I created a variable conID in one function and I want to use it in another. Both functions are inside a class.
The problem is that in the second function the first function is called, so self.reqSecDefOptParams calls the first function. And after that conID receives it value. If I try to output condID in the second function I can't, it says its value is still None. Is there a way to first call the first function and then output the value in the same function?
The first function:
def contractDetails(self, reqId: int, contractDetails: ContractDetails):
string = str((contractDetails))
letter_list = string.split(",")
print(letter_list)
conID = letter_list[90] # the variable I need
The second function:
def start(self):
# using the variable again
self.reqSecDefOptParams(1, contract.symbol, "", "STK", conID)
Update: I get an error connecting to the socket. What can I do?
Error: 4 10167 Requested market data is not subscribed. Displaying delayed market data.
Error: 4 10090 Part of requested market data is not subscribed. Subscription-independent ticks are still active.Delayed market data is available.AAPL NASDAQ.NMS/TOP/ALL
unhandled exception in EReader thread
Traceback (most recent call last):
File "C:\Programming\TWS\source\pythonclient\ibapi\reader.py", line 34, in run
data = self.conn.recvMsg()
File "C:\Programming\TWS\source\pythonclient\ibapi\connection.py", line 99, in recvMsg
buf = self._recvAllMsg()
File "C:\Programming\TWS\source\pythonclient\ibapi\connection.py", line 119, in _recvAllMsg
buf = self.socket.recv(4096)
OSError: [WinError 10038] An operation was attempted on something that is not a socket
Process finished with exit code 0
Your last question had more information, I upvoted so I could find it but it disappeared. I will just fix up that code so you can see how it works in interaction with the API.
There are at least 2 ways to get option contracts. The first is just ask for them but don't fill out all the parameters, then contractDetails will return all matching contracts. The second is to just ask for all parameters but you won't know if all contracts are traded.
I put numbers in the code comments for an idea of how the program flow works.
from ibapi.client import EClient
from ibapi.wrapper import EWrapper
from ibapi.common import TickerId, SetOfFloat, SetOfString, MarketDataTypeEnum
from ibapi.contract import Contract, ContractDetails
from ibapi.ticktype import TickType
class TestApp(EClient, EWrapper):
def __init__(self):
EClient.__init__(self, self)
self.underlyingContract = None
self.opts = []
self.optParams = ()
self.greeks = []
def error(self, reqId:TickerId, errorCode:int, errorString:str):
print("Error: ", reqId, "", errorCode, "", errorString)
def nextValidId(self, orderId):
self.start() #1
def contractDetails(self, reqId:int, contractDetails:ContractDetails, ):
if contractDetails.contract.secType == "OPT":#2,3 (2 contracts, P+C)
self.opts.append(contractDetails.contract)
if contractDetails.contract.secType == "STK":#4
self.underlyingContract = contractDetails.contract
self.reqSecDefOptParams(3,self.underlyingContract.symbol,"","STK",
self.underlyingContract.conId)#5
def contractDetailsEnd(self, reqId):
print("\ncontractDetails End\n")#3,4
def securityDefinitionOptionParameter(self, reqId:int, exchange:str,
underlyingConId:int, tradingClass:str, multiplier:str,
expirations:SetOfString, strikes:SetOfFloat):
#6
self.optParams = (exchange, underlyingConId, tradingClass, multiplier, expirations, strikes)
def securityDefinitionOptionParameterEnd(self, reqId:int):
print("SecurityDefinitionOptionParameterEnd. ReqId",reqId)
# make a contract out of params or just use contract from earlier
if len(self.opts) > 0:
self.reqMktData(4,self.opts[0],"",False,False,[])#7
def tickOptionComputation(self, reqId:TickerId, tickType:TickType,
impliedVol:float, delta:float, optPrice:float, pvDividend:float,
gamma:float, vega:float, theta:float, undPrice:float):
self.greeks.append([optPrice,delta,impliedVol,undPrice]) #8
# just stop after first callback but you could set a time or something else
# if you don't get data, the program won't end unless you ctrl-c or something
self.stop() #9
def start(self):
# get some option contracts, not all
opts = Contract()
opts.symbol = 'AAPL'
opts.secType = 'OPT'
opts.exchange = 'SMART'
opts.currency = 'USD'
opts.strike="140"
#opts.right="P" # ambiguous so as to get multiple contracts
opts.multiplier="100"
opts.lastTradeDateOrContractMonth = '20211015'
self.reqContractDetails(1, opts) #2
# get just underlying conId
underlying = Contract()
underlying.symbol = 'AAPL'
underlying.secType = 'STK'
underlying.exchange = 'SMART'
underlying.currency = 'USD'
self.reqContractDetails(2, underlying) #4
# in case you don't have data subscription
self.reqMarketDataType(MarketDataTypeEnum.DELAYED)
def stop(self):
self.disconnect() #10
app = TestApp()
app.connect("127.0.0.1", 7497, 123)
app.run() # starts a reader thread that will block until disconnect()
#11 after disconnect, program can continue
# I just do this so I can use spyder variable inspector but you could print
uc = app.underlyingContract
opts = app.opts
params = app.optParams
greeks = app.greeks
Welcome #LaForge1071! You have a few ways you can do this! One way you might do this is by passing the variable to the new function like this
def func_a():
foo = 'bar'
func_b(foo)
def func_b(var):
print(var)
func_a()
or, and I don't recommend this, you can use global scope to solve this like so,
def func_a():
global foo
foo = 'bar'
func_b()
def func_b():
print(foo)
func_a()
You said both function are in one class, so maybe declare the variable to be a class variable:
class A:
def __init__(self):
self.foo = None
def func_a(self):
self.foo = "Hello"
def func_b(self):
if self.foo is not None:
print(self.foo)
you can declare this variable in init funciton ,just like constrution function in c/c++.
def __init__(self):
self.foo = init_value
Related
I have a script that watches for changes in file and if occurred it should trigger some actions. Those actions come from two functions defined outside Class. In Class I have defined portion of code to look for changes in file. I cannot figure out how to pass two functions in Class arguments. Here is simplified portion of my script:
import time, os
watch_file = 'my_file.txt'
def first_action():
print('First action called')
def second_action():
print('Second action called')
class Watcher():
def __init__(self, watch_file, first_action=None, second_action=None):
self._cached_stamp = 0
self.filename = watch_file
self.first_action = first_action
self.second_action = second_action
# Look for changes in 'my_file.txt'
def look(self):
stamp = os.stat(self.filename).st_mtime
if stamp != self._cached_stamp:
self._cached_stamp = stamp
# File has changed, so do something...
print('File changed')
if self.first_action is not None:
print('Call first action')
self.first_action(self)
if self.second_action is not None:
print('Call second action')
self.second_action(self)
watcher = Watcher(watch_file, first_action(), second_action())
Doing it like above calls first_action() and second_action() but not inside Class. I know it because I dont see printed 'Call first action' or 'Call second action'
I was able to correctly trigger first action with below code:
watch_file = 'my_file.txt'
def first_action():
print('First action called')
def second_action():
print('Second action called')
class Watcher():
def __init__(self, watch_file, first_action=None, *args):
self._cached_stamp = 0
self.filename = watch_file
self.first_action = first_action
self.args = args
# Look for changes in 'my_file.txt'
def look(self):
stamp = os.stat(self.filename).st_mtime
if stamp != self._cached_stamp:
self._cached_stamp = stamp
# File has changed, so do something...
print('File changed')
if self.first_action is not None:
print('Call first action')
self.first_action(*self.args)
watcher = Watcher(watch_file, first_action)
For some reason I need to specify *args even for function which does not take any argument on call. Can someone explain why *args must be used?
You did it right in the init, but not in the call of "Watcher". To pass the function itself, instead of it's return value, you have to remove the braces.
watcher = Watcher(watch_file, first_action, second_action)
And you should be fine.
I have a class, 'Listener', that connects callbacks to D-Bus signals. The callbacks and signal names are provided by another class, 'Client'. If the callbacks provided by Client are passed to connect_to_signal (on dbus.Interface) as the callbacks to use when signals are received, everything works as expected, i.e. the callback method in class Client is called when the connected signal is received.
However, if I want to 'intercept' the signal and evaluate the payload before proceeding to call the Clients callback, I figured I could use a lambda expression and pass it to the connect_to_signal method, as in the example below:
import dbus
from dbus.mainloop.glib import DBusGMainLoop
DBusGMainLoop(set_as_default=True)
from gi.repository import GObject
class Client(object):
def __init__(self):
bus = dbus.SystemBus()
obj = bus.get_object("org.freedesktop.UDisks", "/org/freedesktop/UDisks")
interface = dbus.Interface(obj, "org.freedesktop.UDisks")
listener = Listener()
signals_and_callbacks = {"DeviceAdded": self.device_added,
"DeviceChanged": self.device_changed}
listener.listen_to_signals(interface, signals_and_callbacks)
def device_added(self, payload):
print "in device_added ", payload
def device_changed(self, payload):
print "in device_changed ", payload
class Listener(object):
def listen_to_signals(self, interface, signals_and_callbacks):
for signal, callback in signals_and_callbacks.items():
cb = lambda x: self.signal_cb(x, callback)
interface.connect_to_signal(signal, cb)
def signal_cb(self, opath, subscriber_cb):
print subscriber_cb
subscriber_cb(opath)
if __name__ == "__main__":
client = Client()
mainloop = GObject.MainLoop()
mainloop.run()
But this does not work as intended. The signals gets connected, in this case the code reacts to both 'DeviceAdded' and 'DeviceChanged', but only the last callback added gets called. If I only connect one signal the behaviour is as expected, but as soon as I connect more than one signal, passing lambda expressions as callbacks, both signals triggers the call to the last callback added.
Does anyone have any idea what's going on here?
The basic problem is Python's scoping rules and how you set up the callback.
This example illustrates your problem (and the solution):
def test1():
print("test1")
def test2():
print("test2")
def caller(name, fn):
print("calling function with name: {}".format(name))
fn()
class Driver(object):
def __init__(self):
self.signals = []
def connect_to_signal(self, name, what_to_call):
self.signals.append((name, what_to_call))
def run(self):
for name, signal in self.signals:
signal(1)
def main():
signals = {'test1':test1, 'test2':test2}
d = Driver()
for signal, callback in signals.items():
cb = lambda x: caller(signal, callback)
#cb = lambda x,s=signal,c=callback: caller(s, c) # TRY THIS INSTEAD!
d.connect_to_signal(signal, cb)
d.run()
if __name__ == '__main__':
main()
If you run this function as-is, you get the following:
calling function with name: test2
test2
calling function with name: test2
test2
If you comment out the line starting cb = lambda x, and uncomment the following line, you now get the desired:
calling function with name: test1
test1
calling function with name: test2
test2
The reason is that you need to capture the variables in your lambda expression, or their values will just be what they are at the end of your loop.
I am trying to do a progress bar.
Would it be possible to count the number of execution lines on a script and associate each execution line with a function so that it is executed every line or every 5 lines?
My plan is to update a progress bar every time a line is executed.
Is it possible? Can I use decorators to do it?
Yep, you can do that by asking Python to alert you every time it processes a line. Here's an example that prints to stdout after every updatelines times a line is executed:
import sys
class EveryNLines(object):
def __init__(self, updatelines):
self.processed = 0
self.updatelines = updatelines
def __call__(self, frame, event, arg):
if event == 'line':
self.processed += 1
if not self.processed % self.updatelines:
print 'do something'
return self
def testloop():
for i in range(5):
print i
oldtracer = sys.gettrace()
sys.settrace(EveryNLines(3))
testloop()
sys.settrace(oldtracer)
You could certainly turn that into a decorator for convenience.
Could you benefit from an Observer object?
class Observer(object):
def __init__(self):
self._subjects = []
def add_subject(self, subject):
self._subjects.append(subject)
def notify(self, percentage):
for subject in self._subjects:
subject.notify(percentage)
class Subject(object):
def notify(self, percentage):
# in this example, I assume that you have a class
# that understand what does "update_progress_bar(%)" means
# and it is inheriting from `Subject`
self.update_progress_bar(percentage)
s = Subject()
o = Observer()
o.add_subject(s)
# your code
def my_fun():
blah()
blah2()
o.notify(20)
blah3()
o.notify(30)
blah4()
o.notify(100)
So, you create an Observer class whose only purpose is to keep track of the runtime. You can create one or several Subject objects which can be notified by the Observer: in this case they get notified the percentage completion. When each Subject gets notified, they can do whatever they want to, like update a progress bar.
Does Python have a function similar to JavaScript's setInterval()?
I would like to have:
def set_interval(func, interval):
...
That will call func every interval time units.
This might be the correct snippet you were looking for:
import threading
def set_interval(func, sec):
def func_wrapper():
set_interval(func, sec)
func()
t = threading.Timer(sec, func_wrapper)
t.start()
return t
This is a version where you could start and stop.
It is not blocking.
There is also no glitch as execution time error is not added (important for long time execution with very short interval as audio for example)
import time, threading
StartTime=time.time()
def action() :
print('action ! -> time : {:.1f}s'.format(time.time()-StartTime))
class setInterval :
def __init__(self,interval,action) :
self.interval=interval
self.action=action
self.stopEvent=threading.Event()
thread=threading.Thread(target=self.__setInterval)
thread.start()
def __setInterval(self) :
nextTime=time.time()+self.interval
while not self.stopEvent.wait(nextTime-time.time()) :
nextTime+=self.interval
self.action()
def cancel(self) :
self.stopEvent.set()
# start action every 0.6s
inter=setInterval(0.6,action)
print('just after setInterval -> time : {:.1f}s'.format(time.time()-StartTime))
# will stop interval in 5s
t=threading.Timer(5,inter.cancel)
t.start()
Output is :
just after setInterval -> time : 0.0s
action ! -> time : 0.6s
action ! -> time : 1.2s
action ! -> time : 1.8s
action ! -> time : 2.4s
action ! -> time : 3.0s
action ! -> time : 3.6s
action ! -> time : 4.2s
action ! -> time : 4.8s
Just keep it nice and simple.
import threading
def setInterval(func,time):
e = threading.Event()
while not e.wait(time):
func()
def foo():
print "hello"
# using
setInterval(foo,5)
# output:
hello
hello
.
.
.
EDIT : This code is non-blocking
import threading
class ThreadJob(threading.Thread):
def __init__(self,callback,event,interval):
'''runs the callback function after interval seconds
:param callback: callback function to invoke
:param event: external event for controlling the update operation
:param interval: time in seconds after which are required to fire the callback
:type callback: function
:type interval: int
'''
self.callback = callback
self.event = event
self.interval = interval
super(ThreadJob,self).__init__()
def run(self):
while not self.event.wait(self.interval):
self.callback()
event = threading.Event()
def foo():
print "hello"
k = ThreadJob(foo,event,2)
k.start()
print "It is non-blocking"
Change Nailxx's answer a bit and you got the answer!
from threading import Timer
def hello():
print "hello, world"
Timer(30.0, hello).start()
Timer(30.0, hello).start() # after 30 seconds, "hello, world" will be printed
The sched module provides these abilities for general Python code. However, as its documentation suggests, if your code is multithreaded it might make more sense to use the threading.Timer class instead.
I think this is what you're after:
#timertest.py
import sched, time
def dostuff():
print "stuff is being done!"
s.enter(3, 1, dostuff, ())
s = sched.scheduler(time.time, time.sleep)
s.enter(3, 1, dostuff, ())
s.run()
If you add another entry to the scheduler at the end of the repeating method, it'll just keep going.
I use sched to create setInterval function gist
import functools
import sched, time
s = sched.scheduler(time.time, time.sleep)
def setInterval(sec):
def decorator(func):
#functools.wraps(func)
def wrapper(*argv, **kw):
setInterval(sec)(func)
func(*argv, **kw)
s.enter(sec, 1, wrapper, ())
return wrapper
s.run()
return decorator
#setInterval(sec=3)
def testInterval():
print ("test Interval ")
testInterval()
Simple setInterval utils
from threading import Timer
def setInterval(timer, task):
isStop = task()
if not isStop:
Timer(timer, setInterval, [timer, task]).start()
def hello():
print "do something"
return False # return True if you want to stop
if __name__ == "__main__":
setInterval(2.0, hello) # every 2 seconds, "do something" will be printed
The above method didn't quite do it for me as I needed to be able to cancel the interval. I turned the function into a class and came up with the following:
class setInterval():
def __init__(self, func, sec):
def func_wrapper():
self.t = threading.Timer(sec, func_wrapper)
self.t.start()
func()
self.t = threading.Timer(sec, func_wrapper)
self.t.start()
def cancel(self):
self.t.cancel()
Most of the answers above do not shut down the Thread properly. While using Jupyter notebook I noticed that when an explicit interrupt was sent, the threads were still running and worse, they would keep multiplying starting at 1 thread running,2, 4 etc. My method below is based on the answer by #doom but cleanly handles interrupts by running an infinite loop in the Main thread to listen for SIGINT and SIGTERM events
No drift
Cancelable
Handles SIGINT and SIGTERM very well
Doesnt make a new thread for every run
Feel free to suggest improvements
import time
import threading
import signal
# Record the time for the purposes of demonstration
start_time=time.time()
class ProgramKilled(Exception):
"""
An instance of this custom exception class will be thrown everytime we get an SIGTERM or SIGINT
"""
pass
# Raise the custom exception whenever SIGINT or SIGTERM is triggered
def signal_handler(signum, frame):
raise ProgramKilled
# This function serves as the callback triggered on every run of our IntervalThread
def action() :
print('action ! -> time : {:.1f}s'.format(time.time()-start_time))
# https://stackoverflow.com/questions/2697039/python-equivalent-of-setinterval
class IntervalThread(threading.Thread) :
def __init__(self,interval,action, *args, **kwargs) :
super(IntervalThread, self).__init__()
self.interval=interval
self.action=action
self.stopEvent=threading.Event()
self.start()
def run(self) :
nextTime=time.time()+self.interval
while not self.stopEvent.wait(nextTime-time.time()) :
nextTime+=self.interval
self.action()
def cancel(self) :
self.stopEvent.set()
def main():
# Handle SIGINT and SIFTERM with the help of the callback function
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
# start action every 1s
inter=IntervalThread(1,action)
print('just after setInterval -> time : {:.1f}s'.format(time.time()-start_time))
# will stop interval in 500s
t=threading.Timer(500,inter.cancel)
t.start()
# https://www.g-loaded.eu/2016/11/24/how-to-terminate-running-python-threads-using-signals/
while True:
try:
time.sleep(1)
except ProgramKilled:
print("Program killed: running cleanup code")
inter.cancel()
break
if __name__ == "__main__":
main()
In the above solutions if a situation arises where program is shutdown, there is no guarantee that it will shutdown gracefully,Its always recommended to shut a program via a soft kill, neither did most of them have a function to stop I found a nice article on medium written by Sankalp which solves both of these issues (run periodic tasks in python) refer the attached link to get a deeper insight.
In the below sample a library named signal is used to track the kill is soft kill or a hard kill
import threading, time, signal
from datetime import timedelta
WAIT_TIME_SECONDS = 1
class ProgramKilled(Exception):
pass
def foo():
print time.ctime()
def signal_handler(signum, frame):
raise ProgramKilled
class Job(threading.Thread):
def __init__(self, interval, execute, *args, **kwargs):
threading.Thread.__init__(self)
self.daemon = False
self.stopped = threading.Event()
self.interval = interval
self.execute = execute
self.args = args
self.kwargs = kwargs
def stop(self):
self.stopped.set()
self.join()
def run(self):
while not self.stopped.wait(self.interval.total_seconds()):
self.execute(*self.args, **self.kwargs)
if __name__ == "__main__":
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
job = Job(interval=timedelta(seconds=WAIT_TIME_SECONDS), execute=foo)
job.start()
while True:
try:
time.sleep(1)
except ProgramKilled:
print "Program killed: running cleanup code"
job.stop()
break
#output
#Tue Oct 16 17:47:51 2018
#Tue Oct 16 17:47:52 2018
#Tue Oct 16 17:47:53 2018
#^CProgram killed: running cleanup code
setInterval should be run on multiple thread, and not freeze the task when it running loop.
Here is my RUNTIME package that support multithread feature:
setTimeout(F,ms) : timming to fire function in independence thread.
delayF(F,ms) : similar setTimeout(F,ms).
setInterval(F,ms) : asynchronous loop
.pause, .resume : pause and resume the interval
clearInterval(interval) : clear the interval
It's short and simple. Note that python need lambda if you input direct the function, but lambda is not support command block, so you should define the function content before put it in the setInterval.
### DEMO PYTHON MULTITHREAD ASYNCHRONOUS LOOP ###
import time;
import threading;
import random;
def delay(ms):time.sleep(ms/1000); # Controil while speed
def setTimeout(R,delayMS):
t=threading.Timer(delayMS/1000,R)
t.start();
return t;
def delayF(R,delayMS):
t=threading.Timer(delayMS/1000,R)
t.start();
return t;
class THREAD:
def __init__(this):
this.R_onRun=None;
this.thread=None;
def run(this):
this.thread=threading.Thread(target=this.R_onRun);
this.thread.start();
def isRun(this): return this.thread.isAlive();
class setInterval :
def __init__(this,R_onRun,msInterval) :
this.ms=msInterval;
this.R_onRun=R_onRun;
this.kStop=False;
this.thread=THREAD();
this.thread.R_onRun=this.Clock;
this.thread.run();
def Clock(this) :
while not this.kStop :
this.R_onRun();
delay(this.ms);
def pause(this) :
this.kStop=True;
def stop(this) :
this.kStop=True;
def resume(this) :
if (this.kStop) :
this.kStop=False;
this.thread.run();
def clearInterval(Timer): Timer.stop();
# EXAMPLE
def p():print(random.random());
tm=setInterval(p,20);
tm2=setInterval(lambda:print("AAAAA"),20);
delayF(tm.pause,1000);
delayF(tm.resume,2000);
delayF(lambda:clearInterval(tm),3000);
Save to file .py and run it. You will see it print both random number and string "AAAAA". The print number thread will pause printing after 1 second and resume print again for 1 second then stop, while the print string keep printing text not corrupt.
In case you use OpenCV for graphic animation with those setInterval for boost animate speed, you must have 1 main thread to apply waitKey, otherwise the window will freeze no matter how slow delay or you applied waitKey in sub thread:
def p:... # Your drawing task
setInterval(p,1); # Subthread1 running draw
setInterval(p,1); # Subthread2 running draw
setInterval(p,1); # Subthread3 running draw
while True: cv2.waitKey(10); # Main thread which waitKey have effect
You can also try out this method:
import time
while True:
time.sleep(5)
print("5 seconds has passed")
So it will print "5 seconds has passed" every 5 seconds.
The function sleep() suspends execution for the given number of seconds. The argument may be a floating point number to indicate a more precise sleep time.
Recently, I have the same issue as you. And I find these soluation:
1. you can use the library: threading.Time(this have introduction above)
2. you can use the library: sched(this have introduction above too)
3. you can use the library: Advanced Python Scheduler(Recommend)
Some answers above that uses func_wrapper and threading.Timer indeed work, except that it spawns a new thread every time an interval is called, which is causing memory problems.
The basic example below roughly implemented a similar mechanism by putting interval on a separate thread. It sleeps at the given interval. Before jumping into code, here are some of the limitations that you need to be aware of:
JavaScript is single threaded, so when the function inside setInterval is fired, nothing else will be working at the same time (excluding worker thread, but let's talk general use case of setInterval. Therefore, threading is safe. But here in this implementation, you may encounter race conditions unless using a threading.rLock.
The implementation below uses time.sleep to simulate intervals, but adding the execution time of func, the total time for this interval may be greater than what you expect. So depending on use cases, you may want to "sleep less" (minus time taken for calling func)
I only roughly tested this, and you should definitely not use global variables the way I did, feel free to tweak it so that it fits in your system.
Enough talking, here is the code:
# Python 2.7
import threading
import time
class Interval(object):
def __init__(self):
self.daemon_alive = True
self.thread = None # keep a reference to the thread so that we can "join"
def ticktock(self, interval, func):
while self.daemon_alive:
time.sleep(interval)
func()
num = 0
def print_num():
global num
num += 1
print 'num + 1 = ', num
def print_negative_num():
global num
print '-num = ', num * -1
intervals = {} # keep track of intervals
g_id_counter = 0 # roughly generate ids for intervals
def set_interval(interval, func):
global g_id_counter
interval_obj = Interval()
# Put this interval on a new thread
t = threading.Thread(target=interval_obj.ticktock, args=(interval, func))
t.setDaemon(True)
interval_obj.thread = t
t.start()
# Register this interval so that we can clear it later
# using roughly generated id
interval_id = g_id_counter
g_id_counter += 1
intervals[interval_id] = interval_obj
# return interval id like it does in JavaScript
return interval_id
def clear_interval(interval_id):
# terminate this interval's while loop
intervals[interval_id].daemon_alive = False
# kill the thread
intervals[interval_id].thread.join()
# pop out the interval from registry for reusing
intervals.pop(interval_id)
if __name__ == '__main__':
num_interval = set_interval(1, print_num)
neg_interval = set_interval(3, print_negative_num)
time.sleep(10) # Sleep 10 seconds on main thread to let interval run
clear_interval(num_interval)
clear_interval(neg_interval)
print "- Are intervals all cleared?"
time.sleep(3) # check if both intervals are stopped (not printing)
print "- Yup, time to get beers"
Expected output:
num + 1 = 1
num + 1 = 2
-num = -2
num + 1 = 3
num + 1 = 4
num + 1 = 5
-num = -5
num + 1 = 6
num + 1 = 7
num + 1 = 8
-num = -8
num + 1 = 9
num + 1 = 10
-num = -10
Are intervals all cleared?
Yup, time to get beers
My Python 3 module jsinterval.py will be helpful! Here it is:
"""
Threaded intervals and timeouts from JavaScript
"""
import threading, sys
__all__ = ['TIMEOUTS', 'INTERVALS', 'setInterval', 'clearInterval', 'setTimeout', 'clearTimeout']
TIMEOUTS = {}
INTERVALS = {}
last_timeout_id = 0
last_interval_id = 0
class Timeout:
"""Class for all timeouts."""
def __init__(self, func, timeout):
global last_timeout_id
last_timeout_id += 1
self.timeout_id = last_timeout_id
TIMEOUTS[str(self.timeout_id)] = self
self.func = func
self.timeout = timeout
self.threadname = 'Timeout #%s' %self.timeout_id
def run(self):
func = self.func
delx = self.__del__
def func_wrapper():
func()
delx()
self.t = threading.Timer(self.timeout/1000, func_wrapper)
self.t.name = self.threadname
self.t.start()
def __repr__(self):
return '<JS Timeout set for %s seconds, launching function %s on timeout reached>' %(self.timeout, repr(self.func))
def __del__(self):
self.t.cancel()
class Interval:
"""Class for all intervals."""
def __init__(self, func, interval):
global last_interval_id
self.interval_id = last_interval_id
INTERVALS[str(self.interval_id)] = self
last_interval_id += 1
self.func = func
self.interval = interval
self.threadname = 'Interval #%s' %self.interval_id
def run(self):
func = self.func
interval = self.interval
def func_wrapper():
timeout = Timeout(func_wrapper, interval)
self.timeout = timeout
timeout.run()
func()
self.t = threading.Timer(self.interval/1000, func_wrapper)
self.t.name = self.threadname
self.t.run()
def __repr__(self):
return '<JS Interval, repeating function %s with interval %s>' %(repr(self.func), self.interval)
def __del__(self):
self.timeout.__del__()
def setInterval(func, interval):
"""
Create a JS Interval: func is the function to repeat, interval is the interval (in ms)
of executing the function.
"""
temp = Interval(func, interval)
temp.run()
idx = int(temp.interval_id)
del temp
return idx
def clearInterval(interval_id):
try:
INTERVALS[str(interval_id)].__del__()
del INTERVALS[str(interval_id)]
except KeyError:
sys.stderr.write('No such interval "Interval #%s"\n' %interval_id)
def setTimeout(func, timeout):
"""
Create a JS Timeout: func is the function to timeout, timeout is the timeout (in ms)
of executing the function.
"""
temp = Timeout(func, timeout)
temp.run()
idx = int(temp.timeout_id)
del temp
return idx
def clearTimeout(timeout_id):
try:
TIMEOUTS[str(timeout_id)].__del__()
del TIMEOUTS[str(timeout_id)]
except KeyError:
sys.stderr.write('No such timeout "Timeout #%s"\n' %timeout_id)
CODE EDIT:
Fixed the memory leak (spotted by #benjaminz). Now ALL threads are cleaned up upon end. Why does this leak happen? It happens because of the implicit (or even explicit) references. In my case, TIMEOUTS and INTERVALS. Timeouts self-clean automatically (after this patch) because they use function wrapper which calls the function and then self-kills. But how does this happen? Objects can't be deleted from memory unless all references are deleted too or gc module is used. Explaining: there's no way to create (in my code) unwanted references to timeouts/intervals. They have only ONE referrer: the TIMEOUTS/INTERVALS dicts. And, when interrupted or finished (only timeouts can finish uninterrupted) they delete the only existing reference to themselves: their corresponding dict element. Classes are perfectly encapsulated using __all__, so no space for memory leaks.
Here is a low time drift solution that uses a thread to periodically signal an Event object. The thread's run() does almost nothing while waiting for a timeout; hence the low time drift.
# Example of low drift (time) periodic execution of a function.
import threading
import time
# Thread that sets 'flag' after 'timeout'
class timerThread (threading.Thread):
def __init__(self , timeout , flag):
threading.Thread.__init__(self)
self.timeout = timeout
self.stopFlag = False
self.event = threading.Event()
self.flag = flag
# Low drift run(); there is only the 'if'
# and 'set' methods between waits.
def run(self):
while not self.event.wait(self.timeout):
if self.stopFlag:
break
self.flag.set()
def stop(self):
stopFlag = True
self.event.set()
# Data.
printCnt = 0
# Flag to print.
printFlag = threading.Event()
# Create and start the timer thread.
printThread = timerThread(3 , printFlag)
printThread.start()
# Loop to wait for flag and print time.
while True:
global printCnt
# Wait for flag.
printFlag.wait()
# Flag must be manually cleared.
printFlag.clear()
print(time.time())
printCnt += 1
if printCnt == 3:
break;
# Stop the thread and exit.
printThread.stop()
printThread.join()
print('Done')
fall asleep until the next interval of seconds length starts: (not concurrent)
def sleep_until_next_interval(self, seconds):
now = time.time()
fall_asleep = seconds - now % seconds
time.sleep(fall_asleep)
while True:
sleep_until_next_interval(10) # 10 seconds - worktime
# work here
simple and no drift.
I have written my code to make a very very flexible setInterval in python. Here you are:
import threading
class AlreadyRunning(Exception):
pass
class IntervalNotValid(Exception):
pass
class setInterval():
def __init__(this, func=None, sec=None, args=[]):
this.running = False
this.func = func # the function to be run
this.sec = sec # interval in second
this.Return = None # The returned data
this.args = args
this.runOnce = None # asociated with run_once() method
this.runOnceArgs = None # asociated with run_once() method
if (func is not None and sec is not None):
this.running = True
if (not callable(func)):
raise TypeError("non-callable object is given")
if (not isinstance(sec, int) and not isinstance(sec, float)):
raise TypeError("A non-numeric object is given")
this.TIMER = threading.Timer(this.sec, this.loop)
this.TIMER.start()
def start(this):
if (not this.running):
if (not this.isValid()):
raise IntervalNotValid("The function and/or the " +
"interval hasn't provided or invalid.")
this.running = True
this.TIMER = threading.Timer(this.sec, this.loop)
this.TIMER.start()
else:
raise AlreadyRunning("Tried to run an already run interval")
def stop(this):
this.running = False
def isValid(this):
if (not callable(this.func)):
return False
cond1 = not isinstance(this.sec, int)
cond2 = not isinstance(this.sec, float)
if (cond1 and cond2):
return False
return True
def loop(this):
if (this.running):
this.TIMER = threading.Timer(this.sec, this.loop)
this.TIMER.start()
function_, Args_ = this.func, this.args
if (this.runOnce is not None): # someone has provide the run_once
runOnce, this.runOnce = this.runOnce, None
result = runOnce(*(this.runOnceArgs))
this.runOnceArgs = None
# if and only if the result is False. not accept "None"
# nor zero.
if (result is False):
return # cancel the interval right now
this.Return = function_(*Args_)
def change_interval(this, sec):
cond1 = not isinstance(sec, int)
cond2 = not isinstance(sec, float)
if (cond1 and cond2):
raise TypeError("A non-numeric object is given")
# prevent error when providing interval to a blueprint
if (this.running):
this.TIMER.cancel()
this.sec = sec
# prevent error when providing interval to a blueprint
# if the function hasn't provided yet
if (this.running):
this.TIMER = threading.Timer(this.sec, this.loop)
this.TIMER.start()
def change_next_interval(this, sec):
if (not isinstance(sec, int) and not isinstance(sec, float)):
raise TypeError("A non-numeric object is given")
this.sec = sec
def change_func(this, func, args=[]):
if (not callable(func)):
raise TypeError("non-callable object is given")
this.func = func
this.args = args
def run_once(this, func, args=[]):
this.runOnce = func
this.runOnceArgs = args
def get_return(this):
return this.Return
You can get many features and flexibility. Running this code won't freeze your code, you can change the interval at run time, you can change the function at run time, you can pass arguments, you can get the returned object from your function, and many more. You can make your tricks too!
here's a very simple and basic example to use it:
import time
def interval(name="world"):
print(f"Hello {name}!")
# function named interval will be called every two seconds
# output: "Hello world!"
interval1 = setInterval(interval, 2)
# function named interval will be called every 1.5 seconds
# output: "Hello Jane!"
interval2 = setInterval(interval, 1.5, ["Jane"])
time.sleep(5) #stop all intervals after 5 seconds
interval1.stop()
interval2.stop()
Check out my Github project to see more examples and follow next updates :D
https://github.com/Hzzkygcs/setInterval-python
Here's something easy peazy:
import time
delay = 10 # Seconds
def setInterval():
print('I print in intervals!')
time.sleep(delay)
setInterval()
Things work differently in Python: you need to either sleep() (if you want to block the current thread) or start a new thread. See http://docs.python.org/library/threading.html
From Python Documentation:
from threading import Timer
def hello():
print "hello, world"
t = Timer(30.0, hello)
t.start() # after 30 seconds, "hello, world" will be printed
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
Are there any exemplary examples of the GoF Observer implemented in Python? I have a bit code which currently has bits of debugging code laced through the key class (currently generating messages to stderr if a magic env is set). Additionally, the class has an interface for incrementally return results as well as storing them (in memory) for post processing. (The class itself is a job manager for concurrently executing commands on remote machines over ssh).
Currently the usage of the class looks something like:
job = SSHJobMan(hostlist, cmd)
job.start()
while not job.done():
for each in job.poll():
incrementally_process(job.results[each])
time.sleep(0.2) # or other more useful work
post_process(job.results)
An alernative usage model is:
job = SSHJobMan(hostlist, cmd)
job.wait() # implicitly performs a start()
process(job.results)
This all works fine for the current utility. However it does lack flexibility. For example I currently support a brief output format or a progress bar as incremental results, I also support
brief, complete and "merged message" outputs for the post_process() function.
However, I'd like to support multiple results/output streams (progress bar to the terminal, debugging and warnings to a log file, outputs from successful jobs to one file/directory, error messages and other results from non-successful jobs to another, etc).
This sounds like a situation that calls for Observer ... have instances of my class accept registration from other objects and call them back with specific types of events as they occur.
I'm looking at PyPubSub since I saw several references to that in SO related questions. I'm not sure I'm ready to add the external dependency to my utility but I could see value in using their interface as a model for mine if that's going to make it easier for others to use. (The project is intended as both a standalone command line utility and a class for writing other scripts/utilities).
In short I know how to do what I want ... but there are numerous ways to accomplish it. I want suggestions on what's most likely to work for other users of the code in the long run.
The code itself is at: classh.
However it does lack flexibility.
Well... actually, this looks like a good design to me if an asynchronous API is what you want. It usually is. Maybe all you need is to switch from stderr to Python's logging module, which has a sort of publish/subscribe model of its own, what with Logger.addHandler() and so on.
If you do want to support observers, my advice is to keep it simple. You really only need a few lines of code.
class Event(object):
pass
class Observable(object):
def __init__(self):
self.callbacks = []
def subscribe(self, callback):
self.callbacks.append(callback)
def fire(self, **attrs):
e = Event()
e.source = self
for k, v in attrs.items():
setattr(e, k, v)
for fn in self.callbacks:
fn(e)
Your Job class can subclass Observable. When something of interest happens, call self.fire(type="progress", percent=50) or the like.
I think people in the other answers overdo it. You can easily achieve events in Python with less than 15 lines of code.
You simple have two classes: Event and Observer. Any class that wants to listen for an event, needs to inherit Observer and set to listen (observe) for a specific event. When an Event is instantiated and fired, all observers listening to that event will run the specified callback functions.
class Observer():
_observers = []
def __init__(self):
self._observers.append(self)
self._observables = {}
def observe(self, event_name, callback):
self._observables[event_name] = callback
class Event():
def __init__(self, name, data, autofire = True):
self.name = name
self.data = data
if autofire:
self.fire()
def fire(self):
for observer in Observer._observers:
if self.name in observer._observables:
observer._observables[self.name](self.data)
Example:
class Room(Observer):
def __init__(self):
print("Room is ready.")
Observer.__init__(self) # Observer's init needs to be called
def someone_arrived(self, who):
print(who + " has arrived!")
room = Room()
room.observe('someone arrived', room.someone_arrived)
Event('someone arrived', 'Lenard')
Output:
Room is ready.
Lenard has arrived!
A few more approaches...
Example: the logging module
Maybe all you need is to switch from stderr to Python's logging module, which has a powerful publish/subscribe model.
It's easy to get started producing log records.
# producer
import logging
log = logging.getLogger("myjobs") # that's all the setup you need
class MyJob(object):
def run(self):
log.info("starting job")
n = 10
for i in range(n):
log.info("%.1f%% done" % (100.0 * i / n))
log.info("work complete")
On the consumer side there's a bit more work. Unfortunately configuring logger output takes, like, 7 whole lines of code to do. ;)
# consumer
import myjobs, sys, logging
if user_wants_log_output:
ch = logging.StreamHandler(sys.stderr)
ch.setLevel(logging.INFO)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s")
ch.setFormatter(formatter)
myjobs.log.addHandler(ch)
myjobs.log.setLevel(logging.INFO)
myjobs.MyJob().run()
On the other hand there's an amazing amount of stuff in the logging package. If you ever need to send log data to a rotating set of files, an email address, and the Windows Event Log, you're covered.
Example: simplest possible observer
But you don't need to use any library at all. An extremely simple way to support observers is to call a method that does nothing.
# producer
class MyJob(object):
def on_progress(self, pct):
"""Called when progress is made. pct is the percent complete.
By default this does nothing. The user may override this method
or even just assign to it."""
pass
def run(self):
n = 10
for i in range(n):
self.on_progress(100.0 * i / n)
self.on_progress(100.0)
# consumer
import sys, myjobs
job = myjobs.MyJob()
job.on_progress = lambda pct: sys.stdout.write("%.1f%% done\n" % pct)
job.run()
Sometimes instead of writing a lambda, you can just say job.on_progress = progressBar.update, which is nice.
This is about as simple as it gets. One drawback is that it doesn't naturally support multiple listeners subscribing to the same events.
Example: C#-like events
With a bit of support code, you can get C#-like events in Python. Here's the code:
# glue code
class event(object):
def __init__(self, func):
self.__doc__ = func.__doc__
self._key = ' ' + func.__name__
def __get__(self, obj, cls):
try:
return obj.__dict__[self._key]
except KeyError, exc:
be = obj.__dict__[self._key] = boundevent()
return be
class boundevent(object):
def __init__(self):
self._fns = []
def __iadd__(self, fn):
self._fns.append(fn)
return self
def __isub__(self, fn):
self._fns.remove(fn)
return self
def __call__(self, *args, **kwargs):
for f in self._fns[:]:
f(*args, **kwargs)
The producer declares the event using a decorator:
# producer
class MyJob(object):
#event
def progress(pct):
"""Called when progress is made. pct is the percent complete."""
def run(self):
n = 10
for i in range(n+1):
self.progress(100.0 * i / n)
#consumer
import sys, myjobs
job = myjobs.MyJob()
job.progress += lambda pct: sys.stdout.write("%.1f%% done\n" % pct)
job.run()
This works exactly like the "simple observer" code above, but you can add as many listeners as you like using +=. (Unlike C#, there are no event handler types, you don't have to new EventHandler(foo.bar) when subscribing to an event, and you don't have to check for null before firing the event. Like C#, events do not squelch exceptions.)
How to choose
If logging does everything you need, use that. Otherwise do the simplest thing that works for you. The key thing to note is that you don't need to take on a big external dependency.
How about an implementation where objects aren't kept alive just because they're observing something? Below please find an implementation of the observer pattern with the following features:
Usage is pythonic. To add an observer to a bound method .bar of instance foo, just do foo.bar.addObserver(observer).
Observers are not kept alive by virtue of being observers. In other words, the observer code uses no strong references.
No sub-classing necessary (descriptors ftw).
Can be used with unhashable types.
Can be used as many times you want in a single class.
(bonus) As of today the code exists in a proper downloadable, installable package on github.
Here's the code (the github package or PyPI package have the most up to date implementation):
import weakref
import functools
class ObservableMethod(object):
"""
A proxy for a bound method which can be observed.
I behave like a bound method, but other bound methods can subscribe to be
called whenever I am called.
"""
def __init__(self, obj, func):
self.func = func
functools.update_wrapper(self, func)
self.objectWeakRef = weakref.ref(obj)
self.callbacks = {} #observing object ID -> weak ref, methodNames
def addObserver(self, boundMethod):
"""
Register a bound method to observe this ObservableMethod.
The observing method will be called whenever this ObservableMethod is
called, and with the same arguments and keyword arguments. If a
boundMethod has already been registered to as a callback, trying to add
it again does nothing. In other words, there is no way to sign up an
observer to be called back multiple times.
"""
obj = boundMethod.__self__
ID = id(obj)
if ID in self.callbacks:
s = self.callbacks[ID][1]
else:
wr = weakref.ref(obj, Cleanup(ID, self.callbacks))
s = set()
self.callbacks[ID] = (wr, s)
s.add(boundMethod.__name__)
def discardObserver(self, boundMethod):
"""
Un-register a bound method.
"""
obj = boundMethod.__self__
if id(obj) in self.callbacks:
self.callbacks[id(obj)][1].discard(boundMethod.__name__)
def __call__(self, *arg, **kw):
"""
Invoke the method which I proxy, and all of it's callbacks.
The callbacks are called with the same *args and **kw as the main
method.
"""
result = self.func(self.objectWeakRef(), *arg, **kw)
for ID in self.callbacks:
wr, methodNames = self.callbacks[ID]
obj = wr()
for methodName in methodNames:
getattr(obj, methodName)(*arg, **kw)
return result
#property
def __self__(self):
"""
Get a strong reference to the object owning this ObservableMethod
This is needed so that ObservableMethod instances can observe other
ObservableMethod instances.
"""
return self.objectWeakRef()
class ObservableMethodDescriptor(object):
def __init__(self, func):
"""
To each instance of the class using this descriptor, I associate an
ObservableMethod.
"""
self.instances = {} # Instance id -> (weak ref, Observablemethod)
self._func = func
def __get__(self, inst, cls):
if inst is None:
return self
ID = id(inst)
if ID in self.instances:
wr, om = self.instances[ID]
if not wr():
msg = "Object id %d should have been cleaned up"%(ID,)
raise RuntimeError(msg)
else:
wr = weakref.ref(inst, Cleanup(ID, self.instances))
om = ObservableMethod(inst, self._func)
self.instances[ID] = (wr, om)
return om
def __set__(self, inst, val):
raise RuntimeError("Assigning to ObservableMethod not supported")
def event(func):
return ObservableMethodDescriptor(func)
class Cleanup(object):
"""
I manage remove elements from a dict whenever I'm called.
Use me as a weakref.ref callback to remove an object's id from a dict
when that object is garbage collected.
"""
def __init__(self, key, d):
self.key = key
self.d = d
def __call__(self, wr):
del self.d[self.key]
To use this we just decorate methods we want to make observable with #event. Here's an example
class Foo(object):
def __init__(self, name):
self.name = name
#event
def bar(self):
print("%s called bar"%(self.name,))
def baz(self):
print("%s called baz"%(self.name,))
a = Foo('a')
b = Foo('b')
a.bar.addObserver(b.bar)
a.bar()
From wikipedia:
from collections import defaultdict
class Observable (defaultdict):
def __init__ (self):
defaultdict.__init__(self, object)
def emit (self, *args):
'''Pass parameters to all observers and update states.'''
for subscriber in self:
response = subscriber(*args)
self[subscriber] = response
def subscribe (self, subscriber):
'''Add a new subscriber to self.'''
self[subscriber]
def stat (self):
'''Return a tuple containing the state of each observer.'''
return tuple(self.values())
The Observable is used like this.
myObservable = Observable ()
# subscribe some inlined functions.
# myObservable[lambda x, y: x * y] would also work here.
myObservable.subscribe(lambda x, y: x * y)
myObservable.subscribe(lambda x, y: float(x) / y)
myObservable.subscribe(lambda x, y: x + y)
myObservable.subscribe(lambda x, y: x - y)
# emit parameters to each observer
myObservable.emit(6, 2)
# get updated values
myObservable.stat() # returns: (8, 3.0, 4, 12)
Based on Jason's answer, I implemented the C#-like events example as a fully-fledged python module including documentation and tests. I love fancy pythonic stuff :)
So, if you want some ready-to-use solution, you can just use the code on github.
Example: twisted log observers
To register an observer yourCallable() (a callable that accepts a dictionary) to receive all log events (in addition to any other observers):
twisted.python.log.addObserver(yourCallable)
Example: complete producer/consumer example
From Twisted-Python mailing list:
#!/usr/bin/env python
"""Serve as a sample implementation of a twisted producer/consumer
system, with a simple TCP server which asks the user how many random
integers they want, and it sends the result set back to the user, one
result per line."""
import random
from zope.interface import implements
from twisted.internet import interfaces, reactor
from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver
class Producer:
"""Send back the requested number of random integers to the client."""
implements(interfaces.IPushProducer)
def __init__(self, proto, cnt):
self._proto = proto
self._goal = cnt
self._produced = 0
self._paused = False
def pauseProducing(self):
"""When we've produced data too fast, pauseProducing() will be
called (reentrantly from within resumeProducing's transport.write
method, most likely), so set a flag that causes production to pause
temporarily."""
self._paused = True
print('pausing connection from %s' % (self._proto.transport.getPeer()))
def resumeProducing(self):
self._paused = False
while not self._paused and self._produced < self._goal:
next_int = random.randint(0, 10000)
self._proto.transport.write('%d\r\n' % (next_int))
self._produced += 1
if self._produced == self._goal:
self._proto.transport.unregisterProducer()
self._proto.transport.loseConnection()
def stopProducing(self):
pass
class ServeRandom(LineReceiver):
"""Serve up random data."""
def connectionMade(self):
print('connection made from %s' % (self.transport.getPeer()))
self.transport.write('how many random integers do you want?\r\n')
def lineReceived(self, line):
cnt = int(line.strip())
producer = Producer(self, cnt)
self.transport.registerProducer(producer, True)
producer.resumeProducing()
def connectionLost(self, reason):
print('connection lost from %s' % (self.transport.getPeer()))
factory = Factory()
factory.protocol = ServeRandom
reactor.listenTCP(1234, factory)
print('listening on 1234...')
reactor.run()
OP asks "Are there any exemplary examples of the GoF Observer implemented in Python?"
This is an example in Python 3.7. This Observable class meets the requirement of creating a relationship between one observable and many observers while remaining independent of their structure.
from functools import partial
from dataclasses import dataclass, field
import sys
from typing import List, Callable
#dataclass
class Observable:
observers: List[Callable] = field(default_factory=list)
def register(self, observer: Callable):
self.observers.append(observer)
def deregister(self, observer: Callable):
self.observers.remove(observer)
def notify(self, *args, **kwargs):
for observer in self.observers:
observer(*args, **kwargs)
def usage_demo():
observable = Observable()
# Register two anonymous observers using lambda.
observable.register(
lambda *args, **kwargs: print(f'Observer 1 called with args={args}, kwargs={kwargs}'))
observable.register(
lambda *args, **kwargs: print(f'Observer 2 called with args={args}, kwargs={kwargs}'))
# Create an observer function, register it, then deregister it.
def callable_3():
print('Observer 3 NOT called.')
observable.register(callable_3)
observable.deregister(callable_3)
# Create a general purpose observer function and register four observers.
def callable_x(*args, **kwargs):
print(f'{args[0]} observer called with args={args}, kwargs={kwargs}')
for gui_field in ['Form field 4', 'Form field 5', 'Form field 6', 'Form field 7']:
observable.register(partial(callable_x, gui_field))
observable.notify('test')
if __name__ == '__main__':
sys.exit(usage_demo())
A functional approach to observer design:
def add_listener(obj, method_name, listener):
# Get any existing listeners
listener_attr = method_name + '_listeners'
listeners = getattr(obj, listener_attr, None)
# If this is the first listener, then set up the method wrapper
if not listeners:
listeners = [listener]
setattr(obj, listener_attr, listeners)
# Get the object's method
method = getattr(obj, method_name)
#wraps(method)
def method_wrapper(*args, **kwags):
method(*args, **kwags)
for l in listeners:
l(obj, *args, **kwags) # Listener also has object argument
# Replace the original method with the wrapper
setattr(obj, method_name, method_wrapper)
else:
# Event is already set up, so just add another listener
listeners.append(listener)
def remove_listener(obj, method_name, listener):
# Get any existing listeners
listener_attr = method_name + '_listeners'
listeners = getattr(obj, listener_attr, None)
if listeners:
# Remove the listener
next((listeners.pop(i)
for i, l in enumerate(listeners)
if l == listener),
None)
# If this was the last listener, then remove the method wrapper
if not listeners:
method = getattr(obj, method_name)
delattr(obj, listener_attr)
setattr(obj, method_name, method.__wrapped__)
These methods can then be used to add a listener to any class method. For example:
class MyClass(object):
def __init__(self, prop):
self.prop = prop
def some_method(self, num, string):
print('method:', num, string)
def listener_method(obj, num, string):
print('listener:', num, string, obj.prop)
my = MyClass('my_prop')
add_listener(my, 'some_method', listener_method)
my.some_method(42, 'with listener')
remove_listener(my, 'some_method', listener_method)
my.some_method(42, 'without listener')
And the output is:
method: 42 with listener
listener: 42 with listener my_prop
method: 42 without listener