Below is the code I am using for generating the plot, but the issue is style of the marker in the graph is different from that of the plot
sns.set_style(rc={'boxplot.flierprops.markeredgecolor':'black' ,'boxplot.flierprops.markeredgewidth':1.25,'boxplot.flierprops.markerfacecolor':'white'})
fig, scatter = plt.subplots(figsize = (6,4), dpi = 100)
scatter = sns.lineplot(data=df_whole,x='shortest_distance',y='similarity',style ='Metric',hue='Metric'
,markers=True,lw=1,markeredgewidth=1.25,markeredgecolor='black',markersize=7,dashes= False,errorbar=None,markerfacecolor='white')
scatter.set(title='TF-IDF')
scatter.legend(title = "Similarity Methods",prop={'size': 12})
As seaborn uses complex combinations of matplotlib elements to create its plots, and tries to make the legend as compact as possible, the legend is often custom-made. As such, seaborn unfortunately does not always take into account all matplotlib-level parameters.
In this case, the problem can be worked around via assigning these parameters again to the legend handles. Here is an example using one of seaborn's test datasets:
import matplotlib.pyplot as plt
import seaborn as sns
flights = sns.load_dataset('flights')
markerprops = dict(markeredgewidth=1.25, markeredgecolor='black', markersize=7, markerfacecolor='none')
ax = sns.lineplot(data=flights, x='year', y='passengers', style='month', hue='month',
markers=True, lw=1, dashes=False, errorbar=None, **markerprops)
ax.set(title='TF-IDF')
handles, labels = ax.get_legend_handles_labels()
for h in handles:
h.set(**markerprops)
ax.legend(handles=handles, title="Months", prop={'size': 12}, ncol=3)
plt.tight_layout()
plt.show()
PS: Matplotlib functions usually return the graphical elements they created (e.g. scatter dots or lines), while seaborn (and pandas) usually returns the subplot (ax) or grid of subplots. As such, giving the name scatter to the return value of sns.lineplot might be confusing when comparing code with other matplotlib and seaborn examples.
I have a Scatterplot made with seaborn similar to this:
tips = sns.load_dataset("tips")
g = sns.scatterplot(x="total_bill", y="tip", hue="time", data=tips)
plt.show()
Resulting Plot
I want to be able to do legend picking like in this matplotlib example:
https://matplotlib.org/stable/gallery/event_handling/legend_picking.html
How do I get the individual lines to change the visibility on?
I've tried to get them via the get_children method, but haven't had any success.
I made a line plot using seaborn's relplot and I wanted to customize my legend labels. For some reason when I do this, It creates another legend with out deleting the old one. How do I get rid of the initial legend (The legend with title "Sex")? Also how do I add a legend title to my new legend?
Here is the code I used to generate my plot:
plt.figure(figsize=(12,10))
sns.relplot(x='Year',y = 'cancer/100k pop' , data = dataset_sex,hue="Sex", kind="line",ci=None)
title_string = "Trend of Cancer incidencies by Sex "
plt.xlabel('Years')
plt.title(title_string)
plt.legend(['Men','Women'])
regplot is a figure-level function, and returns a FacetGrid. You can remove its legend via g.legend.remove().
import matplotlib.pyplot as plt
import seaborn as sns
tips = sns.load_dataset("tips")
g = sns.relplot(data=tips, x="total_bill", y="tip", hue="day")
g.legend.remove()
plt.legend(['Jeudi', 'Vendredi', 'Samedi', 'Dimanche'])
plt.show()
This code has been tested with seaborn 0.11. Possibly you'll need to upgrade. To add a title to the legend: plt.legend([...], title='New title').
Note that plt.legend(...) will create the legend inside the last (or only) subplot. If you prefer the figure-level legend next to the plot, to change the legend labels, you can call g.add_legend(labels=[...], title='new title') after having removed the old legend.
PS: Adding legend=False to sns.relplot() will not create the legend entries. So, you'll need to recreate both the legend markers and their labels, while you lost the information of which colors were used.
So far I have tried the following code:
# Import to handle plotting
import seaborn as sns
# Import pyplot, figures inline, set style, plot pairplot
import matplotlib.pyplot as plt
# Make the figure space
fig = plt.figure(figsize=(2,4))
gs = fig.add_gridspec(2, 4)
ax1 = fig.add_subplot(gs[0, :])
ax2 = fig.add_subplot(gs[1, :])
# Load the example car crash dataset
tips = sns.load_dataset("tips")
# Plot the frequency counts grouped by time
sns.catplot(x='sex', hue='smoker',
kind='count',
col='time',
data=tips,
ax=ax1)
# View the data
sns.catplot(x='sex', y='total_bill', hue='smoker',
kind='violin',
col='time',
split='True',
cut=0,
bw=0.25,
scale='area',
scale_hue=False,
inner='quartile',
data=tips,
ax=ax2)
plt.close(2)
plt.close(3)
plt.show()
This seems to stack the categorial plots, of each kind respectively, on top of eachother.
What I want are the resulting plots of the following code in a single figure with the countplot in row one and the violin plot in row two.
# Import to handle plotting
import seaborn as sns
# Import pyplot, figures inline, set style, plot pairplot
import matplotlib.pyplot as plt
# Load the example car crash dataset
tips = sns.load_dataset("tips")
# Plot the frequency counts grouped by time
sns.catplot(x='sex', hue='smoker',
kind='count',
col='time',
data=tips)
# View the data
sns.catplot(x='sex', y='total_bill', hue='smoker',
kind='violin',
col='time',
split='True',
cut=0,
bw=0.25,
scale='area',
scale_hue=False,
inner='quartile',
data=tips)
The actual categorical countplot that I would like to span row one of a figure that also contains a categorical violin plot (Ref. Image 3):
The actual categorical violin plot that I would like to span row two of a figure that also contains a categorical countplot (Ref. Image 2):
I tried the following code which forced the plots to be in the same figure. The downside is that the children of the figure/axes did not transfer, i.e. axis-labels, legend, and grid lines. I feel pretty close with this hack but need another push or source for inspiration. Also, I'm no longer able to close the old/unwanted figures.
# Import to handle plotting
import seaborn as sns
# Import pyplot, figures inline, set style, plot pairplot
import matplotlib.pyplot as plt
# Set some style
sns.set_style("whitegrid")
# Load the example car crash dataset
tips = sns.load_dataset("tips")
# Plot the frequency counts grouped by time
a = sns.catplot(x='sex', hue='smoker',
kind='count',
col='time',
data=tips)
numSubs_A = len(a.col_names)
for i in range(numSubs_A):
for p in a.facet_axis(0,i).patches:
a.facet_axis(0,i).annotate(str(p.get_height()), (p.get_x()+0.15, p.get_height()+0.1))
# View the data
b = sns.catplot(x='sex', y='total_bill', hue='smoker',
kind='violin',
col='time',
split='True',
cut=0,
bw=0.25,
scale='area',
scale_hue=False,
inner='quartile',
data=tips)
numSubs_B = len(b.col_names)
# Subplots migration
f = plt.figure()
for i in range(numSubs_A):
f._axstack.add(f._make_key(a.facet_axis(0,i)), a.facet_axis(0,i))
for i in range(numSubs_B):
f._axstack.add(f._make_key(b.facet_axis(0,i)), b.facet_axis(0,i))
# Subplots size adjustment
f.axes[0].set_position([0,1,1,1])
f.axes[1].set_position([1,1,1,1])
f.axes[2].set_position([0,0,1,1])
f.axes[3].set_position([1,0,1,1])
It is in general not possible to combine the output of several seaborn figure-level functions into a single figure. See (this question, also this issue). I once wrote a hack to externally combine such figures, but it has several drawbacks. Feel free to use it if it works for you.
But in general, consider creating the plot you desired manually. In this case it could look like this:
import seaborn as sns
import matplotlib.pyplot as plt
sns.set()
fig, axes = plt.subplots(2,2, figsize=(8,6), sharey="row", sharex="col")
tips = sns.load_dataset("tips")
order = tips["sex"].unique()
hue_order = tips["smoker"].unique()
for i, (n, grp) in enumerate(tips.groupby("time")):
sns.countplot(x="sex", hue="smoker", data=grp,
order=order, hue_order=hue_order, ax=axes[0,i])
sns.violinplot(x='sex', y='total_bill', hue='smoker', data=grp,
order=order, hue_order=hue_order,
split='True', cut=0, bw=0.25,
scale='area', scale_hue=False, inner='quartile',
ax=axes[1,i])
axes[0,i].set_title(f"time = {n}")
axes[0,0].get_legend().remove()
axes[1,0].get_legend().remove()
axes[1,1].get_legend().remove()
plt.show()
seaborn.catplot does not accept an "ax" argument, hence the problem with your first code.
It appears that some hacking is needed to accomplish the x-sharing you aim for:
How to plot multiple Seaborn Jointplot in Subplot
As such, you could save the time and effort, and just manually stack the two figures from your second code.
I just can't figure out how to change the xlabels in a Seaborn Facetgrid. It offers a method for changing the x labels with set_xlabels() but unfortunately not individually for each subplot.
I have two subplots which share the y-axis but have a different x-axes and i want to label them with different texts.
Can anybody give me a hint. Thank you in advance.
You can access the individual axes of the FacetGrid using the axes property, and then use set_xlabel() on each of them. For example:
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="ticks", color_codes=True)
tips = sns.load_dataset("tips")
g = sns.FacetGrid(tips, col="time", hue="smoker")
g = g.map(plt.scatter, "total_bill", "tip", edgecolor="w")
g.axes[0,0].set_xlabel('axes label 1')
g.axes[0,1].set_xlabel('axes label 2')
plt.show()
Note in this example, g.axes has a shape of (1,2) (one row, two columns).
for all axis to set them once use this
g.set_axis_labels("Total bill ($)")