Something better than dir()? [duplicate] - python

This question already has an answer here:
inspect.getmembers() vs __dict__.items() vs dir()
(1 answer)
Closed 1 year ago.
Python's dir() is nice, don't get me wrong. But I'd like a list that actually tells me what kind of things the objects are: methods, variables, things that are inherited, etc.
As best I can tell, dir always returns a simple list of strings with no indication as to what the objects are. I checked the documentation for dir() and I don't see any way of getting better information.
Are there any other packages or tools for doing this?

I'd like a list that actually tells me what kind of things the objects are: methods, variables, things that are inherited, etc.
pyclbr built-in module might be useful for you, if you are interested in classes in certain *.py file, let somefile.py content be
class MyClass():
def parent_method(self):
return None
class MyChildClass(MyClass):
def child_method(self):
return None
then
import pyclbr
objects = pyclbr.readmodule("somefile")
print(objects['MyChildClass'].super)
print(objects['MyChildClass'].methods)
output
['MyClass']
{'child_method': 6}
Explanation: pyclbr does not execute code, but extract information from python source code. In above example from .super we can conclude that MyChildClass is child of MyClass and that MyChildClass define method child_method in 6th line of line

Related

Defining a module from within a module [duplicate]

I'd like to dynamically create a module from a dictionary, and I'm wondering if adding an element to sys.modules is really the best way to do this. EG
context = { a: 1, b: 2 }
import types
test_context_module = types.ModuleType('TestContext', 'Module created to provide a context for tests')
test_context_module.__dict__.update(context)
import sys
sys.modules['TestContext'] = test_context_module
My immediate goal in this regard is to be able to provide a context for timing test execution:
import timeit
timeit.Timer('a + b', 'from TestContext import *')
It seems that there are other ways to do this, since the Timer constructor takes objects as well as strings. I'm still interested in learning how to do this though, since a) it has other potential applications; and b) I'm not sure exactly how to use objects with the Timer constructor; doing so may prove to be less appropriate than this approach in some circumstances.
EDITS/REVELATIONS/PHOOEYS/EUREKA:
I've realized that the example code relating to running timing tests won't actually work, because import * only works at the module level, and the context in which that statement is executed is that of a function in the testit module. In other words, the globals dictionary used when executing that code is that of __main__, since that's where I was when I wrote the code in the interactive shell. So that rationale for figuring this out is a bit botched, but it's still a valid question.
I've discovered that the code run in the first set of examples has the undesirable effect that the namespace in which the newly created module's code executes is that of the module in which it was declared, not its own module. This is like way weird, and could lead to all sorts of unexpected rattlesnakeic sketchiness. So I'm pretty sure that this is not how this sort of thing is meant to be done, if it is in fact something that the Guido doth shine upon.
The similar-but-subtly-different case of dynamically loading a module from a file that is not in python's include path is quite easily accomplished using imp.load_source('NewModuleName', 'path/to/module/module_to_load.py'). This does load the module into sys.modules. However this doesn't really answer my question, because really, what if you're running python on an embedded platform with no filesystem?
I'm battling a considerable case of information overload at the moment, so I could be mistaken, but there doesn't seem to be anything in the imp module that's capable of this.
But the question, essentially, at this point is how to set the global (ie module) context for an object. Maybe I should ask that more specifically? And at a larger scope, how to get Python to do this while shoehorning objects into a given module?
Hmm, well one thing I can tell you is that the timeit function actually executes its code using the module's global variables. So in your example, you could write
import timeit
timeit.a = 1
timeit.b = 2
timeit.Timer('a + b').timeit()
and it would work. But that doesn't address your more general problem of defining a module dynamically.
Regarding the module definition problem, it's definitely possible and I think you've stumbled on to pretty much the best way to do it. For reference, the gist of what goes on when Python imports a module is basically the following:
module = imp.new_module(name)
execfile(file, module.__dict__)
That's kind of the same thing you do, except that you load the contents of the module from an existing dictionary instead of a file. (I don't know of any difference between types.ModuleType and imp.new_module other than the docstring, so you can probably use them interchangeably) What you're doing is somewhat akin to writing your own importer, and when you do that, you can certainly expect to mess with sys.modules.
As an aside, even if your import * thing was legal within a function, you might still have problems because oddly enough, the statement you pass to the Timer doesn't seem to recognize its own local variables. I invoked a bit of Python voodoo by the name of extract_context() (it's a function I wrote) to set a and b at the local scope and ran
print timeit.Timer('print locals(); a + b', 'sys.modules["__main__"].extract_context()').timeit()
Sure enough, the printout of locals() included a and b:
{'a': 1, 'b': 2, '_timer': <built-in function time>, '_it': repeat(None, 999999), '_t0': 1277378305.3572791, '_i': None}
but it still complained NameError: global name 'a' is not defined. Weird.

Python __doc__ documentation on instances

I'd like to provide documentation (within my program) on certain dynamically created objects, but still fall back to using their class documentation. Setting __doc__ seems a suitable way to do so. However, I can't find many details in the Python help in this regard, are there any technical problems with providing documentation on an instance? For example:
class MyClass:
"""
A description of the class goes here.
"""
a = MyClass()
a.__doc__ = "A description of the object"
print( MyClass.__doc__ )
print( a.__doc__ )
__doc__ is documented as a writable attribute for functions, but not for instances of user defined classes. pydoc.help(a), for example, will only consider the __doc__ defined on the type in Python versions < 3.9.
Other protocols (including future use-cases) may reasonably bypass the special attributes defined in the instance dict, too. See Special method lookup section of the datamodel documentation, specifically:
For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an object’s type, not in the object’s instance dictionary.
So, depending on the consumer of the attribute, what you intend to do may not be reliable. Avoid.
A safe and simple alternative is just to use a different attribute name of your own choosing for your own use-case, preferably not using the __dunder__ syntax convention which usually indicates a special name reserved for some specific use by the implementation and/or the stdlib.
There are some pretty obvious technical problems; the question is whether or not they matter for your use case.
Here are some major uses for docstrings that your idiom will not help with:
help(a): Type help(a) in an interactive terminal, and you get the docstring for MyClass, not the docstring for a.
Auto-generated documentation: Unless you write your own documentation generator, it's not going to understand that you've done anything special with your a value. Many doc generators do have some way to specify help for module and class constants, but I'm not aware of any that will recognize your idiom.
IDE help: Many IDEs will not only auto-complete an expression, but show the relevant docstring in a tooltip. They all do this statically, and without some special-case code designed around your idiom (which they're unlikely to have, given that it's an unusual idiom), they're almost certain to fetch the docstring for the class, not the object.
Here are some where it might help:
Source readability: As a human reading your source, I can tell the intent from the a.__doc__ = … right near the construction of a. Then again, I could tell the same intent just as easily from a Sphinx comment on the constant.
Debugging: pdb doesn't really do much with docstrings, but some GUI debuggers wrapped around it do, and most of them are probably going to show a.__doc__.
Custom dynamic use of docstrings: Obviously any code that you write that does something with a.__doc__ is going to get the instance docstring if you want it to, and therefore can do whatever it wants with it. However, keep in mind that if you want to define your own "protocol", you should use your own name, not one reserved for the implementation.
Notice that most of the same is true for using a descriptor for the docstring:
>>> class C:
... #property
... def __doc__(self):
... return('C doc')
>>> c = C()
If you type c.__doc__, you'll get 'C doc', but help(c) will treat it as an object with no docstring.
It's worth noting that making help work is one of the reasons some dynamic proxy libraries generate new classes on the fly—that is, a proxy to underlying type Spam has some new type like _SpamProxy, instead of the same GenericProxy type used for proxies to Hams and Eggseses. The former allows help(myspam) to show dynamically-generated information about Spam. But I don't know how important a reason it is; often you already need dynamic classes to, e.g., make special method lookup work, at which point adding dynamic docstrings comes for free.
I think it's preferred to keep it under the class via your doc string as it will also aid any developer that works on the code. However if you are doing something dynamic that requires this setup then I don't see any reason why not. Just understand that it adds a level of indirection that makes things less clear to others.
Remember to K.I.S.S. where applicable :)
I just stumbled over this and noticed that at least with python 3.9.5 the behavior seems to have changed.
E.g. using the above example, when I call:
help(a)
I get:
Help on MyClass in module __main__:
<__main__.MyClass object>
A description of the object
Also for reference, have a look at the pydoc implementation which shows:
def _getowndoc(obj):
"""Get the documentation string for an object if it is not
inherited from its class."""
try:
doc = object.__getattribute__(obj, '__doc__')
if doc is None:
return None
if obj is not type:
typedoc = type(obj).__doc__
if isinstance(typedoc, str) and typedoc == doc:
return None
return doc
except AttributeError:
return None

How to make wxPython class browser

How do I implement a class browser in wxPython? Should I scan the whole code, or there is a function for this in wxPython?
Your question isn't entirely clear about what you want, but I'll make some assumptions and show you how to do one of the possible interpretations of what you're asking.
I'll assume you have a string with the contents of a Python script, or a fragment from your cut-and-paste repository, or whatever, and you just want to know the top-level classes defined in that string of source code.
You probably don't want to execute that code. For one thing, who knows what arbitrary strange code can do to your environment? For another, if you're building a class browser, you probably want it to work on code that's depends on other code you may not have access to, so you can't execute it.
So, you want to parse it. The easiest way to do that is to get Python to do it for you, using the ast module:
import ast
with open('mymodule.py') as f:
mycode = f.read()
myast = ast.parse(mycode)
for thing in myast.body:
if isinstance(thing, ast.ClassDef):
print('class {}({})'.format(thing.name,
', '.join(base.id for base in thing.bases)))
for subthing in thing.body:
if isinstance(subthing, ast.FunctionDef):
print(' def {}'.format(name))
When I run this against, say, the ast.py from Python 3.3's stdlib, I get this:
class NodeVisitor(object)
def visit
def generic_visit
class NodeTransformer(NodeVisitor)
def generic_visit
If that's not what you wanted, you'll have to explain what you do want. If, for example, you want all class definitions, even local ones within functions and methods… well, the names of those two classes just dumped out above should help.

Injecting variable before/during import [duplicate]

This question already has answers here:
Injecting variables into an import namespace
(2 answers)
Closed 4 years ago.
Basically, I'd like to force a variable, lets call him jim into a plugin I load as a global, before the plugin loads, for instance:
load_plugin('blah', variables={'jim':1}) #For instance
And then inside blah.py:
print jim #prints 1
Is there any easy way to do this? Not a big deal if its not in the standard library.
No - there is no way to do that before the plug-in is imported in first place - so, if your variable is used in the module body itself, you are out of luck.
If the variable is used as a global variable inside the module's functions or methods (but not class bodies), you can change it after the module is imported simply doing:
import module
module.jim = 5
as you probably know. (And I am aware this is not what you are asking for).
So, the only way to achieve that would be to parse the source code for the module, and change the variable assignment there, save the source code and import it. Ok, there are ways to emulate importing with the source code in memory, but this approach is so impratical, we should not detail it.
If you have control over the source of the module you want to monkey-patch this way, my suggestion would be to use a configuration file from which the module would pick the variable names.
Then you generate the configuration file, perform the importing (taking care that it is not already imported into sys.modules) and you are done.
You could use the __import__ function. It lets you override the globals.
for instance:
__import__('blah', dict(jim=1, **globals()))

Problem using super(python 2.5.2)

I'm writing a plugin system for my program and I can't get past one thing:
class ThingLoader(object):
'''
Loader class
'''
def loadPlugins(self):
'''
Get all the plugins from plugins folder
'''
from diones.thingpad.plugin.IntrospectionHelper import loadClasses
classList=loadClasses('./plugins', IPlugin)#Gets a list of
#plugin classes
self.plugins={}#Dictionary that should be filled with
#touples of objects and theirs states, activated, deactivated.
classList[0](self)#Runs nicelly
foo = classList[1]
print foo#prints <class 'TestPlugin.TestPlugin'>
foo(self)#Raise an exception
The test plugin looks like this:
import diones.thingpad.plugin.IPlugin as plugin
class TestPlugin(plugin.IPlugin):
'''
classdocs
'''
def __init__(self, loader):
self.name='Test Plugin'
super(TestPlugin, self).__init__(loader)
Now the IPlugin looks like this:
class IPlugin(object):
'''
classdocs
'''
name=''
def __init__(self, loader):
self.loader=loader
def activate(self):
pass
All the IPlugin classes works flawlessy by them selves, but when called by ThingLoader the program gets an exception:
File "./plugins\TestPlugin.py", line 13, in __init__
super(TestPlugin, self).__init__(loader) NameError:
global name 'super' is not defined
I looked all around and I simply don't know what is going on.
‘super’ is a builtin. Unless you went out of your way to delete builtins, you shouldn't ever see “global name 'super' is not defined”.
I'm looking at your user web link where there is a dump of IntrospectionHelper. It's very hard to read without the indentation, but it looks like you may be doing exactly that:
built_in_list = ['__builtins__', '__doc__', '__file__', '__name__']
for i in built_in_list:
if i in module.__dict__:
del module.__dict__[i]
That's the original module dict you're changing there, not an informational copy you are about to return! Delete these members from a live module and you can expect much more than ‘super’ to break.
It's very hard to keep track of what that module is doing, but my reaction is there is far too much magic in it. The average Python program should never need to be messing around with the import system, sys.path, and monkey-patching __magic__ module members. A little bit of magic can be a neat trick, but this is extremely fragile. Just off the top of my head from browsing it, the code could be broken by things like:
name clashes with top-level modules
any use of new-style classes
modules supplied only as compiled bytecode
zipimporter
From the incredibly round-about functions like getClassDefinitions, extractModuleNames and isFromBase, it looks to me like you still have quite a bit to learn about the basics of how Python works. (Clues: getattr, module.__name__ and issubclass, respectively.)
In this case now is not the time to be diving into import magic! It's hard. Instead, do things The Normal Python Way. It may be a little more typing to say at the bottom of a package's mypackage/__init__.py:
from mypackage import fooplugin, barplugin, bazplugin
plugins= [fooplugin.FooPlugin, barplugin.BarPlugin, bazplugin.BazPlugin]
but it'll work and be understood everywhere without relying on a nest of complex, fragile magic.
Incidentally, unless you are planning on some in-depth multiple inheritance work (and again, now may not be the time for that), you probably don't even need to use super(). The usual “IPlugin.__init__(self, ...)” method of calling a known superclass is the straightforward thing to do; super() is not always “the newer, better way of doing things” and there are things you should understand about it before you go charging into using it.
Unless you're running a version of Python earlier than 2.2 (pretty unlikely), super() is definitely a built-in function (available in every scope, and without importing anything).
May be worth checking your version of Python (just start up the interactive prompt by typing python at the command line).

Categories