col1, col2, geometry
11.54000000,0.00000000,"{"type":"Polygon","coordinates":[[[-61.3115751786311,-33.83968838375797],[-61.29737019968823,-33.83207774370677],[-61.29443049860791,-33.83592770721248],[-61.29241347742871,-33.83489393774538],[-61.28994584513501,-33.83806650089736],[-61.292499308117186,-33.83938539699006],[-61.28958106470898,-33.8431993873636],[-61.29307859612687,-33.84495487100211],[-61.295256567865046,-33.846135537383866],[-61.296388484054326,-33.84676149889543],[-61.296747927196776,-33.84651421268175],[-61.297498943449426,-33.84670133707654],[-61.297992472179686,-33.847120134589964],[-61.299741220055196,-33.84901812154847],[-61.3012164422457,-33.85018089588664],[-61.3015892874819,-33.850566250375365],[-61.30284190607861,-33.85079121660985],[-61.30496105223345,-33.848193766906206],[-61.306084952130036,-33.84682375029292],[-61.30707604410075,-33.845532812572294],[-61.30672627175046,-33.84527169005647],[-61.306290670206494,-33.845188781884744],[-61.304604048903514,-33.847304098561025],[-61.30309763921784,-33.84654473836309],[-61.30013213880613,-33.84478736144466],[-61.30110629620797,-33.8431690707163],[-61.303046037678854,-33.844170576767105],[-61.30433047221653,-33.84266156764314],[-61.30484242472771,-33.842899106713375],[-61.30696068650711,-33.844104878773436],[-61.306418212892446,-33.84505221083753],[-61.307163201216696,-33.845464893960255],[-61.30760172622554,-33.84490909256552],[-61.307932962646014,-33.844513681420494],[-61.309176116985405,-33.84280834206188],[-61.30596211112515,-33.841126948963954],[-61.3056475423994,-33.841449215098756],[-61.30526859890979,-33.841557611902374],[-61.30483601097522,-33.84149669494795],[-61.30448925534122,-33.84120408616046],[-61.30410688411086,-33.840609953572034],[-61.30400151682434,-33.839925243738094],[-61.30240379835875,-33.83889223688216],[-61.30188418287129,-33.838444480832685],[-61.301130848179525,-33.83943255499186],[-61.30078636095504,-33.83996223583909],[-61.30059265818967,-33.84016469670277],[-61.30048478527255,-33.840438447848506],[-61.300252198180424,-33.84026774340676],[-61.29876711207748,-33.839489883020924],[-61.29799408649143,-33.840597902688785],[-61.297669258508,-33.84103160870988],[-61.297566592962134,-33.84112444052047],[-61.29748538503245,-33.841083604060834],[-61.297140578061956,-33.84134946797752],[-61.29709617977233,-33.84160419097128],[-61.297170540239335,-33.84168254110631],[-61.297341460506956,-33.84179653572337],[-61.297243418161194,-33.84197105818567],[-61.29699517169225,-33.84200300239938],[-61.29680176950715,-33.84179064473802],[-61.29691703393983,-33.8416707218475],[-61.297053755769845,-33.841604265738546],[-61.29707920124143,-33.84154875978832],[-61.29709391784669,-33.84147543150246],[-61.29711262215961,-33.84133768608576],[-61.296951411710374,-33.84119216012805],[-61.297262269660294,-33.84089514360839],[-61.297626491077864,-33.84051497848962],[-61.29865532547658,-33.83935363544152],[-61.30027710358755,-33.84011486145675],[-61.30046658230606,-33.83996490243917],[-61.30063460268783,-33.83979712050095],[-61.300992098665965,-33.8393813535522],[-61.301799802937595,-33.83832425565103],[-61.30135527704997,-33.837671541923235],[-61.30082030025984,-33.83731962483044],[-61.299512855628244,-33.83689640801839],[-61.29879550338594,-33.8363083288346],[-61.29831419490918,-33.835559835856905],[-61.298360098160686,-33.83408067231082],[-61.29976541168753,-33.83467181800819],[-61.30104200723692,-33.83586895614681],[-61.30133434017162,-33.83606352507277],[-61.30153415160492,-33.836339043812224],[-61.30164813329583,-33.83657891551336],[-61.30124575062752,-33.83743146168004],[-61.30195917352424,-33.83831965157767],[-61.30196183786503,-33.83843401993221],[-61.30250094586367,-33.83890484694379],[-61.304002690127376,-33.83984352469762],[-61.30473149692381,-33.8397514189025],[-61.3054487998093,-33.839941491549894],[-61.30582354557356,-33.84016574092716],[-61.30604808932503,-33.84046128014441],[-61.306143888278996,-33.840801374736316],[-61.30598219492593,-33.841088001849094],[-61.30757239940571,-33.841967156609876],[-61.30920555104759,-33.84277500140921],[-61.3115751786311,-33.83968838375797],[-61.3115751786311,-33.83968838375797]]]}"
How do I read a csv with syntax like above?
I am doing:
import pandas as pd
df = pd.read_csv('file.csv')
However, read_csv gets confused with the , within "{"type":"Polygon","coordinates": I want it to ignore the , within the quotes.
Your csv file contains a MultiIndex, which is causing your read and split issues.
I have tried multiple methods to read your file correctly. The best method that I have found so far is using the Python engine with an advanced separator in the read_csv function.
import pandas as pd
# these are for viewing the output
pd.set_option('display.max_columns', 30)
pd.set_option('display.max_rows', 100)
pd.set_option('display.width', 120)
# The separator matches the format of the string that you provided.
# I'm sure that it can be modified to be more efficient.
df = pd.read_csv('test.csv', skiprows=1, sep='(\d{1,2}.\d{1,8}),(\d{1,2}.\d{1,8}),("{"type":.*)',engine="python")
# some cleanup
df = df.drop(df.columns[0], axis=1)
# I had to save the processed file
df.to_csv('test_01.csv')
# read in the new file
df = pd.read_csv('test_01.csv', header=None, index_col=0)
print(df.to_string(index=False))
11.54 0.0 "{"type":"Polygon","coordinates":[[[-61.3115751786311,-33.83968838375797],[-61.29737019968823,-33.83207774370677],[-61.29443049860791,-33.83592770721248],[-61.29241347742871,-33.83489393774538],[-61.28994584513501,-33.83806650089736],[-61.292499308117186,-33.83938539699006],[-61.28958106470898,-33.8431993873636],[-61.29307859612687,-33.84495487100211],[-61.295256567865046,-33.846135537383866],[-61.296388484054326,-33.84676149889543],[-61.296747927196776,-33.84651421268175],[-61.297498943449426,-33.84670133707654],[-61.297992472179686,-33.847120134589964],[-61.299741220055196,-33.84901812154847],[-61.3012164422457,-33.85018089588664],[-61.3015892874819,-33.850566250375365],[-61.30284190607861,-33.85079121660985],[-61.30496105223345,-33.848193766906206],[-61.306084952130036,-33.84682375029292],[-61.30707604410075,-33.845532812572294],[-61.30672627175046,-33.84527169005647],[-61.306290670206494,-33.845188781884744],[-61.304604048903514,-33.847304098561025],[-61.30309763921784,-33.84654473836309],[-61.30013213880613,-33.84478736144466],[-61.30110629620797,-33.8431690707163],[-61.303046037678854,-33.844170576767105],[-61.30433047221653,-33.84266156764314],[-61.30484242472771,-33.842899106713375],[-61.30696068650711,-33.844104878773436],[-61.306418212892446,-33.84505221083753],[-61.307163201216696,-33.845464893960255],[-61.30760172622554,-33.84490909256552],[-61.307932962646014,-33.844513681420494],[-61.309176116985405,-33.84280834206188],[-61.30596211112515,-33.841126948963954],[-61.3056475423994,-33.841449215098756],[-61.30526859890979,-33.841557611902374],[-61.30483601097522,-33.84149669494795],[-61.30448925534122,-33.84120408616046],[-61.30410688411086,-33.840609953572034],[-61.30400151682434,-33.839925243738094],[-61.30240379835875,-33.83889223688216],[-61.30188418287129,-33.838444480832685],[-61.301130848179525,-33.83943255499186],[-61.30078636095504,-33.83996223583909],[-61.30059265818967,-33.84016469670277],[-61.30048478527255,-33.840438447848506],[-61.300252198180424,-33.84026774340676],[-61.29876711207748,-33.839489883020924],[-61.29799408649143,-33.840597902688785],[-61.297669258508,-33.84103160870988],[-61.297566592962134,-33.84112444052047],[-61.29748538503245,-33.841083604060834],[-61.297140578061956,-33.84134946797752],[-61.29709617977233,-33.84160419097128],[-61.297170540239335,-33.84168254110631],[-61.297341460506956,-33.84179653572337],[-61.297243418161194,-33.84197105818567],[-61.29699517169225,-33.84200300239938],[-61.29680176950715,-33.84179064473802],[-61.29691703393983,-33.8416707218475],[-61.297053755769845,-33.841604265738546],[-61.29707920124143,-33.84154875978832],[-61.29709391784669,-33.84147543150246],[-61.29711262215961,-33.84133768608576],[-61.296951411710374,-33.84119216012805],[-61.297262269660294,-33.84089514360839],[-61.297626491077864,-33.84051497848962],[-61.29865532547658,-33.83935363544152],[-61.30027710358755,-33.84011486145675],[-61.30046658230606,-33.83996490243917],[-61.30063460268783,-33.83979712050095],[-61.300992098665965,-33.8393813535522],[-61.301799802937595,-33.83832425565103],[-61.30135527704997,-33.837671541923235],[-61.30082030025984,-33.83731962483044],[-61.299512855628244,-33.83689640801839],[-61.29879550338594,-33.8363083288346],[-61.29831419490918,-33.835559835856905],[-61.298360098160686,-33.83408067231082],[-61.29976541168753,-33.83467181800819],[-61.30104200723692,-33.83586895614681],[-61.30133434017162,-33.83606352507277],[-61.30153415160492,-33.836339043812224],[-61.30164813329583,-33.83657891551336],[-61.30124575062752,-33.83743146168004],[-61.30195917352424,-33.83831965157767],[-61.30196183786503,-33.83843401993221],[-61.30250094586367,-33.83890484694379],[-61.304002690127376,-33.83984352469762],[-61.30473149692381,-33.8397514189025],[-61.3054487998093,-33.839941491549894],[-61.30582354557356,-33.84016574092716],[-61.30604808932503,-33.84046128014441],[-61.306143888278996,-33.840801374736316],[-61.30598219492593,-33.841088001849094],[-61.30757239940571,-33.841967156609876],[-61.30920555104759,-33.84277500140921],[-61.3115751786311,-33.83968838375797],[-61.3115751786311,-33.83968838375797]]]}"
Try this:
pd.read_csv('file.csv',quotechar='"',skipinitialspace=True)
I am loading a txt file containig a mix of float and string data. I want to store them in an array where I can access each element. Now I am just doing
import pandas as pd
data = pd.read_csv('output_list.txt', header = None)
print data
This is the structure of the input file: 1 0 2000.0 70.2836942112 1347.28369421 /file_address.txt.
Now the data are imported as a unique column. How can I divide it, so to store different elements separately (so I can call data[i,j])? And how can I define a header?
You can use:
data = pd.read_csv('output_list.txt', sep=" ", header=None)
data.columns = ["a", "b", "c", "etc."]
Add sep=" " in your code, leaving a blank space between the quotes. So pandas can detect spaces between values and sort in columns. Data columns is for naming your columns.
I'd like to add to the above answers, you could directly use
df = pd.read_fwf('output_list.txt')
fwf stands for fixed width formatted lines.
You can do as:
import pandas as pd
df = pd.read_csv('file_location\filename.txt', delimiter = "\t")
(like, df = pd.read_csv('F:\Desktop\ds\text.txt', delimiter = "\t")
#Pietrovismara's solution is correct but I'd just like to add: rather than having a separate line to add column names, it's possible to do this from pd.read_csv.
df = pd.read_csv('output_list.txt', sep=" ", header=None, names=["a", "b", "c"])
you can use this
import pandas as pd
dataset=pd.read_csv("filepath.txt",delimiter="\t")
If you don't have an index assigned to the data and you are not sure what the spacing is, you can use to let pandas assign an index and look for multiple spaces.
df = pd.read_csv('filename.txt', delimiter= '\s+', index_col=False)
Based on the latest changes in pandas, you can use, read_csv , read_table is deprecated:
import pandas as pd
pd.read_csv("file.txt", sep = "\t")
If you want to load the txt file with specified column name, you can use the code below. It worked for me.
import pandas as pd
data = pd.read_csv('file_name.txt', sep = "\t", names = ['column1_name','column2_name', 'column3_name'])
You can import the text file using the read_table command as so:
import pandas as pd
df=pd.read_table('output_list.txt',header=None)
Preprocessing will need to be done after loading
I usually take a look at the data first or just try to import it and do data.head(), if you see that the columns are separated with \t then you should specify sep="\t" otherwise, sep = " ".
import pandas as pd
data = pd.read_csv('data.txt', sep=" ", header=None)
You can use it which is most helpful.
df = pd.read_csv(('data.txt'), sep="\t", skiprows=[0,1], names=['FromNode','ToNode'])