I have an example data frame let's call it df. I want to add more numbers to df but i don't want to start adding after NaN's which will be the index 7 i want to start adding from index 3.
year number letter
0 1945 10 a
1 1950 15 b
2 1955 20 c
3 1960 NaN NaN
4 1965 NaN Nan
5 1970 NaN Nan
6 1975 NaN Nan
Let's say we have a column like this:
number2
0 25
1 30
2 35
3 40
my target is to get a df like this
year number letter
0 1945 10 a
1 1950 15 b
2 1955 20 c
3 1960 25 NaN
4 1965 30 Nan
5 1970 35 Nan
6 1975 40 Nan
I hope I explained it well enough. Thank you for your support !
number2 = [25,30,35,40]
df.loc[df.number.isna(), 'number'] = number2
Result df:
Related
Say I have a vector ValsHR which looks like this:
valsHR=[78.8, 82.3, 91.0]
And I have a dataframe MainData
Age Patient HR
21 1 NaN
21 1 NaN
21 1 NaN
30 2 NaN
30 2 NaN
24 3 NaN
24 3 NaN
24 3 NaN
I want to fill the NaNs so that the first value in valsHR will only fill in the NaNs for patient 1, the second will fill the NaNs for patient 2 and the third will fill in for patient 3.
So far I've tried using this:
mainData['HR'] = mainData['HR'].fillna(ValsHR) but it fills all the NaNs with the first value in the vector.
I've also tried to use this:
mainData['HR'] = mainData.groupby('Patient').fillna(ValsHR) fills the NaNs with values that aren't in the valsHR vector at all.
I was wondering if anyone knew a way to do this?
Create dictionary by Patient values with missing values, map to original column and replace missing values only:
print (df)
Age Patient HR
0 21 1 NaN
1 21 1 NaN
2 21 1 NaN
3 30 2 100.0 <- value is not replaced
4 30 2 NaN
5 24 3 NaN
6 24 3 NaN
7 24 3 NaN
p = df.loc[df.HR.isna(), 'Patient'].unique()
valsHR = [78.8, 82.3, 91.0]
df['HR'] = df['HR'].fillna(df['Patient'].map(dict(zip(p, valsHR))))
print (df)
Age Patient HR
0 21 1 78.8
1 21 1 78.8
2 21 1 78.8
3 30 2 100.0
4 30 2 82.3
5 24 3 91.0
6 24 3 91.0
7 24 3 91.0
If some groups has no NaNs:
print (df)
Age Patient HR
0 21 1 NaN
1 21 1 NaN
2 21 1 NaN
3 30 2 100.0 <- group 2 is not replaced
4 30 2 100.0 <- group 2 is not replaced
5 24 3 NaN
6 24 3 NaN
7 24 3 NaN
p = df.loc[df.HR.isna(), 'Patient'].unique()
valsHR = [78.8, 82.3, 91.0]
df['HR'] = df['HR'].fillna(df['Patient'].map(dict(zip(p, valsHR))))
print (df)
Age Patient HR
0 21 1 78.8
1 21 1 78.8
2 21 1 78.8
3 30 2 100.0
4 30 2 100.0
5 24 3 82.3
6 24 3 82.3
7 24 3 82.3
It is simply mapping, if all of NaN should be replaced
import pandas as pd
from io import StringIO
valsHR=[78.8, 82.3, 91.0]
vals = {i:k for i,k in enumerate(valsHR, 1)}
df = pd.read_csv(StringIO("""Age Patient
21 1
21 1
21 1
30 2
30 2
24 3
24 3
24 3"""), sep="\s+")
df["HR"] = df["Patient"].map(vals)
>>> df
Age Patient HR
0 21 1 78.8
1 21 1 78.8
2 21 1 78.8
3 30 2 82.3
4 30 2 82.3
5 24 3 91.0
6 24 3 91.0
7 24 3 91.0
I have a pandas dataframe with several columns of dates, numbers and bill amounts. I would like to add the amounts of the other invoices with the 3rd one and change the invoice number by "1111".
Here is an example:
ID customer
Bill1
Date 1
ID Bill 1
Bill2
Date 2
ID Bill 2
Bill3
Date3
ID Bill 3
Bill4
Date 4
ID Bill 4
Bill5
Date 5
ID Bill 5
4
6
2000-10-04
1
45
2000-11-05
2
51
1999-12-05
3
23
2001-11-23
6
76
2011-08-19
12
6
8
2016-05-03
7
39
2017-08-09
8
38
2018-07-14
17
21
2009-05-04
9
Nan
Nan
Nan
12
14
2016-11-16
10
73
2017-05-04
15
Nan
Nan
Nan
Nan
Nan
Nan
Nan
Nan
Nan
And I would like to get this :
ID customer
Bill1
Date 1
ID Bill 1
Bill2
Date 2
ID Bill 2
Bill3
Date3
ID Bill 3
4
6
2000-10-04
1
45
2000-11-05
2
150
1999-12-05
1111
6
8
2016-05-03
7
39
2017-08-09
8
59
2018-07-14
1111
12
14
2016-11-16
10
73
2017-05-04
15
Nan
Nan
Nan
This example is a sample of my data, I may have many more than 5 columns.
Thanks for your help
with a little of data manipulation, you should be able to do it as:
df = df.replace('Nan', np.nan)
idx_col_bill3 = 7
step = 3
idx_col_bill3_id = 10
cols = df.columns
bills = df[cols[range(idx_col_bill3,len(cols), step)]].sum(axis=1)
bills.replace(0, nan, inplace=True)
df = df[cols[range(idx_col_bill3_id)]]
df['Bill3'] = bills
df['ID Bill 3'].iloc._setitem_with_indexer(df['ID Bill 3'].notna(),1111)
I have a dataframe (i.e df1) with the below values. I wanted to SUM Row 4 to 9 and put the resulting value in Row3. How can we achieve it? In excel it has been simple SUM formula like this =SUM(B9:B14) but what is the alternative in pandas?
Detail Value
0 Day 23
1 Month Aug
2 Year 2020
3 Total Tickets NaN
4 Pune 2
5 Mumbai 3
6 Thane 33
7 Kolkatta NaN
8 Hyderabad NaN
9 Kerala 283
so I am trying to add rows to data frame that should follow a numeric order 1 to 52
but my data is missing numbers, so I need to add these rows and fill these spots with NaN values or null.
df = pd.DataFrame("Weeks": [1,2,3,15,16,20,21,52],
"Values": [10,10,10,10,50,60,70,40])
Desired output:
Weeks Values
1 10
2 10
3 10
4 NaN
5 NaN
6 NaN
7 NaN
8 NaN
...
52 40
and so on until it reach Weeks = 52
My solution:
new_df = pd.DataFrame("Weeks": "" , "Values":"")
for x in range(1,53):
for i in df.Weeks:
if x == i:
new_df["Weeks"] = x
new_df["Values"] = df.Values[i]
The problem it is super inefficient, anyone know a way to do it in much efficient way?
You could use set_index to set the Weeks as index an reindex with a range up to the maximum week:
df.set_index('Weeks').reindex(range(1,df.Weeks.max()))
Or accounting for the minimum week too:
df.set_index('Weeks').reindex(range(*df.Weeks.agg(('min', 'max'))))
Values
Weeks
1 10.0
2 10.0
3 10.0
4 NaN
5 NaN
6 NaN
7 NaN
8 NaN
9 NaN
10 NaN
11 NaN
12 NaN
13 NaN
14 NaN
15 10.0
16 50.0
17 NaN
...
I have a pandas dataframe created from measured numbers. When something goes wrong with the measurement, the last value is repeated. I would like to do two things:
1. Change all repeating values either to nan or 0.
2. Keep the first repeating value and change all other values nan or 0.
I have found solutions using "shift" but they drop repeating values. I do not want to drop repeating values.My data frame looks like this:
df = pd.DataFrame(np.random.randn(15, 3))
df.iloc[4:8,0]=40
df.iloc[12:15,1]=22
df.iloc[10:12,2]=0.23
giving a dataframe like this:
0 1 2
0 1.239916 1.109434 0.305490
1 0.248682 1.472628 0.630074
2 -0.028584 -1.116208 0.074299
3 -0.784692 -0.774261 -1.117499
4 40.000000 0.283084 -1.495734
5 40.000000 -0.074763 -0.840403
6 40.000000 0.709794 -1.000048
7 40.000000 0.920943 0.681230
8 -0.701831 0.547689 -0.128996
9 -0.455691 0.610016 0.420240
10 -0.856768 -1.039719 0.230000
11 1.187208 0.964340 0.230000
12 0.116258 22.000000 1.119744
13 -0.501180 22.000000 0.558941
14 0.551586 22.000000 -0.993749
what I would like to be able to do is write some code that would filter the data and give me a data frame like this:
0 1 2
0 1.239916 1.109434 0.305490
1 0.248682 1.472628 0.630074
2 -0.028584 -1.116208 0.074299
3 -0.784692 -0.774261 -1.117499
4 NaN 0.283084 -1.495734
5 NaN -0.074763 -0.840403
6 NaN 0.709794 -1.000048
7 NaN 0.920943 0.681230
8 -0.701831 0.547689 -0.128996
9 -0.455691 0.610016 0.420240
10 -0.856768 -1.039719 NaN
11 1.187208 0.964340 NaN
12 0.116258 NaN 1.119744
13 -0.501180 NaN 0.558941
14 0.551586 NaN -0.993749
or even better keep the first value and change the rest to NaN. Like this:
0 1 2
0 1.239916 1.109434 0.305490
1 0.248682 1.472628 0.630074
2 -0.028584 -1.116208 0.074299
3 -0.784692 -0.774261 -1.117499
4 40.000000 0.283084 -1.495734
5 NaN -0.074763 -0.840403
6 NaN 0.709794 -1.000048
7 NaN 0.920943 0.681230
8 -0.701831 0.547689 -0.128996
9 -0.455691 0.610016 0.420240
10 -0.856768 -1.039719 0.230000
11 1.187208 0.964340 NaN
12 0.116258 22.000000 1.119744
13 -0.501180 NaN 0.558941
14 0.551586 NaN -0.993749
using shift & mask:
df.shift(1) == df compares the next row to the current for consecutive duplicates.
df.mask(df.shift(1) == df)
# outputs
0 1 2
0 0.365329 0.153527 0.143244
1 0.688364 0.495755 1.065965
2 0.354180 -0.023518 3.338483
3 -0.106851 0.296802 -0.594785
4 40.000000 0.149378 1.507316
5 NaN -1.312952 0.225137
6 NaN -0.242527 -1.731890
7 NaN 0.798908 0.654434
8 2.226980 -1.117809 -1.172430
9 -1.228234 -3.129854 -1.101965
10 0.393293 1.682098 0.230000
11 -0.029907 -0.502333 NaN
12 0.107994 22.000000 0.354902
13 -0.478481 NaN 0.531017
14 -1.517769 NaN 1.552974
if you want to remove all the consecutive duplicates, test that the previous row is also the same as the current row
df.mask((df.shift(1) == df) | (df.shift(-1) == df))
Option 1
Specialized solution using diff. Get's at the final desired output.
df.mask(df.diff().eq(0))
0 1 2
0 1.239916 1.109434 0.305490
1 0.248682 1.472628 0.630074
2 -0.028584 -1.116208 0.074299
3 -0.784692 -0.774261 -1.117499
4 40.000000 0.283084 -1.495734
5 NaN -0.074763 -0.840403
6 NaN 0.709794 -1.000048
7 NaN 0.920943 0.681230
8 -0.701831 0.547689 -0.128996
9 -0.455691 0.610016 0.420240
10 -0.856768 -1.039719 0.230000
11 1.187208 0.964340 NaN
12 0.116258 22.000000 1.119744
13 -0.501180 NaN 0.558941
14 0.551586 NaN -0.993749