, which specifies the name of the column of features in the DataFrame, and a labelCol argument, which specifies the name of the column of labeled classes in the DataFrame.
Obviously I want to use more than one feature in my prediction, so I tried using the VectorAssembler to put all my features in a single vector under featuresCol.
However, the VectorAssembler only accepts numeric types, boolean type, and vector type (according to the Spark website), so I can't put strings in my features vector.
How should I proceed?
I just wanted to complete Holden's answer.
Since Spark 2.3.0,OneHotEncoder has been deprecated and it will be removed in 3.0.0. Please use OneHotEncoderEstimator instead.
In Scala:
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{OneHotEncoderEstimator, StringIndexer}
val df = Seq((0, "a", 1), (1, "b", 2), (2, "c", 3), (3, "a", 4), (4, "a", 4), (5, "c", 3)).toDF("id", "category1", "category2")
val indexer = new StringIndexer().setInputCol("category1").setOutputCol("category1Index")
val encoder = new OneHotEncoderEstimator()
.setInputCols(Array(indexer.getOutputCol, "category2"))
.setOutputCols(Array("category1Vec", "category2Vec"))
val pipeline = new Pipeline().setStages(Array(indexer, encoder))
pipeline.fit(df).transform(df).show
// +---+---------+---------+--------------+-------------+-------------+
// | id|category1|category2|category1Index| category1Vec| category2Vec|
// +---+---------+---------+--------------+-------------+-------------+
// | 0| a| 1| 0.0|(2,[0],[1.0])|(4,[1],[1.0])|
// | 1| b| 2| 2.0| (2,[],[])|(4,[2],[1.0])|
// | 2| c| 3| 1.0|(2,[1],[1.0])|(4,[3],[1.0])|
// | 3| a| 4| 0.0|(2,[0],[1.0])| (4,[],[])|
// | 4| a| 4| 0.0|(2,[0],[1.0])| (4,[],[])|
// | 5| c| 3| 1.0|(2,[1],[1.0])|(4,[3],[1.0])|
// +---+---------+---------+--------------+-------------+-------------+
In Python:
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoderEstimator
df = spark.createDataFrame([(0, "a", 1), (1, "b", 2), (2, "c", 3), (3, "a", 4), (4, "a", 4), (5, "c", 3)], ["id", "category1", "category2"])
indexer = StringIndexer(inputCol="category1", outputCol="category1Index")
inputs = [indexer.getOutputCol(), "category2"]
encoder = OneHotEncoderEstimator(inputCols=inputs, outputCols=["categoryVec1", "categoryVec2"])
pipeline = Pipeline(stages=[indexer, encoder])
pipeline.fit(df).transform(df).show()
# +---+---------+---------+--------------+-------------+-------------+
# | id|category1|category2|category1Index| categoryVec1| categoryVec2|
# +---+---------+---------+--------------+-------------+-------------+
# | 0| a| 1| 0.0|(2,[0],[1.0])|(4,[1],[1.0])|
# | 1| b| 2| 2.0| (2,[],[])|(4,[2],[1.0])|
# | 2| c| 3| 1.0|(2,[1],[1.0])|(4,[3],[1.0])|
# | 3| a| 4| 0.0|(2,[0],[1.0])| (4,[],[])|
# | 4| a| 4| 0.0|(2,[0],[1.0])| (4,[],[])|
# | 5| c| 3| 1.0|(2,[1],[1.0])|(4,[3],[1.0])|
# +---+---------+---------+--------------+-------------+-------------+
Since Spark 1.4.0, MLLib also supplies OneHotEncoder feature, which maps a column of label indices to a column of binary vectors, with at most a single one-value.
This encoding allows algorithms which expect continuous features, such as Logistic Regression, to use categorical features
Let's consider the following DataFrame:
val df = Seq((0, "a"),(1, "b"),(2, "c"),(3, "a"),(4, "a"),(5, "c"))
.toDF("id", "category")
The first step would be to create the indexed DataFrame with the StringIndexer:
import org.apache.spark.ml.feature.StringIndexer
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
.fit(df)
val indexed = indexer.transform(df)
indexed.show
// +---+--------+-------------+
// | id|category|categoryIndex|
// +---+--------+-------------+
// | 0| a| 0.0|
// | 1| b| 2.0|
// | 2| c| 1.0|
// | 3| a| 0.0|
// | 4| a| 0.0|
// | 5| c| 1.0|
// +---+--------+-------------+
You can then encode the categoryIndex with OneHotEncoder :
import org.apache.spark.ml.feature.OneHotEncoder
val encoder = new OneHotEncoder()
.setInputCol("categoryIndex")
.setOutputCol("categoryVec")
val encoded = encoder.transform(indexed)
encoded.select("id", "categoryVec").show
// +---+-------------+
// | id| categoryVec|
// +---+-------------+
// | 0|(2,[0],[1.0])|
// | 1| (2,[],[])|
// | 2|(2,[1],[1.0])|
// | 3|(2,[0],[1.0])|
// | 4|(2,[0],[1.0])|
// | 5|(2,[1],[1.0])|
// +---+-------------+
I am going to provide an answer from another perspective, since I was also wondering about categorical features with regards to tree-based models in Spark ML (not MLlib), and the documentation is not that clear how everything works.
When you transform a column in your dataframe using pyspark.ml.feature.StringIndexer extra meta-data gets stored in the dataframe that specifically marks the transformed feature as a categorical feature.
When you print the dataframe you will see a numeric value (which is an index that corresponds with one of your categorical values) and if you look at the schema you will see that your new transformed column is of type double. However, this new column you created with pyspark.ml.feature.StringIndexer.transform is not just a normal double column, it has extra meta-data associated with it that is very important. You can inspect this meta-data by looking at the metadata property of the appropriate field in your dataframe's schema (you can access the schema objects of your dataframe by looking at yourdataframe.schema)
This extra metadata has two important implications:
When you call .fit() when using a tree based model, it will scan the meta-data of your dataframe and recognize fields that you encoded as categorical with transformers such as pyspark.ml.feature.StringIndexer (as noted above there are other transformers that will also have this effect such as pyspark.ml.feature.VectorIndexer). Because of this, you DO NOT have to one-hot encode your features after you have transformed them with StringIndxer when using tree-based models in spark ML (however, you still have to perform one-hot encoding when using other models that do not naturally handle categoricals like linear regression, etc.).
Because this metadata is stored in the data frame, you can use pyspark.ml.feature.IndexToString to reverse the numeric indices back to the original categorical values (which are often strings) at any time.
There is a component of the ML pipeline called StringIndexer you can use to convert your strings to Double's in a reasonable way. http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.feature.StringIndexer has more documentation, and http://spark.apache.org/docs/latest/ml-guide.html shows how to construct pipelines.
I use the following method for oneHotEncoding a single column in a Spark dataFrame:
def ohcOneColumn(df, colName, debug=False):
colsToFillNa = []
if debug: print("Entering method ohcOneColumn")
countUnique = df.groupBy(colName).count().count()
if debug: print(countUnique)
collectOnce = df.select(colName).distinct().collect()
for uniqueValIndex in range(countUnique):
uniqueVal = collectOnce[uniqueValIndex][0]
if debug: print(uniqueVal)
newColName = str(colName) + '_' + str(uniqueVal) + '_TF'
df = df.withColumn(newColName, df[colName]==uniqueVal)
colsToFillNa.append(newColName)
df = df.drop(colName)
df = df.na.fill(False, subset=colsToFillNa)
return df
I use the following method for oneHotEncoding Spark dataFrames:
from pyspark.sql.functions import col, countDistinct, approxCountDistinct
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import OneHotEncoderEstimator
def detectAndLabelCat(sparkDf, minValCount=5, debug=False, excludeCols=['Target']):
if debug: print("Entering method detectAndLabelCat")
newDf = sparkDf
colList = sparkDf.columns
for colName in sparkDf.columns:
uniqueVals = sparkDf.groupBy(colName).count()
if debug: print(uniqueVals)
countUnique = uniqueVals.count()
dtype = str(sparkDf.schema[colName].dataType)
#dtype = str(df.schema[nc].dataType)
if (colName in excludeCols):
if debug: print(str(colName) + ' is in the excluded columns list.')
elif countUnique == 1:
newDf = newDf.drop(colName)
if debug:
print('dropping column ' + str(colName) + ' because it only contains one unique value.')
#end if debug
#elif (1==2):
elif ((countUnique < minValCount) | (dtype=="String") | (dtype=="StringType")):
if debug:
print(len(newDf.columns))
oldColumns = newDf.columns
newDf = ohcOneColumn(newDf, colName, debug=debug)
if debug:
print(len(newDf.columns))
newColumns = set(newDf.columns) - set(oldColumns)
print('Adding:')
print(newColumns)
for newColumn in newColumns:
if newColumn in newDf.columns:
try:
newUniqueValCount = newDf.groupBy(newColumn).count().count()
print("There are " + str(newUniqueValCount) + " unique values in " + str(newColumn))
except:
print('Uncaught error discussing ' + str(newColumn))
#else:
# newColumns.remove(newColumn)
print('Dropping:')
print(set(oldColumns) - set(newDf.columns))
else:
if debug: print('Nothing done for column ' + str(colName))
#end if countUnique == 1, elif countUnique other condition
#end outer for
return newDf
You can cast a string column type in a spark data frame to a numerical data type using the cast function.
from pyspark.sql import SQLContext
from pyspark.sql.types import DoubleType, IntegerType
sqlContext = SQLContext(sc)
dataset = sqlContext.read.format('com.databricks.spark.csv').options(header='true').load('./data/titanic.csv')
dataset = dataset.withColumn("Age", dataset["Age"].cast(DoubleType()))
dataset = dataset.withColumn("Survived", dataset["Survived"].cast(IntegerType()))
In the above example, we read in a csv file as a data frame, cast the default string datatypes into integer and double, and overwrite the original data frame. We can then use the VectorAssembler to merge the features in a single vector and apply your favorite Spark ML algorithm.