I'm trying to calculate the accuracy score, of a SVM using Laplacian kernel (as a pre-computed kernel). However, I'm getting the error as below when I try to calculate the accuracy score.
My code :
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC
from sklearn.metrics.pairwise import laplacian_kernel
#Load the iris data
iris_data = load_iris()
#Split the data and target
X = iris_data.data
y = iris_data.target
#Convert X and y to a numpy array
X = np.array(X)
y = np.array(y)
#Perform train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42, shuffle=True)
#Using Laplacian kernel - https://scikit-learn.org/stable/modules/metrics.html#laplacian-kernel
K = np.array(laplacian_kernel(X_train, gamma=.5))
svm = SVC(kernel='precomputed').fit(K, np.ravel(y_train))
pred_y = svm.predict(K)
#Print accuracy score - here is where the error is happening.
print(accuracy_score(y_test, pred_y))
When I run this code, I'm getting error as shown below :
Traceback (most recent call last):
File "/Users/user/Desktop/Research/Src/Laplace.py", line 36, in <module>
print(accuracy_score(y_test, pred_y))
File "/Users/user/miniforge3/envs/user_venv/lib/python3.8/site-packages/sklearn/utils/validation.py", line 63, in inner_f
return f(*args, **kwargs)
File "/Users/user/miniforge3/envs/user/lib/python3.8/site-packages/sklearn/metrics/_classification.py", line 202, in accuracy_score
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
File "/Users/user/miniforge3/envs/user/lib/python3.8/site-packages/sklearn/metrics/_classification.py", line 83, in _check_targets
check_consistent_length(y_true, y_pred)
File "/Users/user/miniforge3/envs/user/lib/python3.8/site-packages/sklearn/utils/validation.py", line 262, in check_consistent_length
raise ValueError("Found input variables with inconsistent numbers of"
ValueError: Found input variables with inconsistent numbers of samples: [45, 105]
So how can I resolve this error?
You calculated pred_y using your train inputs which has 105 elements and y_test has 45 elements.
You need to add a step:
#user3046211's code
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC
from sklearn.metrics.pairwise import laplacian_kernel
#Load the iris data
iris_data = load_iris()
#Split the data and target
X = iris_data.data
y = iris_data.target
#Convert X and y to a numpy array
X = np.array(X)
y = np.array(y)
#Perform train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42, shuffle=True)
#Using Laplacian kernel - https://scikit-learn.org/stable/modules/metrics.html#laplacian-kernel
K = np.array(laplacian_kernel(X_train, gamma=.5))
svm = SVC(kernel='precomputed').fit(K, np.ravel(y_train))
pred_y = svm.predict(K)
#Print accuracy score - here is where the error is happening.
print(accuracy_score(y_test, pred_y))
# NEW CODE STARTS HERE
K_test = np.array(laplacian_kernel(X=X_test,Y=X_train, gamma=.5))
pred_y_test = svm.predict(K_test)
print(accuracy_score(y_test, pred_y_test))
Related
I am new to this KNN I want to ask a simple question I have written a code in python of KNN. when I used fingerprints.csv that contains decimals number my code gives me an error. I assume that it doesn't predict float values. so I used another CSV that has similar data but no decimal value my code worked well.
what changes I should make so my code will be able to predict floats.
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
import pickle
import glob
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score
from sklearn.multioutput import MultiOutputClassifier
# training/validation set
train_set = pd.read_csv("1.csv")
# test set
test_set = pd.read_csv("testing data.csv")
X = train_set.iloc[:,0:3].values #RSSI
Y = train_set.iloc[:,3:5].values #X,Y (OUTCOME)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
#print(X_train.shape)
#print(X_test)
#print(Y_train.shape)
#print(Y_test)
sc = StandardScaler() #feature scalin
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
#print(Y_train)
aa =(X_train[:,0]+X_train[:,1]+X_train[:,2])/3
print(aa)
#import math
#print(math.sqrt(len(Y_test)))
knn = KNeighborsClassifier(n_neighbors=1, metric='euclidean')
classifier = MultiOutputClassifier(knn, n_jobs=-2)
classifier.fit(X_train, Y_train)
# Save the trained model as a pickle string.
saved_model = pickle.dumps (classifier)
# Load the pickled model
classifier_from_pickle = pickle.loads(saved_model)
# Use the loaded pickled model to make predictions
classifier_from_pickle.predict(X_test)
Y_pred = classifier.predict(X_test)
print(Y_pred)
a = Y_test[:,0] # actual labels
b = Y_pred[:,0] # predicted labels
acc = len([a[i] for i in range(0, len(a)) if a[i] == b[i]]) / len(a)
a = Y_test[:,1] # actual labels
b = Y_pred[:,1] # predicted labels
accu = len([a[i] for i in range(0, len(a)) if a[i] == b[i]]) / len(a)
accuracy=acc+accu
print("Accuracy: ",accuracy)
#Model Validation on Validation.csv
X = test_set.iloc[:,0:3].values #RSSI
#print(X)
X_test = sc.transform(X)
#print(X_test)
aa =(X_test[:,0]+X_test[:,1]+X_test[:,2])/3
print(aa)
# Use the loaded pickled model to make predictions on Validate Dataset
classifier_from_pickle.predict(X_test)
Y_pred = classifier.predict(X_test)
print(Y_pred)
the error
Traceback (most recent call last):
File "d:/knnn code/knn2.py", line 53, in <module>
classifier.fit(X_train, Y_train)
File "C:\Users\92316\AppData\Local\Programs\Python\Python37\lib\site-packages\sklearn\multioutput.py", line 359, in fit
super().fit(X, Y, sample_weight)
File "C:\Users\92316\AppData\Local\Programs\Python\Python37\lib\site-packages\sklearn\multioutput.py", line 156, in fit
check_classification_targets(y)
File "C:\Users\92316\AppData\Local\Programs\Python\Python37\lib\site-packages\sklearn\utils\multiclass.py", line 169, in check_classification_targets
raise ValueError("Unknown label type: %r" % y_type)
ValueError: Unknown label type: 'continuous-multioutput'
thanks in advance for your time and help.
I have the following code, where i predict a value from 4 input values:
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
data = np.loadtxt('C:/Users/hedeg/Desktop/RulaSoftEdgePrediction.txt')
X_train = np.array(data[0:3500,0:4])
y_train = np.array(data[0:3500,4])
X_test = np.array(data[3500::,0:4])
y_test = np.array(data[3500::,4])
clf = MLPClassifier(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(5, 2), random_state=1)
clf.fit(X_train, y_train)
I get this error msg:
raise ValueError("Unknown label type: %s" % repr(ys))
ValueError: Unknown label type: (array([1. , 1.1, 1.2, ..., 3. , 3. , 3. ]),)
How can i solve this problem?
Try to use this one:
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_blobs
# generate 2d classification dataset
X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1)
# fit final model
model = LogisticRegression()
model.fit(X, y)
# example of training a final classification model
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_blobs
# generate 2d classification dataset
X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1)
# fit final model
model = LogisticRegression()
model.fit(X, y)
I'm trying to make a text classifier
import pandas as pd
import pandas
from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.multiclass import OneVsOneClassifier
from sklearn.svm import SVC
from sklearn import cross_validation
from sklearn.metrics import confusion_matrix
dataset = pd.read_csv('data.csv', encoding = 'utf-8')
data = dataset['text']
labels = dataset['label']
X_train, X_test, y_train, y_test = train_test_split (data, labels, test_size = 0.2, random_state = 0)
count_vector = CountVectorizer()
tfidf = TfidfTransformer()
classifier = OneVsOneClassifier(SVC(kernel = 'linear', random_state = 84))
train_counts = count_vector.fit_transform(X_train)
train_tfidf = tfidf.fit_transform(train_counts)
classifier.fit(train_tfidf, y_train)
test_counts = count_vector.transform(X_test)
test_tfidf = tfidf.transform(test_counts)
classifier.predict(test_tfidf)
fit_classifier(X_train, y_train)
predicted = predict(X_test)
print("confusion matrix")
print(confusion_matrix(X_test, predicted, labels = labels))
print("cross validation")
test_counts = count_vector.fit_transform(data)
test_tfidf = tfidf.fit_transform(test_counts)
scores = cross_validation.cross_val_score(classifier, test_tfidf, labels, cv = 10)
print(scores)
print("Accuracy: {} +/- {}".format(scores.mean(), scores.std() * 2))
But I have the following error and I can not understand.
Traceback (most recent call last):
File "classificacao.py", line 37, in
fit_classifier(X_train, y_train)
NameError: name 'fit_classifier' is not defined
But fit is not always defined by default?
you are calling a non existing function:
fit_classifier(X_train, y_train)
to fit your classifier you would use
classifier.fit(X_train, y_train)
instead.
You'll get the same error when trying to predict your test data.
You need to change
predicted = predict(X_test)
to
predicted = classifier.predict(X_test)
Your Confusionmatrix should get your labels, not your test data:
print(confusion_matrix(y_test, predicted, labels = labels))
I'm trying to run my classifier but I get this error
import pandas
import numpy as np
import pandas as pd
from sklearn import svm
from sklearn.svm import SVC
from sklearn import cross_validation
from sklearn.metrics import confusion_matrix
from sklearn.multiclass import OneVsOneClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_recall_fscore_support as score
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
dataset = pd.read_csv('all_topics_limpo.csv', encoding = 'utf-8')
data = pandas.get_dummies(dataset['verbatim_corrige'])
labels = dataset['label']
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size = 0.2, random_state = 0)
count_vector = CountVectorizer()
tfidf = TfidfTransformer()
classifier = OneVsOneClassifier(SVC(kernel = 'linear', random_state = 100))
#classifier = LogisticRegression()
train_counts = count_vector.fit_transform(X_train)
train_tfidf = tfidf.fit_transform(train_counts)
classifier.fit(X_train, y_train)
test_counts = count_vector.transform(X_test)
test_tfidf = tfidf.transform(test_counts)
predicted = classifier.predict(test_tfidf)
predicted = classifier.predict(X_test)
print("confusion matrix")
print(confusion_matrix(y_test, predicted, labels = labels))
print("F-score")
print(f1_score(y_test, predicted))
print(precision_score(y_test, predicted))
print(recall_score(y_test, predicted))
print("cross validation")
test_counts = count_vector.fit_transform(data)
test_tfidf = tfidf.fit_transform(test_counts)
scores = cross_validation.cross_val_score(classifier, test_tfidf, labels, cv = 10)
print(scores)
print("Accuracy: {} +/- {}".format(scores.mean(), scores.std() * 2))
My output error:
ValueError: cannot use sparse input in 'SVC' trained on dense data
I can not execute my code because of this problem and I am not understanding anything of what is happening.
all output error
Traceback (most recent call last):
File "classification.py", line 42, in
predicted = classifier.predict(test_tfidf)
File "/usr/lib/python3/dist-packages/sklearn/multiclass.py", line 584, in predict
Y = self.decision_function(X)
File "/usr/lib/python3/dist-packages/sklearn/multiclass.py", line 614, in decision_function
for est, Xi in zip(self.estimators_, Xs)]).T
File "/usr/lib/python3/dist-packages/sklearn/multiclass.py", line 614, in
for est, Xi in zip(self.estimators_, Xs)]).T
File "/usr/lib/python3/dist-packages/sklearn/svm/base.py", line 548, in predict
y = super(BaseSVC, self).predict(X)
File "/usr/lib/python3/dist-packages/sklearn/svm/base.py", line 308, in predict
X = self._validate_for_predict(X)
File "/usr/lib/python3/dist-packages/sklearn/svm/base.py", line 448, in _validate_for_predict
% type(self).name)
ValueError: cannot use sparse input in 'SVC' trained on dense data
You get this error because your training & test data are not of the same kind: while you train in your initial X_train set:
classifier.fit(X_train, y_train)
you are trying to get predictions from a dataset which has undergone count vectorization & tf-idf transormations first:
predicted = classifier.predict(test_tfidf)
It is puzzling why you choose to do so, why you nevertheless compute train_counts and train_tfidf (you don't seem to actually use them anywhere), and why you are also trying to redefine predicted as classifier.predict(X_test) immediately afterwards. Normally, changing your training line to
classifier.fit(train_tfidf, y_train)
and getting rid of your second predicted definition should work OK...
you can use this code :
test_tfidf = tfidf.transform(test_counts).toarray()
befor you want to predict your model and after :
predicted = classifier.predict(test_tfidf)
just do this simple code
nice job
I am using the following code to check SGDClassifier
import numpy as np
from sklearn.datasets import load_boston
from sklearn.linear_model import SGDClassifier
from sklearn.cross_validation import cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
data = load_boston()
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target)
x_scalar = StandardScaler()
y_scalar = StandardScaler()
x_train = x_scalar.fit_transform(x_train)
y_train = y_scalar.fit_transform(y_train)
x_test = x_scalar.transform(x_test)
y_test = y_scalar.transform(y_test)
regressor = SGDClassifier(loss='squared_loss')
scores = cross_val_score(regressor, x_train, y_train, cv=5)
print 'cross validation r scores ', scores
print 'average score ', np.mean(scores)
regressor.fit_transform(x_train, y_train)
print 'test set r score ', regressor.score(x_test,y_test)
However when I run it I get deprecation warnings to reshape and
the following value error
ValueError Traceback (most recent call last)
<ipython-input-55-4d64d112f5db> in <module>()
18
19 regressor = SGDClassifier(loss='squared_loss')
---> 20 scores = cross_val_score(regressor, x_train, y_train, cv=5)
ValueError: Unknown label type: (array([ -1.89568750e+00, -1.75715217e+00, -1.68255622e+00,
-1.66124309e+00, -1.62927339e+00, -1.54402088e+00,
-1.49073806e+00, -1.41614211e+00, -1.40548554e+00,
-1.34154616e+00, -1.32023303e+00, -1.30957647e+00,
-1.27760677e+00, -1.26695021e+00, -1.25629365e+00,
-1.20301082e+00, -1.17104113e+00, -1.16038457e+00,....]),)
What could be the probable error in the code ?
In classification tasks, the dependent variable (or the target) is categorical. We try to predict if a claim is fraudulent or not, for example. In regression, on the other hand, the dependent variable is numerical. It can be measured.
In the Boston Housing dataset, the dependent variable is "Median value of owner-occupied homes in $1000's" (You can see the description by executing print(data.DESCR)). It is a continuous variable and cannot be predicted with a classifier.
If you want to test the classifier, you can use another dataset. For example, change load_boston() to load_iris(). Note that you also need to remove the transformation for the target variable - it is for numerical variables. With these modifications, it should work correctly.
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.cross_validation import cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
data = load_iris()
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target)
x_scalar = StandardScaler()
x_train = x_scalar.fit_transform(x_train)
x_test = x_scalar.transform(x_test)
classifier = SGDClassifier(loss='squared_loss')
scores = cross_val_score(classifier, x_train, y_train, cv=5)
scores
Out: array([ 0.33333333, 0.2173913 , 0.31818182, 0. , 0.19047619])