data_dict = {
"foo1": "bar1",
"foo2": [{"bar2": "koko"}, {"bar3": "koko2"} ],
"foo3": {
"foo4": "bar4",
"foo5": {
"foo6": "bar6",
"foo7": "bar7",
},
}
}
I need a Python function that get JSON and path of keys string like "foo2[0].bar2" and return from dict the data_dict[foo2][0][bar2] no matter if its an inner list/dict and no matter how many keys to get.
there is some external package in Python for this functionality?
You can look into jmespath-
pip install jmespath
import jmespath
data_dict = {
"foo1": "bar1",
"foo2": [{"bar2": "koko"}, {"bar3": "koko2"} ],
"foo3": {
"foo4": "bar4",
"foo5": {
"foo6": "bar6",
"foo7": "bar7",
},
}
}
print(jmespath.search('foo2[0].bar2' , data_dict))
>> koko
jmespath tutorials
Parse the path into keys and indices.
key = "foo2[0].bar2"
keys = tuple(
int(x) if x.isdigit() else x
for x in key.replace("[", ".").replace("]", "").split(".")
)
curr = data_dict
for k in keys:
curr = curr[k]
print(curr)
# koko
Related
I have a JSON file where I need to replace the UUID and update it with another one. I'm having trouble replacing the deeply nested keys and values.
Below is my JSON file that I need to read in python, replace the keys and values and update the file.
JSON file - myfile.json
{
"name": "Shipping box"
"company":"Detla shipping"
"description":"---"
"details" : {
"boxes":[
{
"box_name":"alpha",
"id":"a3954710-5075-4f52-8eb4-1137be51bf14"
},
{
"box_name":"beta",
"id":"31be3763-3d63-4e70-a9b6-d197b5cb6929"
}
]
}
"container": [
"a3954710-5075-4f52-8eb4-1137be51bf14":[],
"31be3763-3d63-4e70-a9b6-d197b5cb6929":[]
]
"data":[
{
"data_series":[],
"other":50
},
{
"data_series":[],
"other":40
},
{
"data_series":
{
"a3954710-5075-4f52-8eb4-1137be51bf14":
{
{
"dimentions":[2,10,12]
}
},
"31be3763-3d63-4e70-a9b6-d197b5cb6929":
{
{
"dimentions":[3,9,12]
}
}
},
"other":50
}
]
}
I want achieve something like the following-
"details" : {
"boxes":[
{
"box_name":"alpha"
"id":"replace_uuid"
},
}
.
.
.
"data":[ {
"data_series":
{
"replace_uuid":
{
{
"dimentions":[2,10,12]
}
}
]
In such a type of deeply nested dictionary, how can we replace all the occurrence of keys and values with another string, here replace_uuid?
I tried with pop() and dotty_dict but I wasn't able to replace the nested list.
I was able to achieve it in the following way-
def uuid_change(): #generate a random uuid
new_uuid = uuid.uuid4()
return str(new_uuid)
dict = json.load(f)
for uid in dict[details][boxes]:
old_id = uid['id']
replace_id = uuid_change()
uid['id'] = replace_id
for i in range(n):
for uid1 in dict['container'][i].keys()
if uid1 == old_id:
dict['container'][i][replace_id]
= dict['container'][i].pop(uid1) #replace the key
for uid2 in dict['data'][2]['data_series'].keys()
if uid2 == old_id:
dict['data'][2]['data_series'][replace_id]
= dict['data'][2]['data_series'].pop(uid2) #replace the key
I am using python2.7
I have a json i pull that is always changing when i request it.
I need to pull out Animal_Target_DisplayName under Term7 Under Relation6 in my dict.
The problem is sometimes the object Relation6 is in another part of the Json, it could be leveled deeper or in another order.
I am trying to create code that can just export the values of the key Animal_Target_DisplayName but nothing is working. It wont even loop down the nested dict.
Now this can work if i just pull it out using something like ['view']['Term0'][0]['Relation6'] but remember the JSON is never returned in the same structure.
Code i am using to get the values of the key Animal_Target_DisplayName but it doesnt seem to loop through my dict and find all the values with that key.
array = []
for d in dict.values():
row = d['Animal_Target_DisplayName']
array.append(row)
JSON Below:
dict = {
"view":{
"Term0":[
{
"Id":"b0987b91-af12-4fe3-a56f-152ac7a4d84d",
"DisplayName":"Dog",
"FullName":"Dog",
"AssetType1":[
{
"AssetType_Id":"00000000-0000-0000-0000-000000031131",
}
]
},
{
"Id":"ee74a59d-fb74-4052-97ba-9752154f015d",
"DisplayName":"Dog2",
"FullName":"Dog",
"AssetType1":[
{
"AssetType_Id":"00000000-0000-0000-0000-000000031131",
}
]
},
{
"Id":"eb548eae-da6f-41e8-80ea-7e9984f56af6",
"DisplayName":"Dog3",
"FullName":"Dog3",
"AssetType1":[
{
"AssetType_Id":"00000000-0000-0000-0000-000000031131",
}
]
},
{
"Id":"cfac6dd4-0efa-4417-a2bf-0333204f8a42",
"DisplayName":"Animal Set",
"FullName":"Animal Set",
"AssetType1":[
{
"AssetType_Id":"00000000-0000-0000-0001-000400000001",
}
],
"StringAttribute2":[
{
"StringAttribute_00000000-0000-0000-0000-000000003114_Id":"00a701a8-be4c-4b76-a6e5-3b0a4085bcc8",
"StringAttribute_00000000-0000-0000-0000-000000003114_Value":"Desc"
}
],
"StringAttribute3":[
{
"StringAttribute_00000000-0000-0000-0000-000000000262_Id":"a81adfb4-7528-4673-8c95-953888f3b43a",
"StringAttribute_00000000-0000-0000-0000-000000000262_Value":"meow"
}
],
"BooleanAttribute4":[
{
"BooleanAttribute_00000000-0000-0000-0001-000500000001_Id":"932c5f97-c03f-4a1a-a0c5-a518f5edef5e",
"BooleanAttribute_00000000-0000-0000-0001-000500000001_Value":"true"
}
],
"SingleValueListAttribute5":[
{
"SingleValueListAttribute_00000000-0000-0000-0001-000500000031_Id":"ef51dedd-6f25-4408-99a6-5a6cfa13e198",
"SingleValueListAttribute_00000000-0000-0000-0001-000500000031_Value":"Blah"
}
],
"Relation6":[
{
"Animal_Id":"2715ca09-3ced-4b74-a418-cef4a95dddf1",
"Term7":[
{
"Animal_Target_Id":"88fd0090-4ea8-4ae6-b7f0-1b13e5cf3d74",
"Animal_Target_DisplayName":"Animaltheater",
"Animal_Target_FullName":"Animaltheater"
}
]
},
{
"Animal_Id":"6068fe78-fc8e-4542-9aee-7b4b68760dcd",
"Term7":[
{
"Animal_Target_Id":"4e87a614-2a8b-46c0-90f3-8a0cf9bda66c",
"Animal_Target_DisplayName":"Animaltitle",
"Animal_Target_FullName":"Animaltitle"
}
]
},
{
"Animal_Id":"754ec0e6-19b6-4b6b-8ba1-573393268257",
"Term7":[
{
"Animal_Target_Id":"a8986ed5-3ec8-44f3-954c-71cacb280ace",
"Animal_Target_DisplayName":"Animalcustomer",
"Animal_Target_FullName":"Animalcustomer"
}
]
},
{
"Animal_Id":"86b3ffd1-4d54-4a98-b25b-369060651bd6",
"Term7":[
{
"Animal_Target_Id":"89d02067-ebe8-4b87-9a1f-a6a0bdd40ec4",
"Animal_Target_DisplayName":"Animalfact_transaction",
"Animal_Target_FullName":"Animalfact_transaction"
}
]
},
{
"Animal_Id":"ea2e1b76-f8bc-46d9-8ebc-44ffdd60f213",
"Term7":[
{
"Animal_Target_Id":"e398cd32-1e73-46bd-8b8f-d039986d6de0",
"Animal_Target_DisplayName":"Animalfact_transaction",
"Animal_Target_FullName":"Animalfact_transaction"
}
]
}
],
"Relation10":[
{
"TargetRelation_b8b178ff-e957-47db-a4e7-6e5b789d6f03_Id":"aff80bd0-a282-4cf5-bdcc-2bad35ddec1d",
"Term11":[
{
"AnimalId":"3ac22167-eb91-469a-9d94-315aa301f55a",
"AnimalDisplayName":"Animal",
"AnimalFullName":"Animal"
}
]
}
],
"Tag12":[
{
"Tag_Id":"75968ea6-4c9f-43c9-80f7-dfc41b24ec8f",
"Tag_Name":"AnimalAnimaltitle"
},
{
"Tag_Id":"b1adbc00-aeef-415b-82b6-a3159145c60d",
"Tag_Name":"Animal2"
},
{
"Tag_Id":"5f78e4dc-2b37-41e0-a0d3-cec773af2397",
"Tag_Name":"AnimalDisplayName"
}
]
}
]
}
}
The output i am trying to get is a list of all the values from key Animal_Target_DisplayName like this ['Animaltheater','Animaltitle', 'Animalcustomer', 'Animalfact_transaction', 'Animalfact_transaction'] but we need to remember the nested structure of this json always changes but the keys for it are always the same.
I guess your only option is running through the entire dict and get the values of Animal_Target_DisplayName key, I propose the following recursive solution:
def run_json(dict_):
animal_target_sons = []
if type(dict_) is list:
for element in dict_:
animal_target_sons.append(run_json(element))
elif type(dict_) is dict:
for key in dict_:
if key=="Animal_Target_DisplayName":
animal_target_sons.append([dict_[key]])
else:
animal_target_sons.append(run_json(dict_[key]))
return [x for sublist in animal_target_sons for x in sublist]
run_json(dict_)
Then calling run_json returns a list with what you want. By the way, I recommend you to rename your json from dict to, for example dict_, since dict is a reserved word of Python for the dictionary type.
Since you're getting JSON, why not make use of the json module? That will do the parsing for you and allow you to use dictionary functions+features to get the information you need.
#!/usr/bin/python2.7
from __future__ import print_function
import json
# _somehow_ get your JSON in as a string. I'm calling it "jstr" for this
# example.
# Use the module to parse it
jdict = json.loads(jstr)
# our dict has keys...
# view -> Term0 -> keys-we're-interested-in
templist = jdict["view"]["Term0"]
results = {}
for _el in range(len(templist)):
if templist[_el]["FullName"] == "Animal Set":
# this is the one we're interested in - and it's another list
moretemp = templist[_el]["Relation6"]
for _k in range(len(moretemp)):
term7 = moretemp[_k]["Term7"][0]
displayName = term7["Animal_Target_DisplayName"]
fullName = term7["Animal_Target_FullName"]
results[fullName] = displayName
print("{0}".format(results))
Then you can dump the results dict plain, or with pretty-printing:
>>> print(json.dumps(results, indent=4))
{
"Animaltitle2": "Animaltitle2",
"Animalcustomer3": "Animalcustomer3",
"Animalfact_transaction4": "Animalfact_transaction4",
"Animaltheater1": "Animaltheater1"
}
With given script I am able to get output as I showed in a screenshot,
but there is a column named as cve.description.description_data which is again in json format. I want to extract that data as well.
import json
import pandas as pd
from pandas.io.json import json_normalize
#load json object
with open('nvdcve-1.0-modified.json') as f:
d = json.load(f)
#tells us parent node is 'programs'
nycphil = json_normalize(d['CVE_Items'])
nycphil.head(3)
works_data = json_normalize(data=d['CVE_Items'], record_path='cve')
works_data.head(3)
nycphil.to_csv("test4.csv")
If I change works_data = json_normalize(data=d['CVE_Items'], record_path='cve.descr') it gives this error:
"result = result[spec] KeyError: 'cve.description'"
JSON format as follows:
{
"CVE_data_type":"CVE",
"CVE_data_format":"MITRE",
"CVE_data_version":"4.0",
"CVE_data_numberOfCVEs":"1000",
"CVE_data_timestamp":"2018-04-04T00:00Z",
"CVE_Items":[
{
"cve":{
"data_type":"CVE",
"data_format":"MITRE",
"data_version":"4.0",
"CVE_data_meta":{
"ID":"CVE-2001-1594",
"ASSIGNER":"cve#mitre.org"
},
"affects":{
"vendor":{
"vendor_data":[
{
"vendor_name":"gehealthcare",
"product":{
"product_data":[
{
"product_name":"entegra_p&r",
"version":{
"version_data":[
{
"version_value":"*"
}
]
}
}
]
}
}
]
}
},
"problemtype":{
"problemtype_data":[
{
"description":[
{
"lang":"en",
"value":"CWE-255"
}
]
}
]
},
"references":{
"reference_data":[
{
"url":"http://apps.gehealthcare.com/servlet/ClientServlet/2263784.pdf?DOCCLASS=A&REQ=RAC&DIRECTION=2263784-100&FILENAME=2263784.pdf&FILEREV=5&DOCREV_ORG=5&SUBMIT=+ ACCEPT+"
},
{
"url":"http://www.forbes.com/sites/thomasbrewster/2015/07/10/vulnerable- "
},
{
"url":"https://ics-cert.us-cert.gov/advisories/ICSMA-18-037-02"
},
{
"url":"https://twitter.com/digitalbond/status/619250429751222277"
}
]
},
"description":{
"description_data":[
{
"lang":"en",
"value":"GE Healthcare eNTEGRA P&R has a password of (1) value."
}
]
}
},
"configurations":{
"CVE_data_version":"4.0",
"nodes":[
{
"operator":"OR",
"cpe":[
{
"vulnerable":true,
"cpe22Uri":"cpe:/a:gehealthcare:entegra_p%26r",
"cpe23Uri":"cpe:2.3:a:gehealthcare:entegra_p\\&r:*:*:*:*:*:*:*:*"
}
]
}
]
},
"impact":{
"baseMetricV2":{
"cvssV2":{
"version":"2.0",
"vectorString":"(AV:N/AC:L/Au:N/C:C/I:C/A:C)",
"accessVector":"NETWORK",
"accessComplexity":"LOW",
"authentication":"NONE",
"confidentialityImpact":"COMPLETE",
"integrityImpact":"COMPLETE",
"availabilityImpact":"COMPLETE",
"baseScore":10.0
},
"severity":"HIGH",
"exploitabilityScore":10.0,
"impactScore":10.0,
"obtainAllPrivilege":false,
"obtainUserPrivilege":false,
"obtainOtherPrivilege":false,
"userInteractionRequired":false
}
},
"publishedDate":"2015-08-04T14:59Z",
"lastModifiedDate":"2018-03-28T01:29Z"
}
]
}
I want to flatten all data.
Assuming the multiple URLs delineate between rows and all else meta data repeats, consider a recursive function call to extract every key-value pair in nested json object, d.
The recursive function will call global to update the needed global objects to be binded into a list of dictionaries for pd.DataFrame() call. Last loop at end updates the recursive function's dictionary, inner, to integrate the different urls (stored in multi)
import json
import pandas as pd
# load json object
with open('nvdcve-1.0-modified.json') as f:
d = json.load(f)
multi = []; inner = {}
def recursive_extract(i):
global multi, inner
if type(i) is list:
if len(i) == 1:
for k,v in i[0].items():
if type(v) in [list, dict]:
recursive_extract(v)
else:
inner[k] = v
else:
multi = i
if type(i) is dict:
for k,v in i.items():
if type(v) in [list, dict]:
recursive_extract(v)
else:
inner[k] = v
recursive_extract(d['CVE_Items'])
data_dict = []
for i in multi:
tmp = inner.copy()
tmp.update(i)
data_dict.append(tmp)
df = pd.DataFrame(data_dict)
df.to_csv('Output.csv')
Output (all columns the same except for URL, widened for emphasis)
I have json object:
photos = {
"response": {
"84": {
"type": "photo",
"photo": {
"src_big": "https://pp.userapi.com/xxxx.jpg"
}
},
"49": {
"type": "photo",
"photo": {
"src_xbig": "https://pp.userapi.com/yyyy.jpg",
"src_big": "https://pp.userapi.com/xxxx.jpg"
}
}
}
}
I would like to get all links from json object with such filter.
If 'src_xbig' there is in object I will get it and if not I will get 'src_big'.
Anyway I only can get it with 1 parameter just src_big.
x = photos['response']
src_big = [x[elem]['photo']['src_big'] for elem in x]
How should I filter it?
Assuming at least one of 'src_big' / 'xsrc_big'is present, you could do:
Python 3.x
src_big = [x['photo'].get('src_xbig', x['photo']['src_big'])
for _, x in photos['response'].items()]
Python 2.7
src_big = [x['photo'].get('src_xbig', x['photo']['src_big'])
for _, x in photos['response'].iteritems()]
Assuming 'src_big' is present:
photos_response = photos['response']
src_big = list(map(lambda x: photos_response[x]['photo']['src_big'], photos_response))
Same with the src_xbig
I'm pretty new to programing so my question might be stupid/easy to do but:
i need to create multiple filters in elasticsearch based on user input
my body of query:
body = {
"query": {
"filtered": {
"filter": {
"bool": {
"must": [
{"term": {name1: value1}},
{"term": {name2: value2}},
{"term": {name3: value3}},
]
}
}
}
},
}
And it works fine but i need to have dynamic number of these filters
I tried to build query into string and then add filters inside but es dont allow it eg:
l = []
for i_type, name in convert.items():
string = '{"term": {"' + i_type + '":"' + name + '"}},'
l.append(string)
i_query = ''.join(l)
when i use list/string in query structure im getting 404 errors from server
Is it even possible to add dynamic number of filters?
It is possible. The body is just a Python dictionary. So you can add dynamically your fields/terms/new filters and so on.
body = {
"query": {
"filtered": {
"filter": {
"bool": {
"must": []
}
}
}
}
}
d = {"name_1": value_1, "name_2": value_2}
Python 2.x
for key, value in d.iteritems():
body1["query"]["filtered"]["filter"]["bool"]["must"].append({"term": {key: value}})
Or shorter (Python 2.x):
body1["query"]["filtered"]["filter"]["bool"]["must"].extend([{"term": {key: value}} for key,value in d.iteritems()])
Python 3.x
for key, value in d.items():
body1["query"]["filtered"]["filter"]["bool"]["must"].append({"term": {key: value}})
The shorter version for Python 3.x:
body1["query"]["filtered"]["filter"]["bool"]["must"].extend([{"term": {key: value}} for key,value in d.items()])
Basically, you can create whatever query you want. For example, you can easily add the should clause:
body["query"]["filtered"]["filter"]["bool"]["should"]=[{"term": {"name_42": value_42}}]