I'm having trouble with the slow computation of my Python code. Based on the pycallgraph below, the bottleneck seems to be the module named miepython.miepython.mie_S1_S2 (highlighted by pink), which takes 0.47 seconds per call.
The source code for this module is as follows:
import numpy as np
from numba import njit, int32, float64, complex128
__all__ = ('ez_mie',
'ez_intensities',
'generate_mie_costheta',
'i_par',
'i_per',
'i_unpolarized',
'mie',
'mie_S1_S2',
'mie_cdf',
'mie_mu_with_uniform_cdf',
)
#njit((complex128, float64, float64[:]), cache=True)
def _mie_S1_S2(m, x, mu):
"""
Calculate the scattering amplitude functions for spheres.
The amplitude functions have been normalized so that when integrated
over all 4*pi solid angles, the integral will be qext*pi*x**2.
The units are weird, sr**(-0.5)
Args:
m: the complex index of refraction of the sphere
x: the size parameter of the sphere
mu: array of angles, cos(theta), to calculate scattering amplitudes
Returns:
S1, S2: the scattering amplitudes at each angle mu [sr**(-0.5)]
"""
nstop = int(x + 4.05 * x**0.33333 + 2.0) + 1
a = np.zeros(nstop - 1, dtype=np.complex128)
b = np.zeros(nstop - 1, dtype=np.complex128)
_mie_An_Bn(m, x, a, b)
nangles = len(mu)
S1 = np.zeros(nangles, dtype=np.complex128)
S2 = np.zeros(nangles, dtype=np.complex128)
nstop = len(a)
for k in range(nangles):
pi_nm2 = 0
pi_nm1 = 1
for n in range(1, nstop):
tau_nm1 = n * mu[k] * pi_nm1 - (n + 1) * pi_nm2
S1[k] += (2 * n + 1) * (pi_nm1 * a[n - 1]
+ tau_nm1 * b[n - 1]) / (n + 1) / n
S2[k] += (2 * n + 1) * (tau_nm1 * a[n - 1]
+ pi_nm1 * b[n - 1]) / (n + 1) / n
temp = pi_nm1
pi_nm1 = ((2 * n + 1) * mu[k] * pi_nm1 - (n + 1) * pi_nm2) / n
pi_nm2 = temp
# calculate norm = sqrt(pi * Qext * x**2)
n = np.arange(1, nstop + 1)
norm = np.sqrt(2 * np.pi * np.sum((2 * n + 1) * (a.real + b.real)))
S1 /= norm
S2 /= norm
return [S1, S2]
Apparently, the source code is jitted by Numba so it should be faster than it actually is. The number of iterations in for loop in this function is around 25,000 (len(mu)=50, len(a)-1=500).
Any ideas on how to speed up this computation? Is something hindering the fast computation of Numba? Or, do you think the computation is already fast enough?
[More details]
In the above, another function _mie_An_Bn is being used. This function is also jitted, and the source code is as follows:
#njit((complex128, float64, complex128[:], complex128[:]), cache=True)
def _mie_An_Bn(m, x, a, b):
"""
Compute arrays of Mie coefficients A and B for a sphere.
This estimates the size of the arrays based on Wiscombe's formula. The length
of the arrays is chosen so that the error when the series are summed is
around 1e-6.
Args:
m: the complex index of refraction of the sphere
x: the size parameter of the sphere
Returns:
An, Bn: arrays of Mie coefficents
"""
psi_nm1 = np.sin(x) # nm1 = n-1 = 0
psi_n = psi_nm1 / x - np.cos(x) # n = 1
xi_nm1 = complex(psi_nm1, np.cos(x))
xi_n = complex(psi_n, np.cos(x) / x + np.sin(x))
nstop = len(a)
if m.real > 0.0:
D = _D_calc(m, x, nstop + 1)
for n in range(1, nstop):
temp = D[n] / m + n / x
a[n - 1] = (temp * psi_n - psi_nm1) / (temp * xi_n - xi_nm1)
temp = D[n] * m + n / x
b[n - 1] = (temp * psi_n - psi_nm1) / (temp * xi_n - xi_nm1)
xi = (2 * n + 1) * xi_n / x - xi_nm1
xi_nm1 = xi_n
xi_n = xi
psi_nm1 = psi_n
psi_n = xi_n.real
else:
for n in range(1, nstop):
a[n - 1] = (n * psi_n / x - psi_nm1) / (n * xi_n / x - xi_nm1)
b[n - 1] = psi_n / xi_n
xi = (2 * n + 1) * xi_n / x - xi_nm1
xi_nm1 = xi_n
xi_n = xi
psi_nm1 = psi_n
psi_n = xi_n.real
The example inputs are like the followings:
m = 1.336-2.462e-09j
x = 8526.95
mu = np.array([-1., -0.7500396, 0.46037385, 0.5988121, 0.67384093, 0.72468684, 0.76421644, 0.79175856, 0.81723714, 0.83962897, 0.85924182, 0.87641596, 0.89383665, 0.90708978, 0.91931481, 0.93067567, 0.94073113, 0.94961222, 0.95689496, 0.96467123, 0.97138347, 0.97791831, 0.98339434, 0.98870543, 0.99414948, 0.9975728 0.9989995, 0.9989995, 0.9989995, 0.9989995, 0.9989995,0.99899951, 0.99899951, 0.99899951, 0.99899951, 0.99899951, 0.99899951, 0.99899951, 0.99899951, 0.99899951, 0.99899952, 0.99899952,
0.99899952, 0.99899952, 0.99899952, 0.99899952, 0.99899952, 0.99899952, 0.99899952, 1. ])
I am focussing on _mie_S1_S2 since it appear to be the most expensive function on the provided example dataset.
First of all, you can use the parameter fastmath=True to the JIT to accelerate the computation if there is no values like +Inf, -Inf, -0 or NaN computed.
Then you can pre-compute some expensive expression containing divisions or implicit integer-to-float conversions. Note that (2 * n + 1) / n = 2 + 1/n and (n + 1) / n = 1 + 1/n. This can be useful to reduce the number of precomputed array but did not change the performance on my machine (this may change regarding the target architecture). Note also that such a precomputation have a slight impact on the result accuracy (most of the time negligible and sometime better than the reference implementation).
On my machine, this strategy make the code 4.5 times faster with fastmath=True and 2.8 times faster without.
The k-based loop can be parallelized using parallel=True and prange of Numba. However, this may not be always faster on all machines (especially the ones with a lot of cores) since the loop is pretty fast.
Here is the final code:
#njit((complex128, float64, float64[:]), cache=True, parallel=True)
def _mie_S1_S2_opt(m, x, mu):
nstop = int(x + 4.05 * x**0.33333 + 2.0) + 1
a = np.zeros(nstop - 1, dtype=np.complex128)
b = np.zeros(nstop - 1, dtype=np.complex128)
_mie_An_Bn(m, x, a, b)
nangles = len(mu)
S1 = np.zeros(nangles, dtype=np.complex128)
S2 = np.zeros(nangles, dtype=np.complex128)
factor1 = np.empty(nstop, dtype=np.float64)
factor2 = np.empty(nstop, dtype=np.float64)
factor3 = np.empty(nstop, dtype=np.float64)
for n in range(1, nstop):
factor1[n - 1] = (2 * n + 1) / (n + 1) / n
factor2[n - 1] = (2 * n + 1) / n
factor3[n - 1] = (n + 1) / n
nstop = len(a)
for k in nb.prange(nangles):
pi_nm2 = 0
pi_nm1 = 1
for n in range(1, nstop):
i = n - 1
tau_nm1 = n * mu[k] * pi_nm1 - (n + 1.0) * pi_nm2
S1[k] += factor1[i] * (pi_nm1 * a[i] + tau_nm1 * b[i])
S2[k] += factor1[i] * (tau_nm1 * a[i] + pi_nm1 * b[i])
temp = pi_nm1
pi_nm1 = factor2[i] * mu[k] * pi_nm1 - factor3[i] * pi_nm2
pi_nm2 = temp
# calculate norm = sqrt(pi * Qext * x**2)
n = np.arange(1, nstop + 1)
norm = np.sqrt(2 * np.pi * np.sum((2 * n + 1) * (a.real + b.real)))
S1 /= norm
S2 /= norm
return [S1, S2]
%timeit -n 1000 _mie_S1_S2_opt(m, x, mu)
On my machine with 6 cores, the final optimized implementation is 12 times faster with fastmath=True and 8.8 times faster without. Note that using similar strategies in other functions may also helps to speed up them.
Related
I have come across a very strange problem where i do a lot of math and the result is inf or nan when my input is of type <class 'numpy.int64'>, but i get the correct (checked analytically) results when my input is of type <class 'int'>. The only library functions i use are np.math.factorial(), np.sum() and np.array(). I also use a generator object to sum over series and the Boltzmann constant from scipy.constants.
My question is essentially this: Are their any known cases where np.int64 objects will behave very differently from int objects?
When i run with np.int64 input, i get the RuntimeWarnings: overflow encountered in long_scalars, divide by zero encountered in double_scalars and invalid value encountered in double_scalars. However, the largest number i plug into the factorial function is 36, and i don't get these warnings when i use int input.
Below is a code that reproduces the behaviour. I was unable to find out more exactly where it comes from.
import numpy as np
import scipy.constants as const
# Some representible numbers
sigma = np.array([1, 2])
sigma12 = 1.5
mole_weights = np.array([10,15])
T = 100
M1, M2 = mole_weights/np.sum(mole_weights)
m0 = np.sum(mole_weights)
fac = np.math.factorial
def summation(start, stop, func, args=None):
#sum over the function func for all ints from start to and including stop, pass 'args' as additional arguments
if args is not None:
return sum(func(i, args) for i in range(start, stop + 1))
else:
return sum(func(i) for i in range(start, stop + 1))
def delta(i, j):
#kronecker delta
if i == j:
return 1
else:
return 0
def w(l, r):
# l,r are ints, return a float
return 0.25 * (2 - ((1 / (l + 1)) * (1 + (-1) ** l))) * np.math.factorial(r + 1)
def omega(ij, l, r):
# l, r are int, ij is and ID, returns float
if ij in (1, 2):
return sigma[ij - 1] ** 2 * np.sqrt(
(np.pi * const.Boltzmann * T) / mole_weights[ij - 1]) * w(l, r)
elif ij in (12, 21):
return 0.5 * sigma12 ** 2 * np.sqrt(
2 * np.pi * const.Boltzmann * T / (m0 * M1 * M2)) * w(l, r)
else:
raise ValueError('(' + str(ij) + ', ' + str(l) + ', ' + str(r) + ') are non-valid arguments for omega.')
def A_prime(p, q, r, l):
'''
p, q, r, l are ints. returns a float
'''
F = (M1 ** 2 + M2 ** 2) / (2 * M1 * M2)
G = (M1 - M2) / M2
def inner(w, args):
i, k = args
return ((8 ** i * fac(p + q - 2 * i - w) * (-1) ** (r + i) * fac(r + 1) * fac(
2 * (p + q + 2 - i - w)) * 2 ** (2 * r) * F ** (i - k) * G ** w) /
(fac(p - i - w) * fac(q - i - w) * fac(r - i) * fac(p + q + 1 - i - r - w) * fac(2 * r + 2) * fac(
p + q + 2 - i - w)
* 4 ** (p + q + 1) * fac(k) * fac(i - k) * fac(w))) * (
2 ** (2 * w - 1) * M1 ** i * M2 ** (p + q - i - w)) * 2 * (
M1 * (p + q + 1 - i - r - w) * delta(k, l) - M2 * (r - i) * delta(k, l - 1))
def sum_w(k, i):
return summation(0, min(p, q, p + q + 1 - r) - i, inner, args=(i, k))
def sum_k(i):
return summation(l - 1, min(l, i), sum_w, args=i)
return summation(l - 1, min(p, q, r, p + q + 1 - r), sum_k)
def H_i(p, q):
'''
p, q are ints. Returns a float
'''
def inner(r, l):
return A_prime(p, q, r, l) * omega(12, l, r)
def sum_r(l):
return summation(l, p + q + 2 - l, inner, args=l)
val = 8 * summation(1, min(p, q) + 1, sum_r)
return val
p, q = np.int64(8), np.int64(8)
print(H_i(p,q)) #nan
print(H_i(int(p) ,int(q))) #1.3480582058153066e-08
Numpy's int64 is a 64-bit integer, meaning it consists of 64 places that are either 0 or 1. Thus the smallest representable value is -2**63 and the biggest one is 2**63 - 1
Python's int is essentially unlimited in length, so it can represent any value. It is equivalent to a BigInteger in Java. It's stored as a list of int64s essentially that are considered a single large number.
What you have here is a classic integer overflow. You mentioned that you "only" plug 36 into the factorial function, but the factorial function grows very fast, and 36! = 3.7e41 > 9.2e18 = 2**63 - 1, so you get a number bigger than you can represent in an int64!
Since int64s are also called longs this is exactly what the warning overflow encountered in long_scalars is trying to tell you!
I am trying to calculate g(x_(i+2)) from the value g(x_(i+1)) and g(x_i), i is an integer, assuming I(x) and s(x) are Gaussian function. If we know x_i = 100, then the summation from 0 to 100, I don't know how to handle g(x_i) with the subscript in python, knowing the first and second value, we can find the third value, after n cycle, we can find the nth value.
Equation:
code:
import numpy as np
from matplotlib import pyplot as p
from math import pi
def f_s(x, mu_s, sig_s):
ss = -np.power(x - mu_s, 2) / (2 * np.power(sig_s, 2))
return np.exp(ss) / (np.power(2 * pi, 2) * sig_s)
def f_i(x, mu_i, sig_i):
ii = -np.power(x - mu_i, 2) / (2 * np.power(sig_i, 2))
return np.exp(ii) / (np.power(2 * pi, 2) * sig_i)
# problems occur in this part
def g(x, m, mu_s, sig_s, mu_i, sig_i):
for i in range(1, m): # specify the number x, x_1, x_2, x_3 ......X_m
h = (x[i + 1] - x[i]) / e
for n in range(0, x[i]): # calculate summation
sum_f = (f_i(x[i], mu_i, sig_i) - f_s(x[i] - n, mu_s, sig_s) * g_x[n]) * np.conj(f_s(n +
x[i], mu_s, sig_s))
g_x[1] = 1 # initial value
g_x[2] = 5
g_x[i + 2] = h * sum_f + 2 * g_x[i + 1] - g_x[i]
return g_x[i + 2]
x = np.linspace(-10, 10, 10000)
e = 1
d = 0.01
m = 1000
mu_s = 2
sig_s = 1
mu_i = 1
sig_i = 1
p.plot(x, g(x, m, mu_s, sig_s, mu_i, sig_i))
p.legend()
p.show()
result:
I(x) and s(x)
I will try and explain exactly what's going on and my issue.
This is a bit mathy and SO doesn't support latex, so sadly I had to resort to images. I hope that's okay.
I don't know why it's inverted, sorry about that.
At any rate, this is a linear system Ax = b where we know A and b, so we can find x, which is our approximation at the next time step. We continue doing this until time t_final.
This is the code
import numpy as np
tau = 2 * np.pi
tau2 = tau * tau
i = complex(0,1)
def solution_f(t, x):
return 0.5 * (np.exp(-tau * i * x) * np.exp((2 - tau2) * i * t) + np.exp(tau * i * x) * np.exp((tau2 + 4) * i * t))
def solution_g(t, x):
return 0.5 * (np.exp(-tau * i * x) * np.exp((2 - tau2) * i * t) - np.exp(tau * i * x) * np.exp((tau2 + 4) * i * t))
for l in range(2, 12):
N = 2 ** l #number of grid points
dx = 1.0 / N #space between grid points
dx2 = dx * dx
dt = dx #time step
t_final = 1
approximate_f = np.zeros((N, 1), dtype = np.complex)
approximate_g = np.zeros((N, 1), dtype = np.complex)
#Insert initial conditions
for k in range(N):
approximate_f[k, 0] = np.cos(tau * k * dx)
approximate_g[k, 0] = -i * np.sin(tau * k * dx)
#Create coefficient matrix
A = np.zeros((2 * N, 2 * N), dtype = np.complex)
#First row is special
A[0, 0] = 1 -3*i*dt
A[0, N] = ((2 * dt / dx2) + dt) * i
A[0, N + 1] = (-dt / dx2) * i
A[0, -1] = (-dt / dx2) * i
#Last row is special
A[N - 1, N - 1] = 1 - (3 * dt) * i
A[N - 1, N] = (-dt / dx2) * i
A[N - 1, -2] = (-dt / dx2) * i
A[N - 1, -1] = ((2 * dt / dx2) + dt) * i
#middle
for k in range(1, N - 1):
A[k, k] = 1 - (3 * dt) * i
A[k, k + N - 1] = (-dt / dx2) * i
A[k, k + N] = ((2 * dt / dx2) + dt) * i
A[k, k + N + 1] = (-dt / dx2) * i
#Bottom half
A[N :, :N] = A[:N, N:]
A[N:, N:] = A[:N, :N]
Ainv = np.linalg.inv(A)
#Advance through time
time = 0
while time < t_final:
b = np.concatenate((approximate_f, approximate_g), axis = 0)
x = np.dot(Ainv, b) #Solve Ax = b
approximate_f = x[:N]
approximate_g = x[N:]
time += dt
approximate_solution = np.concatenate((approximate_f, approximate_g), axis=0)
#Calculate the actual solution
actual_f = np.zeros((N, 1), dtype = np.complex)
actual_g = np.zeros((N, 1), dtype = np.complex)
for k in range(N):
actual_f[k, 0] = solution_f(t_final, k * dx)
actual_g[k, 0] = solution_g(t_final, k * dx)
actual_solution = np.concatenate((actual_f, actual_g), axis = 0)
print(np.sqrt(dx) * np.linalg.norm(actual_solution - approximate_solution))
It doesn't work. At least not in the beginning, it shouldn't start this slow. I should be unconditionally stable and converge to the right answer.
What's going wrong here?
The L2-norm can be a useful metric to test convergence, but isn't ideal when debugging as it doesn't explain what the problem is. Although your solution should be unconditionally stable, backward Euler won't necessarily converge to the right answer. Just like forward Euler is notoriously unstable (anti-dissipative), backward Euler is notoriously dissipative. Plotting your solutions confirms this. The numerical solutions converge to zero. For a next-order approximation, Crank-Nicolson is a reasonable candidate. The code below contains the more general theta-method so that you can tune the implicit-ness of the solution. theta=0.5 gives CN, theta=1 gives BE, and theta=0 gives FE.
A couple other things that I tweaked:
I selected a more appropriate time step of dt = (dx**2)/2 instead of dt = dx. That latter doesn't converge to the right solution using CN.
It's a minor note, but since t_final isn't guaranteed to be a multiple of dt, you weren't comparing solutions at the same time step.
With regards to your comment about it being slow: As you increase the spatial resolution, your time resolution needs to increase too. Even in your case with dt=dx, you have to perform a (1024 x 1024)*1024 matrix multiplication 1024 times. I didn't find this to take particularly long on my machine. I removed some unneeded concatenation to speed it up a bit, but changing the time step to dt = (dx**2)/2 will really bog things down, unfortunately. You could trying compiling with Numba if you are concerned with speed.
All that said, I didn't find tremendous success with the consistency of CN. I had to set N=2^6 to get anything at t_final=1. Increasing t_final makes this worse, decreasing t_final makes it better. Depending on your needs, you could looking into implementing TR-BDF2 or other linear multistep methods to improve this.
The code with a plot is below:
import numpy as np
import matplotlib.pyplot as plt
tau = 2 * np.pi
tau2 = tau * tau
i = complex(0,1)
def solution_f(t, x):
return 0.5 * (np.exp(-tau * i * x) * np.exp((2 - tau2) * i * t) + np.exp(tau * i * x) * np.exp((tau2 + 4) * i * t))
def solution_g(t, x):
return 0.5 * (np.exp(-tau * i * x) * np.exp((2 - tau2) * i * t) - np.exp(tau * i * x) *
np.exp((tau2 + 4) * i * t))
l=6
N = 2 ** l
dx = 1.0 / N
dx2 = dx * dx
dt = dx2/2
t_final = 1.
x_arr = np.arange(0,1,dx)
approximate_f = np.cos(tau*x_arr)
approximate_g = -i*np.sin(tau*x_arr)
H = np.zeros([2*N,2*N], dtype=np.complex)
for k in range(N):
H[k,k] = -3*i*dt
H[k,k+N] = (2/dx2+1)*i*dt
if k==0:
H[k,N+1] = -i/dx2*dt
H[k,-1] = -i/dx2*dt
elif k==N-1:
H[N-1,N] = -i/dx2*dt
H[N-1,-2] = -i/dx2*dt
else:
H[k,k+N-1] = -i/dx2*dt
H[k,k+N+1] = -i/dx2*dt
### Bottom half
H[N :, :N] = H[:N, N:]
H[N:, N:] = H[:N, :N]
### Theta method. 0.5 -> Crank Nicolson
theta=0.5
A = np.eye(2*N)+H*theta
B = np.eye(2*N)-H*(1-theta)
### Precompute for faster computations
mat = np.linalg.inv(A)#B
t = 0
b = np.concatenate((approximate_f, approximate_g))
while t < t_final:
t += dt
b = mat#b
approximate_f = b[:N]
approximate_g = b[N:]
approximate_solution = np.concatenate((approximate_f, approximate_g))
#Calculate the actual solution
actual_f = solution_f(t,np.arange(0,1,dx))
actual_g = solution_g(t,np.arange(0,1,dx))
actual_solution = np.concatenate((actual_f, actual_g))
plt.figure(figsize=(7,5))
plt.plot(x_arr,actual_f.real,c="C0",label=r"$Re(f_\mathrm{true})$")
plt.plot(x_arr,actual_f.imag,c="C1",label=r"$Im(f_\mathrm{true})$")
plt.plot(x_arr,approximate_f.real,c="C0",ls="--",label=r"$Re(f_\mathrm{num})$")
plt.plot(x_arr,approximate_f.imag,c="C1",ls="--",label=r"$Im(f_\mathrm{num})$")
plt.legend(loc=3,fontsize=12)
plt.xlabel("x")
plt.savefig("num_approx.png",dpi=150)
I am not going to go through all of your math, but I'm going to offer a suggestion.
The use of a direct calculation for fxx and gxx seems like a good candidate for being numerically unstable. Intuitively a first order method should be expected to make second order mistakes in the terms. Second order mistakes in the individual terms, after passing through that formula, wind up as constant order mistakes in the second derivative. Plus when your step size gets small, you are going to find that a quadratic formula makes even small roundoff mistakes turn into surprisingly large errors.
Instead I would suggest that you start by turning this into a first-order system of 4 functions, f, fx, g, and gx. And then proceed with backward's Euler on that system. Intuitively, with this approach, a first order method creates second order mistakes, which pass through a formula that creates first order mistakes of them. And now you are converging as you should from the start, and are also not as sensitive to propagation of roundoff errors.
import math
import numpy as np
S0 = 100.; K = 100.; T = 1.0; r = 0.05; sigma = 0.2
M = 100; dt = T / M; I = 500000
S = np.zeros((M + 1, I))
S[0] = S0
for t in range(1, M + 1):
z = np.random.standard_normal(I)
S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt + sigma *
math.sqrt(dt) * z)
C0 = math.exp(-r * T) * np.sum(np.maximum(S[-1] - K, 0)) / I
print ("European Option Value is ", C0)
It gives a value of around 10.45 as you increase the number of simulations, but using the B-S formula the value should be around 10.09. Anybody know why the code isn't giving a number closer to the formula?
I have implemented two functions FFT and InverseFFT in recursive mode.
These are the functions:
def rfft(a):
n = a.size
if n == 1:
return a
i = 1j
w_n = e ** (-2 * i * pi / float(n))
w = 1
a_0 = np.zeros(int(math.ceil(n / 2.0)), dtype=np.complex_)
a_1 = np.zeros(n / 2, dtype=np.complex_)
for index in range(0, n):
if index % 2 == 0:
a_0[index / 2] = a[index]
else:
a_1[index / 2] = a[index]
y_0 = rfft(a_0)
y_1 = rfft(a_1)
y = np.zeros(n, dtype=np.complex_)
for k in range(0, n / 2):
y[k] = y_0[k] + w * y_1[k]
y[k + n / 2] = y_0[k] - w * y_1[k]
w = w * w_n
return y
def rifft(y):
n = y.size
if n == 1:
return y
i = 1j
w_n = e ** (2 * i * pi / float(n))
w = 1
y_0 = np.zeros(int(math.ceil(n / 2.0)), dtype=np.complex_)
y_1 = np.zeros(n / 2, dtype=np.complex_)
for index in range(0, n):
if index % 2 == 0:
y_0[index / 2] = y[index]
else:
y_1[index / 2] = y[index]
a_0 = rifft(y_0)
a_1 = rifft(y_1)
a = np.zeros(n, dtype=np.complex_)
for k in range(0, n / 2):
a[k] = (a_0[k] + w * a_1[k]) / n
a[k + n / 2] = (a_0[k] - w * a_1[k]) / n
w = w * w_n
return a
Based on the definition of IFFT, converting FFT function to IFFT function can be done by changing 2*i*pi to -2*i*pi and dividing the result by N. The rfft() function works fine but the rifft() function, after these modifications, does not work.
I compare the output of my functions with scipy.fftpack.fft and scipy.fftpack.ifft functions.
I feed the following NumPy array:
a = np.array([1, 0, -1, 3, 0, 0, 0, 0])
The following box shows the results of rfft() function and scipy.fftpack.fft function.
//rfft(a)
[ 3.00000000+0.j -1.12132034-1.12132034j 2.00000000+3.j 3.12132034-3.12132034j -3.00000000+0.j 3.12132034+3.12132034j 2.00000000-3.j -1.12132034+1.12132034j]
//scipy.fftpack.fft(a)
[ 3.00000000+0.j -1.12132034-1.12132034j 2.00000000+3.j 3.12132034-3.12132034j -3.00000000+0.j 3.12132034+3.12132034j 2.00000000-3.j -1.12132034+1.12132034j]
And this box shows the results of rifft() function and scipy.fftpack.ifft function.
//rifft(a)
[ 0.04687500+0.j -0.01752063+0.01752063j 0.03125000-0.046875j 0.04877063+0.04877063j -0.04687500+0.j 0.04877063-0.04877063j 0.03125000+0.046875j -0.01752063-0.01752063j]
//scipy.fftpack.ifft(a)
[ 0.37500000+0.j -0.14016504+0.14016504j 0.25000000-0.375j 0.39016504+0.39016504j -0.37500000+0.j 0.39016504-0.39016504j 0.25000000+0.375j -0.14016504-0.14016504j]
The division by the size N is a global scaling factor and should be performed on the result of the recursion rather than dividing at each stage of the recursion as you have done (by a decreasing factor as you go deeper in the recursion; overall scaling down the result too much). You could address this by removing the / n factor in the final loop of your original implementation, which gets called by another function performing the scaling:
def unscaledrifft(y):
...
for k in range(0, n / 2):
a[k] = (a_0[k] + w * a_1[k])
a[k + n / 2] = (a_0[k] - w * a_1[k])
w = w * w_n
return a
def rifft(y):
return unscaledrifft(y)/y.size
Alternatively, since you are performing a radix-2 FFT, the global factor N would be a power of 2 such that N=2**n, where n is the number of steps in the recursion. You could thus divide by 2 at each stage of the recursion to achieve the same result:
def rifft(y):
...
for k in range(0, n / 2):
a[k] = (a_0[k] + w * a_1[k]) / 2
a[k + n / 2] = (a_0[k] - w * a_1[k]) / 2
w = w * w_n
return a